Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interlayer engineering in metal halide perovskite photovoltaics

Abstract

Interlayers (ILs) play a pivotal role in perovskite solar cells, enabling efficient charge extraction, suppressing recombination and enhancing device stability. Positioned between the light-absorbing perovskite layer and the electrodes, ILs facilitate selective carrier transport while mitigating interfacial losses. Unlike GaAs cells and heterojunction with intrinsic thin layer silicon cells, which benefit from coherent, chemically compatible interfaces, perovskite solar cells exhibit structural and energetic mismatches at the interfaces between the perovskite and charge transport layers (CTLs). To address these challenges, functional interfacial ILs are introduced at both the CTL/perovskite and CTL/electrode interfaces. This Review examines the evolution of these ILs, from simple passivation layers to multifunctional components that regulate electric fields and carrier dynamics. We highlight recent advances in materials and architectures, classify ILs by their device position and discuss design strategies inspired by mature photovoltaic technologies. We argue that interfacial IL engineering is crucial to radiative efficiency and stable, high-performance perovskite solar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of IL configurations in GaAs solar cells, SHJ cells and PSCs.
Fig. 2: Charge carrier dynamics and representative ILs for PSCs.
Fig. 3: IL engineering at the n-type side.
Fig. 4: IL engineering at p-type side.
Fig. 5: Nanoscale ILs for enhanced performance in PSCs.

Similar content being viewed by others

References

  1. Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).

    Article  ADS  Google Scholar 

  2. Li, W. et al. Passivating contacts for crystalline silicon solar cells: an overview of the current advances and future perspectives. Adv. Energy Mater. 14, 2304338 (2024).

    Article  Google Scholar 

  3. Schulte, K. L., Simon, J., Steiner, M. A. & Ptak, A. J. Modeling and design of III-V heterojunction solar cells for enhanced performance. Cell Rep. Phys. Sci. 4, (2023).

  4. Li, C. et al. Insights into ultrafast carrier dynamics in perovskite thin films and solar cells. ACS Photon. 7, 1893–1907 (2020).

    Article  Google Scholar 

  5. Shi, J. et al. From ultrafast to ultraslow: charge-carrier dynamics of perovskite solar cells. Joule 2, 879–901 (2018).

    Article  Google Scholar 

  6. Pan, H., Shao, H., Zhang, X. L., Shen, Y. & Wang, M. Interface engineering for high-efficiency perovskite solar cells. J. Appl. Phys. 129, 130904 (2021).

    Article  ADS  Google Scholar 

  7. Yang, G. et al. Study on carrier dynamics of perovskite solar cells via transient absorption. J. Alloys Compd. 952, 170051 (2023).

    Article  Google Scholar 

  8. Stolterfoht, M. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019).

    Article  Google Scholar 

  9. Gharibzadeh, S. et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).

    Article  Google Scholar 

  10. Krückemeier, L., Rau, U., Stolterfoht, M. & Kirchartz, T. How to report record open-circuit voltages in lead-halide perovskite solar cells. Adv. Energy Mater. 10, 1902573 (2020).

    Article  Google Scholar 

  11. Shin, S. S. et al. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy Environ. Sci. 12, 958–964 (2019).

    Article  Google Scholar 

  12. Shin, S. S. et al. Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells. J. Phys. Chem. Lett. 7, 1845–1851 (2016).

    Article  Google Scholar 

  13. Zheng, Y. et al. Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps. Energy Environ. Sci. 17, 1153–1162 (2024).

    Article  Google Scholar 

  14. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).

    Article  Google Scholar 

  15. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  ADS  Google Scholar 

  16. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  ADS  Google Scholar 

  17. Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 486–491 (2013).

    Article  ADS  Google Scholar 

  18. Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article  ADS  Google Scholar 

  19. Wang, Q. et al. Enhanced performance of perovskite solar cells via low-temperature-processed mesoporous SnO2. Adv. Mater. Interfaces 7, 1901866 (2020).

    Article  Google Scholar 

  20. Yin, X. et al. Novel NiO nanoforest architecture for efficient inverted mesoporous perovskite solar cells. ACS Appl. Mater. Interfaces 11, 44308–44314 (2019).

    Article  Google Scholar 

  21. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article  ADS  Google Scholar 

  22. Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

  23. Azmi, R. et al. Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024).

    Article  ADS  Google Scholar 

  24. Yu, M. et al. The influence of the electron transport layer on charge dynamics and trap-state properties in planar perovskite solar cells. RSC Adv. 10, 12347–12353 (2020).

    Article  ADS  Google Scholar 

  25. Cai, F. et al. Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer. J. Mater. Chem. A 5, 9402–9411 (2017).

    Article  Google Scholar 

  26. Haque, M. A., Troughton, J. & Baran, D. Processing-performance evolution of perovskite solar cells: from large grain polycrystalline films to single crystals. Adv. Energy Mater. 10, 1902762 (2020).

    Article  Google Scholar 

  27. Du, B., He, K., Zhao, X. & Li, B. Defect passivation scheme toward high-performance halide perovskite solar cells. Polymers 15, 2010 (2023).

    Article  Google Scholar 

  28. Wang, S., Li, M.-H., Jiang, Y. & Hu, J.-S. Instability of solution-processed perovskite films: origin and mitigation strategies. Mater. Futures 2, 012102 (2023).

    Article  ADS  Google Scholar 

  29. Bi, L. et al. Deciphering the roles of MA-based volatile additives for α-FAPbI3 to enable efficient inverted perovskite solar cells. J. Am. Chem. Soc. 145, 5920–5929 (2023).

    Article  ADS  Google Scholar 

  30. Luo, C. et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photon. 17, 856–864 (2023).

    Article  ADS  Google Scholar 

  31. Kim, C. et al. Trimming defective perovskite layer surfaces for high-performance solar cells. Energy Environ. Sci. 17, 8582–8592 (2024).

    Article  Google Scholar 

  32. Wolff, C. M., Caprioglio, P., Stolterfoht, M. & Neher, D. Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, 1902762 (2019).

    Article  Google Scholar 

  33. Miah, M. H. et al. Key degradation mechanisms of perovskite solar cells and strategies for enhanced stability: issues and prospects. RSC Adv. 15, 628–654 (2025).

    Article  ADS  Google Scholar 

  34. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  ADS  Google Scholar 

  35. Cao, Y. et al. Defects passivation strategy for efficient and stable perovskite solar cells. Adv. Mater. Interfaces 9, 2200179 (2022).

    Article  Google Scholar 

  36. Zhang, F. et al. Perovskite photovoltaic interface: from optimization towards exemption. Nano Energy 124, 109503 (2024).

    Article  Google Scholar 

  37. Lan, C. et al. Application of bidirectional passivation agents at the tin oxide/perovskite interface to enhance the performance of perovskite solar cells. Solar RRL 9, 2500241 (2025).

    Article  Google Scholar 

  38. Lv, X. et al. One-pot surface and buried interface manipulation of perovskite film for efficient solar cells. Cell Rep. Phys. Sci. 4, 101376 (2023).

    Article  Google Scholar 

  39. Jang, Y.-W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

    Article  ADS  Google Scholar 

  40. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  ADS  Google Scholar 

  41. Ahn, N. & Choi, M. Towards long-term stable perovskite solar cells: degradation mechanisms and stabilization techniques. Adv. Sci. 11, 2306110 (2024).

    Article  Google Scholar 

  42. Khadka, D. B., Shirai, Y., Yanagida, M. & Miyano, K. Degradation of encapsulated perovskite solar cells driven by deep trap states and interfacial deterioration. J. Mater. Chem. C 6, 162–170 (2018).

    Article  Google Scholar 

  43. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  ADS  Google Scholar 

  44. Wang, Y. et al. Lattice mismatch at the heterojunction of perovskite solar cells. Angew. Chem. Int. Ed. 63, e202405878 (2024).

    Article  Google Scholar 

  45. Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    Article  ADS  Google Scholar 

  46. Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article  Google Scholar 

  47. Odysseas Kosmatos, K. et al. Methylammonium chloride: a key additive for highly efficient, stable, and up-scalable perovskite solar cells. Energy Environ. Mater. 2, 79–92 (2019).

    Article  Google Scholar 

  48. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature https://doi.org/10.1038/s41586-023-05825-y (2023).

  49. Hu, W., Yang, S. & Yang, S. Surface modification of TiO2 for perovskite solar cells. Trends Chem. 2, 148–162 (2020).

    Article  Google Scholar 

  50. Tang, X. et al. Enhancing the efficiency and stability of perovskite solar cells via a polymer heterointerface bridge. Nat. Photon. 19, 701–708 (2025).

  51. Guerrero, A., Juarez-Perez, E. J., Bisquert, J., Mora-Sero, I. & Garcia-Belmonte, G. Electrical field profile and doping in planar lead halide perovskite solar cells. Appl. Phys. Lett. https://doi.org/10.1063/1.4896779 (2014).

  52. Aharon, S., Gamliel, S., Cohen, B. E. & Etgar, L. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 16, 10512–10518 (2014).

    Article  Google Scholar 

  53. Liu, J. et al. Oxygen vacancy management for high-temperature mesoporous SnO2 electron transport layers in printable perovskite solar cells. Angew. Chem. Int. Ed. 61, e202202012 (2022).

    Article  ADS  Google Scholar 

  54. Dong, Q. et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2021).

    Article  ADS  Google Scholar 

  55. Bu, T. et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9, 4609 (2018).

    Article  ADS  Google Scholar 

  56. Lee, J. H. et al. Interfacial α-FAPbI3 phase stabilization by reducing oxygen vacancies in SnO2−x. Joule 7, 380–397 (2023).

    Article  Google Scholar 

  57. Klasen, A. et al. Removal of surface oxygen vacancies increases conductance through TiO2 thin films for perovskite solar cells. J. Phys. Chem. C 123, 13458–13466 (2019).

    Article  Google Scholar 

  58. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  ADS  Google Scholar 

  59. Giesl, F. et al. Investigation of electrical transport across the CIGSSe/Mo(Se,S)2 interface of a CIGSSe-based solar cell by experiment and device simulation. Thin Solid Films 763, 139570 (2022).

    Article  ADS  Google Scholar 

  60. Paik, M. J., Kim, Y. Y., Kim, J., Park, J. & Seok, S. I. Ultrafine SnO2 colloids with enhanced interface quality for high-efficiency perovskite solar cells. Joule 8, 2073–2086 (2024).

    Article  Google Scholar 

  61. Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021).

    Article  ADS  Google Scholar 

  62. Gao, D. et al. Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386, 187–192 (2024).

    Article  ADS  Google Scholar 

  63. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article  ADS  Google Scholar 

  64. Liu, C. et al. Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature https://doi.org/10.1038/s41586-024-07764-8 (2024).

  65. Lin, Y. et al. A Nd@C82–polymer interface for efficient and stable perovskite solar cells. Nature 642, 78–84 (2025).

    Article  ADS  Google Scholar 

  66. Kim, J. et al. Susceptible organic cations enable stable and efficient perovskite solar cells. Joule https://doi.org/10.1016/j.joule.2025.101879 (2025).

  67. Wang, C., Dong, X., Chen, F., Liu, G. & Zheng, H. Recent progress of two-dimensional Ruddlesden-Popper perovskites in solar cells. Mater. Chem. Front. 7, 5786–5805 (2023).

    Article  Google Scholar 

  68. Sirbu, D., Balogun, F. H., Milot, R. L. & Docampo, P. Layered perovskites in solar cells: structure, optoelectronic properties, and device design. Adv. Energy Mater. 11, 2003877 (2021).

    Article  Google Scholar 

  69. Fu, J. et al. Organic and inorganic sublattice coupling in two-dimensional lead halide perovskites. Nat. Commun. 15, 4562 (2024).

    Article  ADS  Google Scholar 

  70. Oner, S. M. et al. Surface defect formation and passivation in formamidinium lead triiodide (FAPbI3) perovskite solar cell absorbers. J. Phys. Chem. Lett. 13, 324–330 (2022).

    Article  Google Scholar 

  71. Azmi, R. et al. Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  ADS  Google Scholar 

  72. Yoo, J. J. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12, 2192–2199 (2019).

    Article  Google Scholar 

  73. Park, K., Lee, J.-H. & Lee, J.-W. Surface defect engineering of metal halide perovskites for photovoltaic applications. ACS Energy Lett. 7, 1230–1239 (2022).

    Article  Google Scholar 

  74. Zhang, W. et al. Ultrastable and efficient slight-interlayer-displacement 2D Dion-Jacobson perovskite solar cells. Nat. Commun. 15, 5709 (2024).

    Article  ADS  Google Scholar 

  75. Tan, S. et al. Spontaneous formation of robust two-dimensional perovskite phases. Science 388, 639–645 (2025).

    Article  ADS  Google Scholar 

  76. deQuilettes, D. W. et al. Reduced recombination via tunable surface fields in perovskite thin films. Nat. Energy 9, 457–466 (2024).

    Article  ADS  Google Scholar 

  77. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

    Article  ADS  Google Scholar 

  78. Sidhik, S. et al. Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells. Science 384, 1227–1235 (2024).

    Article  ADS  Google Scholar 

  79. Zhang, F. et al. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022).

    Article  ADS  Google Scholar 

  80. Tan, S. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022).

    Article  ADS  Google Scholar 

  81. Liu, N. et al. Multifunctional anti-corrosive interface modification for inverted perovskite solar cells. Adv. Energy Mater. https://doi.org/10.1002/aenm.202300025 (2023).

  82. Bi, E. et al. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 8, 15330 (2017).

    Article  ADS  Google Scholar 

  83. Peng, J. et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601, 573–578 (2022).

    Article  ADS  Google Scholar 

  84. Kim, H. et al. Polymethyl methacrylate as an interlayer between the halide perovskite and copper phthalocyanine layers for stable and efficient perovskite solar cells. Adv. Funct. Mater. 32, 2110473 (2022).

    Article  Google Scholar 

  85. Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).

    Article  ADS  Google Scholar 

  86. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article  ADS  Google Scholar 

  87. Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article  ADS  Google Scholar 

  88. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature https://doi.org/10.1038/s41586-022-05268-x (2022).

  89. Levine, I. et al. Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 5, 2915–2933 (2021).

    Article  Google Scholar 

  90. Li, W., Martínez-Ferrero, E. & Palomares, E. Self-assembled molecules as selective contacts for efficient and stable perovskite solar cells. Mater. Chem. Front. 8, 681–699 (2024).

    Article  Google Scholar 

  91. Li, M., Liu, M., Qi, F., Lin, F. R. & Jen, A. K.-Y. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: design, fabrication, and applications. Chem. Rev. 124, 2138–2204 (2024).

    Article  Google Scholar 

  92. Novak, M. et al. Low-voltage p- and n-type organic self-assembled monolayer field effect transistors. Nano Lett. 11, 156–159 (2011).

    Article  ADS  Google Scholar 

  93. Isikgor, F. H. et al. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2023).

    Article  ADS  Google Scholar 

  94. Abrusci, A. et al. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124–3128 (2013).

    Article  ADS  Google Scholar 

  95. Liu, L. et al. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137, 1790–1793 (2015).

    Article  ADS  Google Scholar 

  96. Zuo, L. et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137, 2674–2679 (2015).

    Article  ADS  Google Scholar 

  97. Yang, G. et al. Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement. J. Mater. Chem. A 5, 1658–1666 (2017).

    Article  Google Scholar 

  98. Hou, Y. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).

    Article  ADS  Google Scholar 

  99. Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).

    Article  ADS  Google Scholar 

  100. He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article  ADS  Google Scholar 

  101. Xu, Z. et al. Reducing energy barrier of δ-to-α phase transition for printed formamidinium lead iodide photovoltaic devices. Nano Energy 91, 106658 (2022).

    Article  Google Scholar 

  102. Jeong, S.-Y., Kim, H.-S. & Park, N.-G. Challenges for thermally stable spiro-MeOTAD toward the market entry of highly efficient perovskite solar cells. ACS Appl. Mater. Interfaces 14, 34220–34227 (2022).

    Article  Google Scholar 

  103. Kassem, H., Salehi, A. & Kahrizi, M. Recent advances in poly(3-hexylthiophene) and its applications in perovskite solar cells. Energy Technology 12, 2301032 (2024).

    Article  Google Scholar 

  104. Perumbalathodi, N., Su, T.-S., He, Z.-F., Kannankutty, K. & Wei, T.-C. Bidirectional passivation for highly efficient and stable CuSCN-based perovskite solar cells using (3-mercaptopropyl) trimethoxysilane. ACS Appl. Energy Mater. 7, 3656–3666 (2024).

    Article  Google Scholar 

  105. Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

    Article  ADS  Google Scholar 

  106. Bai, Y. et al. Complex metal oxides as emerging inorganic hole-transporting materials for perovskite solar cells. Small 20, 2310227 (2024).

    Article  Google Scholar 

  107. Jeong, M. J. et al. Architecture for high performance semi-transparent perovskite solar cells. Adv. Energy Mater. 12, 2200661 (2022).

    Article  Google Scholar 

  108. Chen, P. et al. Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 625, 516–522 (2024).

    Article  ADS  Google Scholar 

  109. Zhao, X. et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377, 307–310 (2022).

    Article  ADS  Google Scholar 

  110. Ouedraogo, N. A. N. et al. Printing perovskite solar cells in ambient air: a review. Adv. Energy Mater. 14, 2401463 (2024).

    Article  Google Scholar 

  111. Yoo, J. W. et al. R4N+ and Cl stabilized α-formamidinium lead triiodide and efficient bar-coated mini-modules. Joule 7, 797–809 (2023).

    Article  Google Scholar 

  112. Bu, T. et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy 7, 528–536 (2022).

  113. Bi, E. et al. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule 3, 2748–2760 (2019).

    Article  Google Scholar 

  114. Feng, Q. et al. Governing PbI6 octahedral frameworks for high-stability perovskite solar modules. Energy Environ. Sci. 15, 4404–4413 (2022).

    Article  Google Scholar 

  115. Yang, X. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021).

    Article  Google Scholar 

  116. Weerasinghe, H. C. et al. The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nat. Commun. 15, 1656 (2024).

    Article  ADS  Google Scholar 

  117. Pham, D. P., Lee, S. & Yi, J. Potential high efficiency of GaAs solar cell with heterojunction carrier selective contact layers. Phys. B 611, 412856 (2021).

    Article  Google Scholar 

  118. Green, M. A. & Ho-Baillie, A. W. Pushing to the limit: radiative efficiencies of recent mainstream and emerging solar cells. ACS Energy Lett. 4, 1639–1644 (2019).

    Article  Google Scholar 

  119. Yeom, K. M. et al. Quantum barriers engineering toward radiative and stable perovskite photovoltaic devices. Nat. Commun. 15, 4547 (2024).

    Article  ADS  Google Scholar 

  120. Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article  ADS  Google Scholar 

  121. Yablonovitch, E. Lead halides join the top optoelectronic league. Science 351, 1401–1401 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Challengeable Future Defense Technology Research and Development Program through the Agency For Defense Development (ADD) funded by the Defense Acquisition Program Administration (DAPA) in 2024 (grant no. 912765601). Additional support was provided by the National Research Foundation of Korea (NRF) through the Ministry of Science, ICT and Future Planning (MSIP) under grants No. RS-2018-NR030954, RS-2024-00418209, and RS-2024-00345042. This work was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) from the Ministry of Trade, Industry and Energy (20214000000680).

Author information

Authors and Affiliations

Authors

Contributions

S.S.S., B.P. and J.H.N. drafted the manuscript. S.I.S. initiated the subject of the Review and edited the text.

Corresponding authors

Correspondence to Jun Hong Noh or Sang Il Seok.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Bin Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–4, Tables 1 and 2 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S.S., Park, Bw., Noh, J.H. et al. Interlayer engineering in metal halide perovskite photovoltaics. Nat. Photon. 20, 11–23 (2026). https://doi.org/10.1038/s41566-025-01809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-025-01809-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing