Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strain-stiffening universality in composite hydrogels and soft tissues

Abstract

Soft biological tissues exhibit mechanical properties that reflect their composite structure of cells embedded within a biopolymer matrix. However, the microscopic mechanisms underlying their unique nonlinear mechanical response—characterized by strain stiffening in compression, but strain softening in shear or tension—remain poorly understood. Here we show that strain softening in composite systems can arise due to plastic dissipation, which is mediated by filler–polymer interactions. We characterize the nonlinear elasticity of composite hydrogels and soft tissues in isolation from these plastic effects, and show that their nonlinear elastic strain stiffening is driven by the stretching of the underlying biopolymer matrix. We thus show that strain stiffening in composite hydrogels and tissues is mediated by strain amplification factors that are universal in compression and shear. In doing so, we demonstrate the importance of fundamental composite properties such as filler concentration and filler–polymer interaction strength in mediating strain stiffening in composite systems. These findings highlight key structure–property relationships that underlie the nonlinear mechanics of biologically relevant soft solids such as composite gels and tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compression-stiffening universality in composite hydrogels.
Fig. 2: Shear-stiffening universality in composite hydrogels.
Fig. 3: Compression- and shear-stiffening universalities in soft biological tissues.

Similar content being viewed by others

Data availability

Additional data regarding the study are available from the corresponding authors upon request.

References

  1. Storm, C., Pastore, J. J., MacKintosh, F., Lubensky, T. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    Article  ADS  Google Scholar 

  2. Burla, F., Mulla, Y., Vos, B. E., Aufderhorst-Roberts, A. & Koenderink, G. H. From mechanical resilience to active material properties in biopolymer networks. Nat. Rev. Phys. 1, 249–263 (2019).

    Article  Google Scholar 

  3. Van Oosten, A. S. et al. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature 573, 96–101 (2019).

    Article  ADS  Google Scholar 

  4. Shadwick, R. E. Mechanical design in arteries. J. Exp. Biol. 202, 3305–3313 (1999).

    Article  Google Scholar 

  5. Burla, F., Tauber, J., Dussi, S., van Der Gucht, J. & Koenderink, G. H. Stress management in composite biopolymer networks. Nat. Phys. 15, 549–553 (2019).

    Article  Google Scholar 

  6. Andrei, D., Briscoe, B., Luckham, P. & Williams, D. in Modern Aspects of Colloidal Dispersions 15–24 (Springer, 1998).

  7. Harding, S. E., Berth, G., Ball, A., Mitchell, J. R. & de la Torre, J. G. The molecular weight distribution and conformation of citrus pectins in solution studied by hydrodynamics. Carbohydr. Polym. 16, 1–15 (1991).

    Article  Google Scholar 

  8. Shivers, J. L. et al. Compression stiffening of fibrous networks with stiff inclusions. Proc. Natl Acad. Sci. USA 117, 21037–21044 (2020).

    Article  ADS  Google Scholar 

  9. Rubinstein, M. & Colby, R. H. Polymer Physics 263–315 (Oxford Univ. Press, 2003).

  10. Song, Y. & Zheng, Q. A guide for hydrodynamic reinforcement effect in nanoparticle-filled polymers. Crit. Rev. Solid State Mater. Sci. 41, 318–346 (2016).

    Article  ADS  Google Scholar 

  11. Smallwood, H. M. Limiting law of the reinforcement of rubber. J. Appl. Phys. 15, 758–766 (1944).

    Article  ADS  Google Scholar 

  12. Guth, E. Theory of filler reinforcement. J. Appl. Phys. 16, 20–25 (1945).

    Article  ADS  Google Scholar 

  13. Batchelor, G. K. & Green, J. T. The determination of the bulk stress in a suspension of spherical particles to order c2. J. Fluid Mech. 56, 401–427 (1972).

    Article  ADS  Google Scholar 

  14. Deng, F. & Van Vliet, K. J. Prediction of elastic properties for polymer–particle nanocomposites exhibiting an interphase. Nanotechnology 22, 165703 (2011).

    Article  ADS  Google Scholar 

  15. Medalia, A. I. Morphology of aggregates: VI. Effective volume of aggregates of carbon black from electron microscopy; application to vehicle absorption and to die swell of filled rubber. J. Colloid Interface Sci. 32, 115–131 (1970).

    Article  ADS  Google Scholar 

  16. Merabia, S., Sotta, P. & Long, D. R. A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects). Macromolecules 41, 8252–8266 (2008).

    Article  ADS  Google Scholar 

  17. Chen, Q. et al. Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett. 4, 398–402 (2015).

    Article  Google Scholar 

  18. Surve, M., Pryamitsyn, V. & Ganesan, V. Universality in structure and elasticity of polymer-nanoparticle gels. Phys. Rev. Lett. 96, 177805 (2006).

    Article  ADS  Google Scholar 

  19. Thomas, C. U. & Muthukumar, M. Three‐body hydrodynamic effects on viscosity of suspensions of spheres. J. Chem. Phys. 94, 5180–5189 (1991).

    Article  ADS  Google Scholar 

  20. Trappe, V., Prasad, V., Cipelletti, L., Segre, P. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).

    Article  ADS  Google Scholar 

  21. Koeze, D. J. & Tighe, B. P. Sticky matters: jamming and rigid cluster statistics with attractive particle interactions. Phys. Rev. Lett. 121, 188002 (2018).

    Article  ADS  Google Scholar 

  22. Dellatolas, I. et al. Local mechanism governs global reinforcement of nanofiller-hydrogel composites. ACS Nano 17, 20939–20948 (2023).

    Article  Google Scholar 

  23. Huang, J., Zhou, J. & Liu, M. Interphase in polymer nanocomposites. JACS Au 2, 280–291 (2022).

    Article  Google Scholar 

  24. Shen, J., Lin, X., Liu, J. & Li, X. Revisiting stress–strain behavior and mechanical reinforcement of polymer nanocomposites from molecular dynamics simulations. Phys. Chem. Chem. Phys. 22, 16760–16771 (2020).

    Article  Google Scholar 

  25. Pogoda, K. et al. Compression stiffening of brain and its effect on mechanosensing by glioma cells. New J. Phys. 16, 075002 (2014).

    Article  ADS  Google Scholar 

  26. Payne, A. R. The dynamic properties of carbon black‐loaded natural rubber vulcanizates. Part I. J. Appl. Polym. Sci. 6, 57–63 (1962).

    Article  Google Scholar 

  27. Mullins, L. Softening of rubber by deformation. Rubber Chem. Technol. 42, 339–362 (1969).

    Article  Google Scholar 

  28. Hyun, K. et al. A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36, 1697–1753 (2011).

    Article  Google Scholar 

  29. Ewoldt, R. H., Hosoi, A. E. & McKinley, G. H. Nonlinear viscoelastic biomaterials: meaningful characterization and engineering inspiration. Integr. Comp. Biol. 49, 40–50 (2009).

    Article  Google Scholar 

  30. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    Article  ADS  Google Scholar 

  31. Donley, G. J., Singh, P. K., Shetty, A. & Rogers, S. A. Elucidating the G″ overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition. Proc. Natl Acad. Sci. USA 117, 21945–21952 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  32. van Doorn, J. M., Verweij, J. E., Sprakel, J. & van der Gucht, J. Strand plasticity governs fatigue in colloidal gels. Phys. Rev. Lett. 120, 208005 (2018).

    Article  ADS  Google Scholar 

  33. Kurniawan, N. A. et al. Fibrin networks support recurring mechanical loads by adapting their structure across multiple scales. Biophys. J. 111, 1026–1034 (2016).

    Article  ADS  Google Scholar 

  34. Papon, A. et al. Solid particles in an elastomer matrix: impact of colloid dispersion and polymer mobility modification on the mechanical properties. Soft Matter 8, 4090–4096 (2012).

    Article  ADS  Google Scholar 

  35. Walls, H., Caines, S. B., Sanchez, A. M. & Khan, S. A. Yield stress and wall slip phenomena in colloidal silica gels. J. Rheol. 47, 847–868 (2003).

    Article  ADS  Google Scholar 

  36. Bueche, F. Molecular basis for the Mullins effect. J. Appl. Polym. Sci. 4, 107–114 (1960).

    Article  Google Scholar 

  37. Gleissle, W. & Hochstein, B. Validity of the Cox–Merz rule for concentrated suspensions. J. Rheol. 47, 897–910 (2003).

    Article  ADS  Google Scholar 

  38. Varol, H. S. et al. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites. Proc. Natl Acad. Sci. USA 114, E3170–E3177 (2017).

    Article  Google Scholar 

  39. Mullins, L. & Tobin, N. Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler‐reinforced vulcanized rubber. J. Appl. Polym. Sci. 9, 2993–3009 (1965).

    Article  Google Scholar 

  40. Bergström, J. S. & Boyce, M. C. Large strain time-dependent behavior of filled elastomers. Mech. Mater. 32, 627–644 (2000).

    Article  Google Scholar 

  41. Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A. & Zhdanov, R. I. Atomic force microscopy probing of cell elasticity. Micron 38, 824–833 (2007).

    Article  Google Scholar 

  42. De Almeida, P. et al. Cytoskeletal stiffening in synthetic hydrogels. Nat. Commun. 10, 609 (2019).

    Article  ADS  Google Scholar 

  43. Shupe, T., Williams, M., Brown, A., Willenberg, B. & Petersen, B. E. Method for the decellularization of intact rat liver. Organogenesis 6, 134–136 (2010).

    Article  Google Scholar 

  44. de Cagny, H. C. et al. Porosity governs normal stresses in polymer gels. Phys. Rev. Lett. 117, 217802 (2016).

    Article  ADS  Google Scholar 

  45. MacKintosh, F., Käs, J. & Janmey, P. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425 (1995).

    Article  ADS  Google Scholar 

  46. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of λ-phage DNA. Science 265, 1599–1600 (1994).

    Article  ADS  Google Scholar 

  47. Marszalek, P. E., Li, H., Oberhauser, A. F. & Fernandez, J. M. Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proc. Natl Acad. Sci. USA 99, 4278–4283 (2002).

    Article  ADS  Google Scholar 

  48. Haverkamp, R. G., Marshall, A. T. & Williams, M. Model for stretching elastic biopolymers which exhibit conformational transformations. Phys. Rev. E 75, 021907 (2007).

    Article  ADS  Google Scholar 

  49. Bertula, K. et al. Strain-stiffening of agarose gels. ACS Macro Lett. 8, 670–675 (2019).

    Article  Google Scholar 

  50. Liu, Y., Lin, S.-H., Chuang, W.-T., Dai, N.-T., & Hsu, S.-H Biomimetic strain-stiffening in chitosan self-healing hydrogels. ACS Appl. Mater. Interfaces 14, 16032–16046 (2022).

    Article  Google Scholar 

  51. Liu, X. & Pollack, G. H. Mechanics of F-actin characterized with microfabricated cantilevers. Biophys. J. 83, 2705–2715 (2002).

    Article  ADS  Google Scholar 

  52. Bozec, L. & Horton, M. Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy. Biophys. J. 88, 4223–4231 (2005).

    Article  ADS  Google Scholar 

  53. Liu, X., Sun, J. Q., Heggeness, M. H., Yeh, M.-L. & Luo, Z.-P. Force-mediated dissociation of proteoglycan aggregate in articular cartilage. Biorheology 43, 183–190 (2006).

    Google Scholar 

  54. Lindström, S. B., Kulachenko, A., Jawerth, L. M. & Vader, D. A. Finite-strain, finite-size mechanics of rigidly cross-linked biopolymer networks. Soft Matter 9, 7302–7313 (2013).

    Article  ADS  Google Scholar 

  55. Gutsmann, T. et al. Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization. Biophys. J. 86, 3186–3193 (2004).

    Article  ADS  Google Scholar 

  56. Licup, A. J., Sharma, A. & MacKintosh, F. C. Elastic regimes of subisostatic athermal fiber networks. Phys. Rev. E 93, 012407 (2016).

    Article  ADS  Google Scholar 

  57. Sharma, A. et al. Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat. Phys. 12, 584–587 (2016).

    Article  Google Scholar 

  58. Puxkandl, R. et al. Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos. Trans. R. Soc. Lond. B 357, 191–197 (2002).

    Article  Google Scholar 

  59. Soetens, J., Van Vijven, M., Bader, D., Peters, G. & Oomens, C. A model of human skin under large amplitude oscillatory shear. J. Mech. Behav. Biomed. Mater. 86, 423–432 (2018).

    Article  Google Scholar 

  60. Darvish, K. & Crandall, J. Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23, 633–645 (2001).

    Article  Google Scholar 

  61. Han, Y. L. et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc. Natl Acad. Sci. USA 115, 4075–4080 (2018).

    Article  ADS  Google Scholar 

  62. Hall, M. S. et al. Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc. Natl Acad. Sci. USA 113, 14043–14048 (2016).

    Article  ADS  Google Scholar 

  63. Yuan, H. et al. Synthetic fibrous hydrogels as a platform to decipher cell–matrix mechanical interactions. Proc. Natl Acad. Sci. USA 120, e2216934120 (2023).

    Article  Google Scholar 

  64. Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013).

    Article  ADS  Google Scholar 

  65. Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200 (2010).

    Article  Google Scholar 

  66. Kratochvil, M. J. et al. Engineered materials for organoid systems. Nat. Rev. Mater. 4, 606–622 (2019).

    Article  ADS  Google Scholar 

  67. Chin, L., Xia, Y., Discher, D. E. & Janmey, P. A. Mechanotransduction in cancer. Curr. Opin. Chem. Eng. 11, 77–84 (2016).

    Article  Google Scholar 

  68. Kai, F., Drain, A. P. & Weaver, V. M. The extracellular matrix modulates the metastatic journey. Dev. Cell 49, 332–346 (2019).

    Article  Google Scholar 

  69. Punter, M. T., Vos, B. E., Mulder, B. M. & Koenderink, G. H. Poroelasticity of (bio)polymer networks during compression: theory and experiment. Soft Matter 16, 1298–1305 (2020).

    Article  ADS  Google Scholar 

  70. Hashemnejad, S. M. & Kundu, S. Strain stiffening and negative normal stress in alginate hydrogels. J. Polym. Sci. Part B: Polym. Phys. 54, 1767–1775 (2016).

    Article  ADS  Google Scholar 

  71. Kong, H. J., Kim, C. J., Huebsch, N., Weitz, D. & Mooney, D. J. Noninvasive probing of the spatial organization of polymer chains in hydrogels using fluorescence resonance energy transfer (FRET). J. Am. Chem. Soc. 129, 4518–4519 (2007).

    Article  Google Scholar 

  72. Ewoldt, R. H., Hosoi, A. & McKinley, G. H. New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52, 1427–1458 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.S. acknowledges financial support from the MIT Lemelson-Vest award and the MIT MathWorks fellowship. J.S. and G.H.M. acknowledge helpful discussions with P. Janmey (U Penn), I. Dellatolas (MIT), I. Bischofberger (MIT), E. Del Gado (Georgetown) and J. Shivers (U Chicago).

Author information

Authors and Affiliations

Authors

Contributions

J.S. conceived the project. J.S. and G.H.M. designed the study. J.S. and S.Y. performed the experiments. E.D.-Y. prepared the tissue specimens for the study. G.H.M. supervised the study. J.S. and G.H.M. analysed the data and wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Jake Song or Gareth H. McKinley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Jasper van der Gucht and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Deiss-Yehiely, E., Yesilata, S. et al. Strain-stiffening universality in composite hydrogels and soft tissues. Nat. Phys. 21, 1125–1133 (2025). https://doi.org/10.1038/s41567-025-02869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02869-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing