Abstract
The ability to control the spin degrees of freedom of electrons has enabled the development of spintronic devices that use spin, rather than just electric charge, to store and process information. The concepts of spintronics are now applied in technologies such as magnetic sensors and non-volatile memory devices. In addition to spin, electrons can carry orbital angular momentum. However, research into the use of orbital angular momentum is still in its early stages. Recent discoveries of phenomena mediated by orbital angular momentum have led to a new branch of physics called orbitronics. Here we explore how orbitronics may represent the next phase in the evolution of spintronics by reviewing the current theoretical understanding, challenges and experimental results related to orbital effects. We also outline key open questions and discusses potential applications, with a focus on non-volatile memory technologies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).
Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012).
Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).
Shao, Q. et al. Roadmap of spin–orbit torques. IEEE Trans. Magnet. 57, 1–39 (2021).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Natsui, M. et al. Dual-port SOT-MRAM achieving 90-MHz read and 60-MHz write operations under field-assistance-free condition. IEEE J. Solid State Circ. 56, 1116–1128 (2021).
Song, M. Y. et al. in 2022 IEEE Symposium on VLSI Technology and Circuits 377–378 (IEEE, 2022).
Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Orbitronics: the intrinsic orbital current in p-doped silicon. Phys. Rev. Lett. 95, 066601 (2005).
Kontani, H., Tanaka, T., Hirashima, D. S., Yamada, K. & Inoue, J. Giant orbital Hall effect in transition metals: origin of large spin and anomalous Hall effects. Phys. Rev. Lett. 102, 016601 (2009).
Go, D., Jo, D., Kim, C. & Lee, H.-W. Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett. 121, 086602 (2018).
Go, D., Jo, D., Lee, H.-W., Kläui, M. & Mokrousov, Y. Orbitronics: orbital currents in solids. Europhys. Lett. 135, 37001 (2021).
Jo, D., Go, D., Choi, G.-M. & Lee, H.-W. Spintronics meets orbitronics: emergence of orbital angular momentum in solids. npj Spintron. 2, 19 (2024).
Park, S. R., Kim, C. H., Yu, J., Han, J. H. & Kim, C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 107, 156803 (2011).
Salemi, L., Berritta, M., Nandy, A. K. & Oppeneer, P. M. Orbitally dominated Rashba-Edelstein effect in noncentrosymmetric antiferromagnets. Nat. Commun. 10, 5381 (2019).
Kim, J. et al. Nontrivial torque generation by orbital angular momentum injection in ferromagnetic-metal/Cu/Al2O3 trilayers. Phys. Rev. B 103, L020407 (2021).
Bose, A. et al. Detection of long-range orbital-Hall torques. Phys. Rev. B 107, 134423 (2023).
Sala, G. & Gambardella, P. Giant orbital Hall effect and orbital-to-spin conversion in 3d, 5d, and 4f metallic heterostructures. Phys. Rev. Res. 4, 033037 (2022).
Idrobo, J. C. et al. Direct observation of nanometer-scale orbital angular momentum accumulation. Preprint at https://arxiv.org/abs/2403.09269 (2024).
Lee, S. et al. Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching. Commun. Phys. 4, 234 (2021).
Rang, M. & Kelly, P. J. Orbital relaxation length from first-principles scattering calculations. Phys. Rev. B 109, 214427 (2024).
Ding, S. et al. Observation of the orbital Rashba-Edelstein magnetoresistance. Phys. Rev. Lett. 128, 067201 (2022).
Hayashi, H., Go, D., Haku, S., Mokrousov, Y. & Ando, K. Observation of orbital pumping. Nat. Electron. 7, 646–652 (2024).
Seifert, T. S. et al. Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten. Nat. Nanotechnol. 18, 1132–1138 (2023).
Choi, Y.-G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023).
Lyalin, I., Alikhah, S., Berritta, M., Oppeneer, P. M. & Kawakami, R. K. Magneto-optical detection of the orbital Hall effect in chromium. Phys. Rev. Lett. 131, 156702 (2023).
Sala, G., Wang, H., Legrand, W. & Gambardella, P. Orbital Hanle magnetoresistance in a 3d transition metal. Phys. Rev. Lett. 131, 156703 (2023).
Ding, S. et al. Harnessing orbital-to-spin conversion of interfacial orbital currents for efficient spin-orbit torques. Phys. Rev. Lett. 125, 177201 (2020).
Kim, J. et al. Oxide layer dependent orbital torque efficiency in ferromagnet/Cu/oxide heterostructures. Phys. Rev. Mater. 7, L111401 (2023).
Salemi, L. & Oppeneer, P. M. First-principles theory of intrinsic spin and orbital Hall and Nernst effects in metallic monoatomic crystals. Phys. Rev. Mater. 6, 095001 (2022).
Hayashi, H. et al. Observation of long-range orbital transport and giant orbital torque. Commun. Phys. 6, 32 (2023).
Ding, S., Kang, M.-G., Legrand, W. & Gambardella, P. Orbital torque in rare-earth transition-metal ferrimagnets. Phys. Rev. Lett. 132, 236702 (2024).
Fukunaga, R., Haku, S., Gao, T., Hayashi, H. & Ando, K. Impact of crystallinity on orbital torque generation in ferromagnets. Phys. Rev. B 109, 144412 (2024).
Gao, T. et al. Control of dynamic orbital response in ferromagnets via crystal symmetry. Nat. Phys. 20, 1896–1903 (2024).
Zheng, Z. et al. Effective electrical manipulation of a topological antiferromagnet by orbital torques. Nat. Commun. 15, 745 (2024).
Li, D. et al. Room-temperature van der Waals magnetoresistive memories with data writing by orbital current in the Weyl semimetal TaIrTe4. Phys. Rev. B 110, 035423 (2024).
Zhao, Q. et al. Efficient charge-to-orbit current conversion for orbital torque based artificial neurons and synapses. Adv. Electr. Mater. 11, 2400721 (2025).
Gao, W. et al. Nonlocal electrical detection of reciprocal orbital Edelstein effect. Nat. Commun. 16, 6380 (2025).
Mendoza-Rodarte, J. A., Cosset-Chéneau, M., van Wees, B. J. & Guimarães, M. H. D. Efficient magnon injection and detection via the orbital Rashba-Edelstein effect. Phys. Rev. Lett. 132, 226704 (2024).
Ledesma-Martin, J. O. et al. Nonreciprocity in magnon mediated charge-spin-orbital current interconversion. Nano Lett. 25, 3247–3252 (2025).
Costa, M. et al. Connecting higher-order topology with the orbital Hall effect in monolayers of transition metal dichalcogenides. Phys. Rev. Lett. 130, 116204 (2023).
Ji, S., Quan, C., Yao, R., Yang, J. & Li, X. A. Reversal of orbital Hall conductivity and emergence of tunable topological quantum states in orbital Hall insulators. Phys. Rev. B 109, 155407 (2024).
Zeer, M. et al. Spin and orbital transport in rare-earth dichalcogenides: the case of EuS2. Phys. Rev. Mater. 6, 074004 (2022).
Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
Cysne, T. P. et al. Disentangling orbital and valley Hall effects in bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 126, 056601 (2021).
Saunderson, T. G., Go, D., Blügel, S., Kläui, M. & Mokrousov, Y. Hidden interplay of current-induced spin and orbital torques in bulk Fe3GeTe2. Phys. Rev. Res. 4, L042022 (2022).
Go, D. & Lee, H.-W. Orbital torque: torque generation by orbital current injection. Phys. Rev. Res. 2, 013177 (2020).
Jo, D., Go, D. & Lee, H.-W. Gigantic intrinsic orbital Hall effects in weakly spin-orbit coupled metals. Phys. Rev. B 98, 214405 (2018).
Go, D. et al. Long-range orbital torque by momentum-space hotspots. Phys. Rev. Lett. 130, 246701 (2023).
Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).
Gupta, R. et al. Harnessing orbital Hall effect in spin-orbit torque MRAM. Nat. Commun. 16, 130 (2025).
Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).
Chiba, S., Marui, Y., Ohno, H. & Fukami, S. Comparative study of current-induced torque in Cr/CoFeB/MgO and W/CoFeB/MgO. Nano Lett. 24, 14028–14033 (2024).
Liu, Y. et al. Efficient orbitronic terahertz emission based on CoPt alloy. Adv. Mater. 36, 2404174 (2024).
Go, D., Mokrousov, Y. & Kläui, M. Non-equilibrium orbital angular momentum for orbitronics. Europhys. News 55, 28–31 (2024).
Han, S., Lee, H.-W. & Kim, K.-W. Orbital dynamics in centrosymmetric systems. Phys. Rev. Lett. 128, 176601 (2022).
Acknowledgements
We thank P. Oppeneer, Y. Mokrousov and H.-W. Lee for providing valuable feedback and suggestions on the manuscript. S.F. acknowledges financial support from MEXT X-NICS (JPJ011438), JSPS Kakenhi (24H00039 and 24H02235), JST-ASPIRE JPMJAP2322 and RIEC Cooperative Research Projects. K.-J.L. acknowledges financial support from the National Research Foundation of Korea (RS-2022-NR068225, RS-2024-00410027, RS-2024-00436660 and RS-2025-00516229) and Samsung Electronics (IO201019-07699-01). M.K. acknowledges TopDyn, the German Research Foundation (TRR 173-268565370 Spin+X: A01, A11, B02, TRR 288-422213477 Elasto-Q-Mat: A12 and project 358671374), the Horizon Europe Framework (grant number 101070290 (NIMFEIA), grant number 101070287 (Swan-on-Chip), grant number 101226840 (ORBIS) and grant number 101129641 (OBELIX)), the European Research Council (grant number 856538 (3D MAGiC)), King Abdullah University of Science and Technology (KAUST) under award 2024−CRG12−6480 and the Research Council of Norway through its Centers of Excellence funding scheme under project number 262633 ‘QuSpin’.
Author information
Authors and Affiliations
Contributions
S.F., K.-J.L. and M.K. contributed equally to writing the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fukami, S., Lee, KJ. & Kläui, M. Challenges and opportunities in orbitronics. Nat. Phys. (2025). https://doi.org/10.1038/s41567-025-03143-w
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41567-025-03143-w


