Abstract
Interlayers (ILs) play a pivotal role in perovskite solar cells, enabling efficient charge extraction, suppressing recombination and enhancing device stability. Positioned between the light-absorbing perovskite layer and the electrodes, ILs facilitate selective carrier transport while mitigating interfacial losses. Unlike GaAs cells and heterojunction with intrinsic thin layer silicon cells, which benefit from coherent, chemically compatible interfaces, perovskite solar cells exhibit structural and energetic mismatches at the interfaces between the perovskite and charge transport layers (CTLs). To address these challenges, functional interfacial ILs are introduced at both the CTL/perovskite and CTL/electrode interfaces. This Review examines the evolution of these ILs, from simple passivation layers to multifunctional components that regulate electric fields and carrier dynamics. We highlight recent advances in materials and architectures, classify ILs by their device position and discuss design strategies inspired by mature photovoltaic technologies. We argue that interfacial IL engineering is crucial to radiative efficiency and stable, high-performance perovskite solar cells.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).
Li, W. et al. Passivating contacts for crystalline silicon solar cells: an overview of the current advances and future perspectives. Adv. Energy Mater. 14, 2304338 (2024).
Schulte, K. L., Simon, J., Steiner, M. A. & Ptak, A. J. Modeling and design of III-V heterojunction solar cells for enhanced performance. Cell Rep. Phys. Sci. 4, (2023).
Li, C. et al. Insights into ultrafast carrier dynamics in perovskite thin films and solar cells. ACS Photon. 7, 1893–1907 (2020).
Shi, J. et al. From ultrafast to ultraslow: charge-carrier dynamics of perovskite solar cells. Joule 2, 879–901 (2018).
Pan, H., Shao, H., Zhang, X. L., Shen, Y. & Wang, M. Interface engineering for high-efficiency perovskite solar cells. J. Appl. Phys. 129, 130904 (2021).
Yang, G. et al. Study on carrier dynamics of perovskite solar cells via transient absorption. J. Alloys Compd. 952, 170051 (2023).
Stolterfoht, M. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019).
Gharibzadeh, S. et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).
Krückemeier, L., Rau, U., Stolterfoht, M. & Kirchartz, T. How to report record open-circuit voltages in lead-halide perovskite solar cells. Adv. Energy Mater. 10, 1902573 (2020).
Shin, S. S. et al. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy Environ. Sci. 12, 958–964 (2019).
Shin, S. S. et al. Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells. J. Phys. Chem. Lett. 7, 1845–1851 (2016).
Zheng, Y. et al. Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps. Energy Environ. Sci. 17, 1153–1162 (2024).
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).
Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 486–491 (2013).
Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).
Wang, Q. et al. Enhanced performance of perovskite solar cells via low-temperature-processed mesoporous SnO2. Adv. Mater. Interfaces 7, 1901866 (2020).
Yin, X. et al. Novel NiO nanoforest architecture for efficient inverted mesoporous perovskite solar cells. ACS Appl. Mater. Interfaces 11, 44308–44314 (2019).
Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).
Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).
Azmi, R. et al. Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024).
Yu, M. et al. The influence of the electron transport layer on charge dynamics and trap-state properties in planar perovskite solar cells. RSC Adv. 10, 12347–12353 (2020).
Cai, F. et al. Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer. J. Mater. Chem. A 5, 9402–9411 (2017).
Haque, M. A., Troughton, J. & Baran, D. Processing-performance evolution of perovskite solar cells: from large grain polycrystalline films to single crystals. Adv. Energy Mater. 10, 1902762 (2020).
Du, B., He, K., Zhao, X. & Li, B. Defect passivation scheme toward high-performance halide perovskite solar cells. Polymers 15, 2010 (2023).
Wang, S., Li, M.-H., Jiang, Y. & Hu, J.-S. Instability of solution-processed perovskite films: origin and mitigation strategies. Mater. Futures 2, 012102 (2023).
Bi, L. et al. Deciphering the roles of MA-based volatile additives for α-FAPbI3 to enable efficient inverted perovskite solar cells. J. Am. Chem. Soc. 145, 5920–5929 (2023).
Luo, C. et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photon. 17, 856–864 (2023).
Kim, C. et al. Trimming defective perovskite layer surfaces for high-performance solar cells. Energy Environ. Sci. 17, 8582–8592 (2024).
Wolff, C. M., Caprioglio, P., Stolterfoht, M. & Neher, D. Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, 1902762 (2019).
Miah, M. H. et al. Key degradation mechanisms of perovskite solar cells and strategies for enhanced stability: issues and prospects. RSC Adv. 15, 628–654 (2025).
Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).
Cao, Y. et al. Defects passivation strategy for efficient and stable perovskite solar cells. Adv. Mater. Interfaces 9, 2200179 (2022).
Zhang, F. et al. Perovskite photovoltaic interface: from optimization towards exemption. Nano Energy 124, 109503 (2024).
Lan, C. et al. Application of bidirectional passivation agents at the tin oxide/perovskite interface to enhance the performance of perovskite solar cells. Solar RRL 9, 2500241 (2025).
Lv, X. et al. One-pot surface and buried interface manipulation of perovskite film for efficient solar cells. Cell Rep. Phys. Sci. 4, 101376 (2023).
Jang, Y.-W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).
Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).
Ahn, N. & Choi, M. Towards long-term stable perovskite solar cells: degradation mechanisms and stabilization techniques. Adv. Sci. 11, 2306110 (2024).
Khadka, D. B., Shirai, Y., Yanagida, M. & Miyano, K. Degradation of encapsulated perovskite solar cells driven by deep trap states and interfacial deterioration. J. Mater. Chem. C 6, 162–170 (2018).
Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).
Wang, Y. et al. Lattice mismatch at the heterojunction of perovskite solar cells. Angew. Chem. Int. Ed. 63, e202405878 (2024).
Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).
Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).
Odysseas Kosmatos, K. et al. Methylammonium chloride: a key additive for highly efficient, stable, and up-scalable perovskite solar cells. Energy Environ. Mater. 2, 79–92 (2019).
Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature https://doi.org/10.1038/s41586-023-05825-y (2023).
Hu, W., Yang, S. & Yang, S. Surface modification of TiO2 for perovskite solar cells. Trends Chem. 2, 148–162 (2020).
Tang, X. et al. Enhancing the efficiency and stability of perovskite solar cells via a polymer heterointerface bridge. Nat. Photon. 19, 701–708 (2025).
Guerrero, A., Juarez-Perez, E. J., Bisquert, J., Mora-Sero, I. & Garcia-Belmonte, G. Electrical field profile and doping in planar lead halide perovskite solar cells. Appl. Phys. Lett. https://doi.org/10.1063/1.4896779 (2014).
Aharon, S., Gamliel, S., Cohen, B. E. & Etgar, L. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 16, 10512–10518 (2014).
Liu, J. et al. Oxygen vacancy management for high-temperature mesoporous SnO2 electron transport layers in printable perovskite solar cells. Angew. Chem. Int. Ed. 61, e202202012 (2022).
Dong, Q. et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2021).
Bu, T. et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9, 4609 (2018).
Lee, J. H. et al. Interfacial α-FAPbI3 phase stabilization by reducing oxygen vacancies in SnO2−x. Joule 7, 380–397 (2023).
Klasen, A. et al. Removal of surface oxygen vacancies increases conductance through TiO2 thin films for perovskite solar cells. J. Phys. Chem. C 123, 13458–13466 (2019).
Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).
Giesl, F. et al. Investigation of electrical transport across the CIGSSe/Mo(Se,S)2 interface of a CIGSSe-based solar cell by experiment and device simulation. Thin Solid Films 763, 139570 (2022).
Paik, M. J., Kim, Y. Y., Kim, J., Park, J. & Seok, S. I. Ultrafine SnO2 colloids with enhanced interface quality for high-efficiency perovskite solar cells. Joule 8, 2073–2086 (2024).
Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021).
Gao, D. et al. Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386, 187–192 (2024).
Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).
Liu, C. et al. Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature https://doi.org/10.1038/s41586-024-07764-8 (2024).
Lin, Y. et al. A Nd@C82–polymer interface for efficient and stable perovskite solar cells. Nature 642, 78–84 (2025).
Kim, J. et al. Susceptible organic cations enable stable and efficient perovskite solar cells. Joule https://doi.org/10.1016/j.joule.2025.101879 (2025).
Wang, C., Dong, X., Chen, F., Liu, G. & Zheng, H. Recent progress of two-dimensional Ruddlesden-Popper perovskites in solar cells. Mater. Chem. Front. 7, 5786–5805 (2023).
Sirbu, D., Balogun, F. H., Milot, R. L. & Docampo, P. Layered perovskites in solar cells: structure, optoelectronic properties, and device design. Adv. Energy Mater. 11, 2003877 (2021).
Fu, J. et al. Organic and inorganic sublattice coupling in two-dimensional lead halide perovskites. Nat. Commun. 15, 4562 (2024).
Oner, S. M. et al. Surface defect formation and passivation in formamidinium lead triiodide (FAPbI3) perovskite solar cell absorbers. J. Phys. Chem. Lett. 13, 324–330 (2022).
Azmi, R. et al. Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).
Yoo, J. J. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12, 2192–2199 (2019).
Park, K., Lee, J.-H. & Lee, J.-W. Surface defect engineering of metal halide perovskites for photovoltaic applications. ACS Energy Lett. 7, 1230–1239 (2022).
Zhang, W. et al. Ultrastable and efficient slight-interlayer-displacement 2D Dion-Jacobson perovskite solar cells. Nat. Commun. 15, 5709 (2024).
Tan, S. et al. Spontaneous formation of robust two-dimensional perovskite phases. Science 388, 639–645 (2025).
deQuilettes, D. W. et al. Reduced recombination via tunable surface fields in perovskite thin films. Nat. Energy 9, 457–466 (2024).
Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).
Sidhik, S. et al. Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells. Science 384, 1227–1235 (2024).
Zhang, F. et al. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022).
Tan, S. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022).
Liu, N. et al. Multifunctional anti-corrosive interface modification for inverted perovskite solar cells. Adv. Energy Mater. https://doi.org/10.1002/aenm.202300025 (2023).
Bi, E. et al. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 8, 15330 (2017).
Peng, J. et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601, 573–578 (2022).
Kim, H. et al. Polymethyl methacrylate as an interlayer between the halide perovskite and copper phthalocyanine layers for stable and efficient perovskite solar cells. Adv. Funct. Mater. 32, 2110473 (2022).
Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).
Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).
Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).
Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature https://doi.org/10.1038/s41586-022-05268-x (2022).
Levine, I. et al. Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 5, 2915–2933 (2021).
Li, W., Martínez-Ferrero, E. & Palomares, E. Self-assembled molecules as selective contacts for efficient and stable perovskite solar cells. Mater. Chem. Front. 8, 681–699 (2024).
Li, M., Liu, M., Qi, F., Lin, F. R. & Jen, A. K.-Y. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: design, fabrication, and applications. Chem. Rev. 124, 2138–2204 (2024).
Novak, M. et al. Low-voltage p- and n-type organic self-assembled monolayer field effect transistors. Nano Lett. 11, 156–159 (2011).
Isikgor, F. H. et al. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2023).
Abrusci, A. et al. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124–3128 (2013).
Liu, L. et al. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137, 1790–1793 (2015).
Zuo, L. et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137, 2674–2679 (2015).
Yang, G. et al. Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement. J. Mater. Chem. A 5, 1658–1666 (2017).
Hou, Y. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).
Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).
He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).
Xu, Z. et al. Reducing energy barrier of δ-to-α phase transition for printed formamidinium lead iodide photovoltaic devices. Nano Energy 91, 106658 (2022).
Jeong, S.-Y., Kim, H.-S. & Park, N.-G. Challenges for thermally stable spiro-MeOTAD toward the market entry of highly efficient perovskite solar cells. ACS Appl. Mater. Interfaces 14, 34220–34227 (2022).
Kassem, H., Salehi, A. & Kahrizi, M. Recent advances in poly(3-hexylthiophene) and its applications in perovskite solar cells. Energy Technology 12, 2301032 (2024).
Perumbalathodi, N., Su, T.-S., He, Z.-F., Kannankutty, K. & Wei, T.-C. Bidirectional passivation for highly efficient and stable CuSCN-based perovskite solar cells using (3-mercaptopropyl) trimethoxysilane. ACS Appl. Energy Mater. 7, 3656–3666 (2024).
Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).
Bai, Y. et al. Complex metal oxides as emerging inorganic hole-transporting materials for perovskite solar cells. Small 20, 2310227 (2024).
Jeong, M. J. et al. Architecture for high performance semi-transparent perovskite solar cells. Adv. Energy Mater. 12, 2200661 (2022).
Chen, P. et al. Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 625, 516–522 (2024).
Zhao, X. et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377, 307–310 (2022).
Ouedraogo, N. A. N. et al. Printing perovskite solar cells in ambient air: a review. Adv. Energy Mater. 14, 2401463 (2024).
Yoo, J. W. et al. R4N+ and Cl− stabilized α-formamidinium lead triiodide and efficient bar-coated mini-modules. Joule 7, 797–809 (2023).
Bu, T. et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy 7, 528–536 (2022).
Bi, E. et al. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule 3, 2748–2760 (2019).
Feng, Q. et al. Governing PbI6 octahedral frameworks for high-stability perovskite solar modules. Energy Environ. Sci. 15, 4404–4413 (2022).
Yang, X. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021).
Weerasinghe, H. C. et al. The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nat. Commun. 15, 1656 (2024).
Pham, D. P., Lee, S. & Yi, J. Potential high efficiency of GaAs solar cell with heterojunction carrier selective contact layers. Phys. B 611, 412856 (2021).
Green, M. A. & Ho-Baillie, A. W. Pushing to the limit: radiative efficiencies of recent mainstream and emerging solar cells. ACS Energy Lett. 4, 1639–1644 (2019).
Yeom, K. M. et al. Quantum barriers engineering toward radiative and stable perovskite photovoltaic devices. Nat. Commun. 15, 4547 (2024).
Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).
Yablonovitch, E. Lead halides join the top optoelectronic league. Science 351, 1401–1401 (2016).
Acknowledgements
This research was supported by the Challengeable Future Defense Technology Research and Development Program through the Agency For Defense Development (ADD) funded by the Defense Acquisition Program Administration (DAPA) in 2024 (grant no. 912765601). Additional support was provided by the National Research Foundation of Korea (NRF) through the Ministry of Science, ICT and Future Planning (MSIP) under grants No. RS-2018-NR030954, RS-2024-00418209, and RS-2024-00345042. This work was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) from the Ministry of Trade, Industry and Energy (20214000000680).
Author information
Authors and Affiliations
Contributions
S.S.S., B.P. and J.H.N. drafted the manuscript. S.I.S. initiated the subject of the Review and edited the text.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Bin Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1–5, Figs. 1–4, Tables 1 and 2 and references.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shin, S.S., Park, Bw., Noh, J.H. et al. Interlayer engineering in metal halide perovskite photovoltaics. Nat. Photon. 20, 11–23 (2026). https://doi.org/10.1038/s41566-025-01809-8
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41566-025-01809-8


