Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Challenges and opportunities in orbitronics

Abstract

The ability to control the spin degrees of freedom of electrons has enabled the development of spintronic devices that use spin, rather than just electric charge, to store and process information. The concepts of spintronics are now applied in technologies such as magnetic sensors and non-volatile memory devices. In addition to spin, electrons can carry orbital angular momentum. However, research into the use of orbital angular momentum is still in its early stages. Recent discoveries of phenomena mediated by orbital angular momentum have led to a new branch of physics called orbitronics. Here we explore how orbitronics may represent the next phase in the evolution of spintronics by reviewing the current theoretical understanding, challenges and experimental results related to orbital effects. We also outline key open questions and discusses potential applications, with a focus on non-volatile memory technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Depictions of the spin–orbit torque and orbital torque mechanisms.
Fig. 2: The concept of orbital torques in a multilayer.

Similar content being viewed by others

References

  1. Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).

    Article  Google Scholar 

  2. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012).

    Article  ADS  Google Scholar 

  3. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

  4. Shao, Q. et al. Roadmap of spin–orbit torques. IEEE Trans. Magnet. 57, 1–39 (2021).

    Article  Google Scholar 

  5. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  ADS  Google Scholar 

  6. Natsui, M. et al. Dual-port SOT-MRAM achieving 90-MHz read and 60-MHz write operations under field-assistance-free condition. IEEE J. Solid State Circ. 56, 1116–1128 (2021).

    Article  ADS  Google Scholar 

  7. Song, M. Y. et al. in 2022 IEEE Symposium on VLSI Technology and Circuits 377–378 (IEEE, 2022).

  8. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Orbitronics: the intrinsic orbital current in p-doped silicon. Phys. Rev. Lett. 95, 066601 (2005).

    Article  ADS  Google Scholar 

  9. Kontani, H., Tanaka, T., Hirashima, D. S., Yamada, K. & Inoue, J. Giant orbital Hall effect in transition metals: origin of large spin and anomalous Hall effects. Phys. Rev. Lett. 102, 016601 (2009).

    Article  ADS  Google Scholar 

  10. Go, D., Jo, D., Kim, C. & Lee, H.-W. Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett. 121, 086602 (2018).

    Article  ADS  Google Scholar 

  11. Go, D., Jo, D., Lee, H.-W., Kläui, M. & Mokrousov, Y. Orbitronics: orbital currents in solids. Europhys. Lett. 135, 37001 (2021).

    Article  ADS  Google Scholar 

  12. Jo, D., Go, D., Choi, G.-M. & Lee, H.-W. Spintronics meets orbitronics: emergence of orbital angular momentum in solids. npj Spintron. 2, 19 (2024).

    Article  Google Scholar 

  13. Park, S. R., Kim, C. H., Yu, J., Han, J. H. & Kim, C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 107, 156803 (2011).

    Article  ADS  Google Scholar 

  14. Salemi, L., Berritta, M., Nandy, A. K. & Oppeneer, P. M. Orbitally dominated Rashba-Edelstein effect in noncentrosymmetric antiferromagnets. Nat. Commun. 10, 5381 (2019).

    Article  ADS  Google Scholar 

  15. Kim, J. et al. Nontrivial torque generation by orbital angular momentum injection in ferromagnetic-metal/Cu/Al2O3 trilayers. Phys. Rev. B 103, L020407 (2021).

    Article  ADS  Google Scholar 

  16. Bose, A. et al. Detection of long-range orbital-Hall torques. Phys. Rev. B 107, 134423 (2023).

    Article  ADS  Google Scholar 

  17. Sala, G. & Gambardella, P. Giant orbital Hall effect and orbital-to-spin conversion in 3d, 5d, and 4f metallic heterostructures. Phys. Rev. Res. 4, 033037 (2022).

    Article  Google Scholar 

  18. Idrobo, J. C. et al. Direct observation of nanometer-scale orbital angular momentum accumulation. Preprint at https://arxiv.org/abs/2403.09269 (2024).

  19. Lee, S. et al. Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching. Commun. Phys. 4, 234 (2021).

    Article  Google Scholar 

  20. Rang, M. & Kelly, P. J. Orbital relaxation length from first-principles scattering calculations. Phys. Rev. B 109, 214427 (2024).

    Article  ADS  Google Scholar 

  21. Ding, S. et al. Observation of the orbital Rashba-Edelstein magnetoresistance. Phys. Rev. Lett. 128, 067201 (2022).

    Article  ADS  Google Scholar 

  22. Hayashi, H., Go, D., Haku, S., Mokrousov, Y. & Ando, K. Observation of orbital pumping. Nat. Electron. 7, 646–652 (2024).

    Article  Google Scholar 

  23. Seifert, T. S. et al. Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten. Nat. Nanotechnol. 18, 1132–1138 (2023).

    Article  ADS  Google Scholar 

  24. Choi, Y.-G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023).

    Article  ADS  Google Scholar 

  25. Lyalin, I., Alikhah, S., Berritta, M., Oppeneer, P. M. & Kawakami, R. K. Magneto-optical detection of the orbital Hall effect in chromium. Phys. Rev. Lett. 131, 156702 (2023).

    Article  ADS  Google Scholar 

  26. Sala, G., Wang, H., Legrand, W. & Gambardella, P. Orbital Hanle magnetoresistance in a 3d transition metal. Phys. Rev. Lett. 131, 156703 (2023).

    Article  ADS  Google Scholar 

  27. Ding, S. et al. Harnessing orbital-to-spin conversion of interfacial orbital currents for efficient spin-orbit torques. Phys. Rev. Lett. 125, 177201 (2020).

    Article  ADS  Google Scholar 

  28. Kim, J. et al. Oxide layer dependent orbital torque efficiency in ferromagnet/Cu/oxide heterostructures. Phys. Rev. Mater. 7, L111401 (2023).

    Article  ADS  Google Scholar 

  29. Salemi, L. & Oppeneer, P. M. First-principles theory of intrinsic spin and orbital Hall and Nernst effects in metallic monoatomic crystals. Phys. Rev. Mater. 6, 095001 (2022).

    Article  Google Scholar 

  30. Hayashi, H. et al. Observation of long-range orbital transport and giant orbital torque. Commun. Phys. 6, 32 (2023).

    Article  Google Scholar 

  31. Ding, S., Kang, M.-G., Legrand, W. & Gambardella, P. Orbital torque in rare-earth transition-metal ferrimagnets. Phys. Rev. Lett. 132, 236702 (2024).

    Article  ADS  Google Scholar 

  32. Fukunaga, R., Haku, S., Gao, T., Hayashi, H. & Ando, K. Impact of crystallinity on orbital torque generation in ferromagnets. Phys. Rev. B 109, 144412 (2024).

    Article  ADS  Google Scholar 

  33. Gao, T. et al. Control of dynamic orbital response in ferromagnets via crystal symmetry. Nat. Phys. 20, 1896–1903 (2024).

    Article  Google Scholar 

  34. Zheng, Z. et al. Effective electrical manipulation of a topological antiferromagnet by orbital torques. Nat. Commun. 15, 745 (2024).

    Article  ADS  Google Scholar 

  35. Li, D. et al. Room-temperature van der Waals magnetoresistive memories with data writing by orbital current in the Weyl semimetal TaIrTe4. Phys. Rev. B 110, 035423 (2024).

    Article  ADS  Google Scholar 

  36. Zhao, Q. et al. Efficient charge-to-orbit current conversion for orbital torque based artificial neurons and synapses. Adv. Electr. Mater. 11, 2400721 (2025).

    Article  Google Scholar 

  37. Gao, W. et al. Nonlocal electrical detection of reciprocal orbital Edelstein effect. Nat. Commun. 16, 6380 (2025).

    Article  ADS  Google Scholar 

  38. Mendoza-Rodarte, J. A., Cosset-Chéneau, M., van Wees, B. J. & Guimarães, M. H. D. Efficient magnon injection and detection via the orbital Rashba-Edelstein effect. Phys. Rev. Lett. 132, 226704 (2024).

    Article  ADS  Google Scholar 

  39. Ledesma-Martin, J. O. et al. Nonreciprocity in magnon mediated charge-spin-orbital current interconversion. Nano Lett. 25, 3247–3252 (2025).

    Article  ADS  Google Scholar 

  40. Costa, M. et al. Connecting higher-order topology with the orbital Hall effect in monolayers of transition metal dichalcogenides. Phys. Rev. Lett. 130, 116204 (2023).

    Article  ADS  Google Scholar 

  41. Ji, S., Quan, C., Yao, R., Yang, J. & Li, X. A. Reversal of orbital Hall conductivity and emergence of tunable topological quantum states in orbital Hall insulators. Phys. Rev. B 109, 155407 (2024).

    Article  ADS  Google Scholar 

  42. Zeer, M. et al. Spin and orbital transport in rare-earth dichalcogenides: the case of EuS2. Phys. Rev. Mater. 6, 074004 (2022).

    Article  Google Scholar 

  43. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  44. Cysne, T. P. et al. Disentangling orbital and valley Hall effects in bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 126, 056601 (2021).

    Article  ADS  Google Scholar 

  45. Saunderson, T. G., Go, D., Blügel, S., Kläui, M. & Mokrousov, Y. Hidden interplay of current-induced spin and orbital torques in bulk Fe3GeTe2. Phys. Rev. Res. 4, L042022 (2022).

    Article  Google Scholar 

  46. Go, D. & Lee, H.-W. Orbital torque: torque generation by orbital current injection. Phys. Rev. Res. 2, 013177 (2020).

    Article  Google Scholar 

  47. Jo, D., Go, D. & Lee, H.-W. Gigantic intrinsic orbital Hall effects in weakly spin-orbit coupled metals. Phys. Rev. B 98, 214405 (2018).

    Article  ADS  Google Scholar 

  48. Go, D. et al. Long-range orbital torque by momentum-space hotspots. Phys. Rev. Lett. 130, 246701 (2023).

    Article  ADS  Google Scholar 

  49. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Article  ADS  Google Scholar 

  50. Gupta, R. et al. Harnessing orbital Hall effect in spin-orbit torque MRAM. Nat. Commun. 16, 130 (2025).

    Article  ADS  Google Scholar 

  51. Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).

    Article  ADS  Google Scholar 

  52. Chiba, S., Marui, Y., Ohno, H. & Fukami, S. Comparative study of current-induced torque in Cr/CoFeB/MgO and W/CoFeB/MgO. Nano Lett. 24, 14028–14033 (2024).

    Article  ADS  Google Scholar 

  53. Liu, Y. et al. Efficient orbitronic terahertz emission based on CoPt alloy. Adv. Mater. 36, 2404174 (2024).

    Article  Google Scholar 

  54. Go, D., Mokrousov, Y. & Kläui, M. Non-equilibrium orbital angular momentum for orbitronics. Europhys. News 55, 28–31 (2024).

    Article  ADS  Google Scholar 

  55. Han, S., Lee, H.-W. & Kim, K.-W. Orbital dynamics in centrosymmetric systems. Phys. Rev. Lett. 128, 176601 (2022).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank P. Oppeneer, Y. Mokrousov and H.-W. Lee for providing valuable feedback and suggestions on the manuscript. S.F. acknowledges financial support from MEXT X-NICS (JPJ011438), JSPS Kakenhi (24H00039 and 24H02235), JST-ASPIRE JPMJAP2322 and RIEC Cooperative Research Projects. K.-J.L. acknowledges financial support from the National Research Foundation of Korea (RS-2022-NR068225, RS-2024-00410027, RS-2024-00436660 and RS-2025-00516229) and Samsung Electronics (IO201019-07699-01). M.K. acknowledges TopDyn, the German Research Foundation (TRR 173-268565370 Spin+X: A01, A11, B02, TRR 288-422213477 Elasto-Q-Mat: A12 and project 358671374), the Horizon Europe Framework (grant number 101070290 (NIMFEIA), grant number 101070287 (Swan-on-Chip), grant number 101226840 (ORBIS) and grant number 101129641 (OBELIX)), the European Research Council (grant number 856538 (3D MAGiC)), King Abdullah University of Science and Technology (KAUST) under award 2024−CRG12−6480 and the Research Council of Norway through its Centers of Excellence funding scheme under project number 262633 ‘QuSpin’.

Author information

Authors and Affiliations

Authors

Contributions

S.F., K.-J.L. and M.K. contributed equally to writing the manuscript.

Corresponding authors

Correspondence to Shunsuke Fukami, Kyung-Jin Lee or Mathias Kläui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukami, S., Lee, KJ. & Kläui, M. Challenges and opportunities in orbitronics. Nat. Phys. (2025). https://doi.org/10.1038/s41567-025-03143-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41567-025-03143-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing