Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancing nanoscale charged colloid crystallization near a metastable liquid binodal

Abstract

Achieving predictive control over crystallization using non-classical nucleation while avoiding kinetic traps would be a step towards designing materials with new functionalities. We address these challenges by inducing the bottom-up assembly of nanocrystals into ordered arrays, or superlattices. Using electrostatics—rather than density—to tune the interactions between particles, we watch self-assembly proceed through a metastable liquid phase. We systematically investigate the phase behaviour as a function of quench conditions in situ and in real time using small-angle X-ray scattering. By fitting to colloid, liquid and superlattice models, we extract the time evolution of each phase and the system phase diagram, which we find to be consistent with short-range attractive interactions. Using the predictive power of the phase diagram, we establish control of the self-assembly rate over three orders of magnitude, and we identify one- and two-step self-assembly regimes, with only the latter implicating the metastable liquid as an intermediate. The presence of the metastable liquid increases the superlattice formation rate relative to the equivalent one-step pathway, and the superlattice order increases with the rate, revealing a generalizable kinetic strategy for promoting and enhancing ordered assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of interparticle potentials on thermodynamics and kinetics of self-assembly.
Fig. 2: Quantitative analysis of quench- and volume-fraction-dependent SAXS patterns.
Fig. 3: Kinetic analysis of quench- and volume-fraction-dependent SAXS.
Fig. 4: Deduced design principles for optimal SL self-assembly.

Similar content being viewed by others

Data availability

The data contained in the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

Code availability

The code used to analyse the data is available from the corresponding author upon reasonable request.

References

  1. ten Wolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  Google Scholar 

  2. Noro, M. G. & Frenkel, D. Extended corresponding-states behavior for particles with variable range attractions. J. Chem. Phys. 113, 2941–2944 (2000).

    Article  ADS  Google Scholar 

  3. Haxton, T. K., Hedges, L. O. & Whitelam, S. Crystallization and arrest mechanisms of model colloids. Soft Matter 11, 9307–9320 (2015).

    Article  ADS  Google Scholar 

  4. Barroso, M. A. & Ferreira, A. L. Solid-fluid coexistence of the Lennard-Jones system from absolute free energy calculations. J. Chem. Phys. 116, 7145–7150 (2002).

    Article  ADS  Google Scholar 

  5. Kofke, D. A. Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line. J. Chem. Phys. 98, 4149–4162 (1993).

    Article  ADS  Google Scholar 

  6. Hagen, M. H. J. & Frenkel, D. Determination of phase diagrams for the hard-core attractive Yukawa system. J. Chem. Phys. 101, 4093–4097 (1994).

    Article  ADS  Google Scholar 

  7. Wedekind, J. et al. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition. Sci. Rep. 5, 11260 (2015).

    Article  ADS  Google Scholar 

  8. Savage, J. R. & Dinsmore, A. D. Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102, 198302 (2009).

    Article  ADS  Google Scholar 

  9. Zhang, F. et al. Charge-controlled metastable liquid-liquid phase separation in protein solutions as a universal pathway towards crystallization. Soft Matter 8, 1313–1316 (2012).

    Article  ADS  Google Scholar 

  10. Lee, S., Teich, E. G., Engel, M. & Glotzer, S. C. Entropic colloidal crystallization pathways via fluid-fluid transitions and multidimensional prenucleation motifs. Proc. Natl Acad. Sci. USA 116, 14843–14851 (2019).

    Article  ADS  Google Scholar 

  11. Du, J. S., Bae, Y. & De Yoreo, J. J. Non-classical crystallization in soft and organic materials. Nat. Rev. Mater. 9, 229–248 (2024).

    Article  ADS  Google Scholar 

  12. Haas, C. The interface between a protein crystal and an aqueous solution and its effects on nucleation and crystal growth. J. Phys. Chem. B 104, 368–377 (2000).

    Article  Google Scholar 

  13. Galkin, O. & Vekilov, P. G. Control of protein crystal nucleation around the metastable liquid-liquid phase boundary. Proc. Natl Acad. Sci. USA 97, 6277–6281 (2000).

    Article  ADS  Google Scholar 

  14. Soga, K. G., Melrose, J. R. & Ball, R. C. Metastable states and the kinetics of colloid phase separation. J. Chem. Phys. 110, 2280–2288 (1999).

    Article  ADS  Google Scholar 

  15. Noro, M. G., Kern, N. & Frenkel, D. The role of long-range forces in the phase behavior of colloids and proteins. Europhys. Lett. 48, 332 (1999).

    Article  ADS  Google Scholar 

  16. Poon, W. C. K., Pirie, A. D. & Pusey, P. N. Gelation in colloid-polymer mixtures. Faraday Discuss. 101, 65–76 (1995).

    Article  ADS  Google Scholar 

  17. Coropceanu, I. et al. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 375, 1422–1426 (2022).

    Article  ADS  Google Scholar 

  18. Tanner, C. P. N. et al. Origins of suppressed self-diffusion of nanoscale constituents of a complex liquid. Preprint at https://arxiv.org/abs/2404.17756 (2025).

  19. Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    Article  ADS  Google Scholar 

  20. Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

    Article  ADS  Google Scholar 

  21. Dinsmore, A. D., Yodh, A. G. & Pine, D. J. Phase diagrams of nearly-hard-sphere binary colloids. Phys. Rev. E 52, 4045–4057 (1995).

    Article  ADS  Google Scholar 

  22. Verhaegh, N. A. M., van Duijneveldt, J. S., Dhont, J. K. G. & Lekkerkerker, H. N. W. Fluid-fluid phase separation in colloid-polymer mixtures studied with small angle light scattering and light microscopy. Phys. A 230, 409–436 (1996).

    Article  Google Scholar 

  23. Tanner, C. P. N. et al. In situ X-ray scattering reveals coarsening rates of superlattices self-assembled from electrostatically stabilized metal nanocrystals depend nonmonotonically on driving force. ACS Nano 18, 5778–5789 (2024).

    Google Scholar 

  24. Weidman, M. C., Smilgies, D.-M. & Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 15, 775–781 (2016).

    Article  ADS  Google Scholar 

  25. Korgel, B. A. & Fitzmaurice, D. Small-angle X-ray-scattering study of silver-nanocrystal disorder-order phase transitions. Phys. Rev. B 59, 14191–14201 (1999).

    Article  ADS  Google Scholar 

  26. Lu, C., Akey, A. J., Dahlman, C. J., Zhang, D. & Herman, I. P. Resolving the growth of 3D colloidal nanoparticle superlattices by real-time small-angle X-ray scattering. J. Am. Chem. Soc. 134, 18732–18738 (2012).

    Article  ADS  Google Scholar 

  27. Lokteva, I. et al. Real-time X-ray scattering discovers rich phase behavior in PbS nanocrystal superlattices during in situ assembly. Chem. Mater. 33, 6553–6563 (2021).

    Article  Google Scholar 

  28. Wu, L. et al. High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature 548, 197–201 (2017).

    Article  ADS  Google Scholar 

  29. Abécassis, B., Testard, F. & Spalla, O. Gold nanoparticle superlattice crystallization probed in situ. Phys. Rev. Lett. 100, 115504 (2008).

    Article  ADS  Google Scholar 

  30. Marino, E., Rosen, D. J., Yang, S., Tsai, E. H. & Murray, C. B. Temperature-controlled reversible formation and phase transformation of 3D nanocrystal superlattices through in situ small-angle X-ray scattering. Nano Lett. 23, 4250–4257 (2023).

    Article  ADS  Google Scholar 

  31. Grote, L. et al. X-ray studies bridge the molecular and macro length scales during the emergence of CoO assemblies. Nat. Commun. 12, 4429 (2021).

    Article  ADS  Google Scholar 

  32. Josten, E. et al. Superlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly. Sci. Rep. 7, 2802 (2017).

    Article  ADS  Google Scholar 

  33. Geuchies, J. J. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 15, 1248–1254 (2016).

    Article  ADS  Google Scholar 

  34. Qiao, Z. et al. In situ real-time observation of formation and self-assembly of perovskite nanocrystals at high temperature. Nano Lett. 23, 10788–10795 (2023).

    Article  ADS  Google Scholar 

  35. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  Google Scholar 

  36. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    Article  ADS  Google Scholar 

  37. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  ADS  Google Scholar 

  38. Smith, D. K., Goodfellow, B., Smilgies, D.-M. & Korgel, B. A. Self-assembled simple hexagonal AB2 binary nanocrystal superlattices: SEM, GISAXS, and defects. J. Am. Chem. Soc. 131, 3281–3290 (2009).

    Article  ADS  Google Scholar 

  39. Bian, K. et al. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs. ACS Nano 5, 2815–2823 (2011).

    Article  Google Scholar 

  40. Warren, B. X-ray Diffraction 1st edn, Vol. 1 (Dover Publications, 1990).

  41. Campbell, A. I., Anderson, V. J., van Duijneveldt, J. S. & Bartlett, P. Dynamical arrest in attractive colloids: the effect of long-range repulsion. Phys. Rev. Lett. 94, 208301 (2005).

    Article  ADS  Google Scholar 

  42. Tsurusawa, H. & Tanaka, H. Hierarchical amorphous ordering in colloidal gelation. Nat. Phys. 19, 1171–1177 (2023).

    Article  Google Scholar 

  43. Silvera Batista, C. A., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477 (2015).

    Article  Google Scholar 

  44. Zhang, H. et al. Stable colloids in molten inorganic salts. Nature 542, 328–331 (2017).

    Article  ADS  Google Scholar 

  45. Kamysbayev, V. et al. Nanocrystals in molten salts and ionic liquids: experimental observation of ionic correlations extending beyond the Debye length. ACS Nano 13, 5760–5770 (2019).

    Article  Google Scholar 

  46. Hurley, M. J. et al. In situ coherent X-ray scattering reveals polycrystalline structure and discrete annealing events in strongly coupled nanocrystal superlattices. Phys. Rev. Res. 6, 023119 (2024).

    Article  Google Scholar 

  47. Israelachvili, J. Intermolecular and Surface Forces 3rd edn (Elsevier, 2011).

  48. Guerrero García, G. I. & Olvera de la Cruz, M. Polarization effects of dielectric nanoparticles in aqueous charge-asymmetric electrolytes. J. Phys. Chem. B 118, 8854–8862 (2014).

    Article  Google Scholar 

  49. Ruiz-Franco, J. & Zaccarelli, E. On the role of competing interactions in charged colloids with short-range attraction. Annu. Rev. Condens. Matter Phys. 12, 51–70 (2021).

    Article  ADS  Google Scholar 

  50. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).

  51. Michaels, T. C. T. et al. Amyloid formation as a protein phase transition. Nat. Rev. Phys. 5, 379–397 (2023).

    Article  Google Scholar 

  52. Uchida, M. et al. Modular self-assembly of protein cage lattices for multistep catalysis. ACS Nano 12, 942–953 (2018).

    Article  Google Scholar 

  53. Shin, M. D. et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 15, 646–655 (2020).

    Article  ADS  Google Scholar 

  54. Guo, G. et al. Self-assembly of transition-metal-oxide nanoparticle supraparticles with designed architectures and their enhanced lithium storage properties. J. Mater. Chem. A 4, 16128–16135 (2016).

    Article  Google Scholar 

  55. Percus, J. K. & Yevick, G. J. Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110, 1–13 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  56. Wertheim, M. S. Exact solution of the Percus-Yevick integral equation for hard spheres. Phys. Rev. Lett. 10, 321–323 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  57. Glatter, O. & Kratky, O. Small Angle X-ray Scattering (Academic Press, 1982).

  58. Cantor, B. in The Equations of Materials (ed. Cantor, B.) 180–206 (Oxford Univ. Press, 2020).

  59. Debenedetti, P. G. Metastable Liquids: Concepts and Principles, Vol. 1 (Princeton Univ. Press, 1996).

  60. Nanev, C. N. in Handbook of Crystal Growth 2nd edn (ed. Nishinaga, T.) 315–358 (Elsevier, 2015).

  61. Uwaha, M. in Handbook of Crystal Growth 2nd edn (ed. Nishinaga, T.) 359–399 (Elsevier, 2015).

Download references

Acknowledgements

We thank M. Delor for help designing the set-up for dynamic light scattering. This work was supported by the Office of Basic Energy Sciences, US Department of Energy (DOE) (Award No. DE-SC0019375). The work on NC synthesis was partially supported by the US DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (Grant No. DE-SC0025256) and made use of the shared facilities at the University of Chicago Materials Research Science and Engineering Center, which is supported by the National Science Foundation (Award No. DMR-2011854). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the DOE, Office of Science, Office of Basic Energy Sciences (Contract No. DE-AC02-76SF00515). Use of beamline 7.3.3 at the Advanced Light Source, Lawrence Berkeley National Laboratory, is supported by the DOE, Office of Science, Office of Basic Energy Sciences (Contract No. DE-AC02-05CH11231). C.P.N.T., V.R.K.W. and R.B.W. were supported by an NSF Graduate Research Fellowship. L.M.H. and J.A.T. acknowledge a National Defense Science and Engineering Graduate Fellowship. J.K.U. was supported by an Arnold O. Beckman Postdoctoral Fellowship in Chemical Sciences from the Arnold and Mabel Beckman Foundation. A.D. and L.M.H. were supported by Philomathia Graduate Student Fellowships from the Kavli Energy NanoScience Institute at UC Berkeley. A.J. was partially supported by a graduate fellowship from Kwanjeong Educational Foundation. D.T.L. was supported by an Alfred P. Sloan Research Fellowship. N.S.G. and D.V.T. were supported by David and Lucile Packard Foundation Fellowships for Science and Engineering and Camille and Henry Dreyfus Teacher-Scholar Awards.

Author information

Authors and Affiliations

Authors

Contributions

N.S.G., D.V.T. and D.T.L. conceived and supervised the research. C.P.N.T., J.K.U., C.J.T., J.P., R.B.W., J.A.T., D.V.T., S.W.T. and N.S.G. designed and performed the early experiments. C.P.N.T., V.R.K.W., J.P., A.J., M.J.H., N.L., L.M.H., J.G.R., E.S. and C.Z. performed further experiments. C.P.N.T., A.D., V.R.K.W., D.T.L. and N.S.G. formulated the analytical and numerical models and performed the simulations. M.G. and C.P.N.T. performed supporting measurements. C.P.N.T. and V.R.K.W. analysed the data. All authors helped to prepare or review the paper.

Corresponding author

Correspondence to Naomi S. Ginsberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Shin-Hyun Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–18 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanner, C.P.N., Wall, V.R.K., Portner, J. et al. Enhancing nanoscale charged colloid crystallization near a metastable liquid binodal. Nat. Phys. 21, 1594–1602 (2025). https://doi.org/10.1038/s41567-025-02996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02996-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing