Experiments and simulations show that trains of droplets in microfluidic networks undergo synchronized oscillations, and that strategies to prevent these oscillations can help maintain uniform distribution of red blood cells in microcirculation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Krogh, A. Anatomy and Physiology of Capillaries (Yale University Press, 1922).
Fung, Y. C. Microvasc. Res. 5, 34–48 (1973).
Cybulski, O., Garstecki, P. & Grzybowski, B. A. Nat. Phys. https://doi.org/10.1038/s41567-019-0486-8 (2019).
Schindler, M. & Ajdari, A. Phys. Rev. Lett. 100, 044501 (2008).
Kiani, M. F., Pries, A. R., Hsu, L. L., Sarelius, I. H. & Cokelet, G. R. Am. J. Physiol. 266, H1822–H1828 (1994).
Geddes, J. B., Carr, R. T., Wu, F., Lao, Y. & Maher, M. Chaos 20, 045123 (2010).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vanapalli, S.A. How to tame a giant oscillation. Nat. Phys. 15, 626–627 (2019). https://doi.org/10.1038/s41567-019-0510-z
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41567-019-0510-z