Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural killer cells in antitumour adoptive cell immunotherapy

Abstract

Natural killer (NK) cells comprise a unique population of innate lymphoid cells endowed with intrinsic abilities to identify and eliminate virally infected cells and tumour cells. Possessing multiple cytotoxicity mechanisms and the ability to modulate the immune response through cytokine production, NK cells play a pivotal role in anticancer immunity. This role was elucidated nearly two decades ago, when NK cells, used as immunotherapeutic agents, showed safety and efficacy in the treatment of patients with advanced-stage leukaemia. In recent years, following the paradigm-shifting successes of chimeric antigen receptor (CAR)-engineered adoptive T cell therapy and the advancement in technologies that can turn cells into powerful antitumour weapons, the interest in NK cells as a candidate for immunotherapy has grown exponentially. Strategies for the development of NK cell-based therapies focus on enhancing NK cell potency and persistence through co-stimulatory signalling, checkpoint inhibition and cytokine armouring, and aim to redirect NK cell specificity to the tumour through expression of CAR or the use of engager molecules. In the clinic, the first generation of NK cell therapies have delivered promising results, showing encouraging efficacy and remarkable safety, thus driving great enthusiasm for continued innovation. In this Review, we describe the various approaches to augment NK cell cytotoxicity and longevity, evaluate challenges and opportunities, and reflect on how lessons learned from the clinic will guide the design of next-generation NK cell products that will address the unique complexities of each cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Advantages and limitations arising from different sources of NK cells.
Fig. 2: Strategies to redirect NK cell specificity.
Fig. 3: Principles and strategies for CAR design.
Fig. 4: Genetic engineering strategies to overcome suppressors of NK cell function.

Similar content being viewed by others

References

  1. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022). This landmark article reports the sustained remissions and in vivo persistence of CD19-CAR T cells for more than 10 years after infusion, and hence highlights the long-term durability of clinical responses achieved using genetically engineered T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malmberg, K.-J. et al. Natural killer cell-mediated immunosurveillance of human cancer. Semin. Immunol. 31, 20–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Joncker, N. T., Fernandez, N. C., Treiner, E., Vivier, E. & Raulet, D. H. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J. Immunol. 182, 4572–4580 (2009). This study elucidates the nature of NK cell responsiveness, which relies on the integration of both inhibitory and activating signalling cues to ensure self-tolerance and immunosurveillance over abnormal cells.

    Article  CAS  PubMed  Google Scholar 

  13. Joncker, N. T., Shifrin, N., Delebecque, F. & Raulet, D. H. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J. Exp. Med. 207, 2065–2072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burshtyn, D. N. et al. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitor receptor. Immunity 4, 77–85 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yokoyama, W. M. & Kim, S. How do natural killer cells find self to achieve tolerance? Immunity 24, 249–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Brodin, P., Lakshmikanth, T., Johansson, S., Kärre, K. & Höglund, P. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood 113, 2434–2441 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Imai, K., Matsuyama, S., Miyake, S., Suga, K. & Nakachi, K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356, 1795–1799 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. López-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. Cancer Cell 32, 135–154 (2017).

    Article  PubMed  Google Scholar 

  20. Abel, A. M., Yang, C., Thakar, M. S. & Malarkannan, S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dalle, J.-H. et al. Characterization of cord blood natural killer cells: implications for transplantation and neonatal infections. Pediatr. Res. 57, 649–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Strauss-Albee, D. M. et al. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci. Transl. Med. 7, 297ra115–297ra115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Prager, I. & Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 105, 1319–1329 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, W., Erbe, A. K., Hank, J. A., Morris, Z. S. & Sondel, P. M. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front. Immunol. 6, 368 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. O’Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006). This seminal study demonstrates that NK cells can mediate durable recall responses upon antigen re-exposure, establishing the concept of NK cell adaptive memory.

    Article  PubMed  Google Scholar 

  26. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009). This important article reveals self-renewing ‘memory’ NK cell subsets that can undergo secondary expansion and elicit strong adaptive immune responses upon viral challenge when transferred to naive animals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cooper, M. A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl Acad. Sci. USA 106, 1915–1919 (2009). This work pioneers the concept of cytokine-induced memory-like NK cells which elicit robust recall responses when transferred to naïve hosts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Romee, R. et al. Cytokine activation induces human memory-like NK cells. Blood 120, 4751–4760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Romee, R. et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl. Med. 8, 357ra123 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shapiro, R. M. et al. Expansion, persistence, and efficacy of donor memory-like NK cells infused for post-transplant relapse. J. Clin. Investig. https://doi.org/10.1172/JCI154334 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Platonova, S. et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 71, 5412–5422 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Sun, C. et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology 6, e1264562 (2017).

    Article  PubMed  Google Scholar 

  33. Spanholtz, J. et al. High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS ONE 5, e9221 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dolstra, H. et al. Successful transfer of umbilical cord blood CD34+ hematopoietic stem and progenitor-derived NK cells in older acute myeloid leukemia patients. Clin. Cancer Res. 23, 4107–4118 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531 (2018). This article reports the first successful clinical application of CAR-modified NK immunotherapy in patients with CD19-positive haematologic malignancies.

    Article  CAS  PubMed  Google Scholar 

  36. Berrien-Elliott, M. M. et al. Multidimensional analyses of donor memory-like NK cells reveal new associations with response after adoptive immunotherapy for leukemia. Cancer Discov. 10, 1854–1871 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gong, J.-H., Maki, G. & Klingemann, H. G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8, 652–658 (1994).

    CAS  PubMed  Google Scholar 

  39. Tang, X. et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am. J. Cancer Res. 8, 1083–1089 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, C. et al. Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Front. Immunol. https://doi.org/10.3389/fimmu.2017.00533 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hoogstad-van Evert, J. S. et al. Umbilical cord blood CD34+ progenitor-derived NK cells efficiently kill ovarian cancer spheroids and intraperitoneal tumors in NOD/SCID/IL2Rgnull mice. Oncoimmunology 6, e1320630 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Knorr, D. A. et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cell Transl. Med. 2, 274–283 (2013).

    Article  CAS  Google Scholar 

  43. Li, Y., Hermanson, D. L., Moriarity, B. S. & Kaufman, D. S. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23, 181–192.e5 (2018). This article demonstrates the first successful generation of iPSC-derived CAR NK cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goldenson, B. H. et al. Umbilical cord blood and iPSC-derived natural killer cells demonstrate key differences in cytotoxic activity and KIR profiles. Front. Immunol. 11, https://doi.org/10.3389/fimmu.2020.561553 (2020).

  45. Zhu, H. et al. Pluripotent stem cell-derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood 135, 399–410 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bar-Nur, O., Russ, H. A., Efrat, S. & Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet β cells. Cell Stem Cell 9, 17–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Goodridge, J. P. et al. FT596: translation of first-of-kind multi-antigen targeted off-the-shelf CAR-NK cell with engineered persistence for the treatment of B cell malignancies. Blood 134, 301–301 (2019).

    Article  Google Scholar 

  49. Bachanova, V. et al. Safety and efficacy of FT596, a first-in-class, multi-antigen targeted, off-the-shelf, iPSC-derived CD19 CAR NK cell therapy in relapsed/refractory B-cell lymphoma. Blood 138, 823 (2021).

    Article  Google Scholar 

  50. Goodridge, J. P. et al. Abstract 1550: FT576 path to first-of-kind clinical trial: translation of a versatile multi-antigen specific off-the-shelf NK cell for treatment of multiple myeloma. Cancer Res. 81, 1550 (2021).

    Article  Google Scholar 

  51. Strati, P. et al. Preliminary results of a phase I trial of FT516, an off-the-shelf natural killer (NK) cell therapy derived from a clonal master induced pluripotent stem cell (iPSC) line expressing high-affinity, non-cleavable CD16 (hnCD16), in patients (pts) with relapsed/refractory (R/R) B-cell lymphoma (BCL). J. Clin. Oncol. 39, 7541–7541 (2021).

    Article  Google Scholar 

  52. Imai, C., Iwamoto, S. & Campana, D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106, 376–383 (2005). This article describes the first successful generation of CAR NK cells using a 41BB-co-stimulated CD19-directed synthetic CAR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002). This seminal work demonstrates that alloreactive NK cells confer a potent graft-versus-leukaemia effect and protect against GvHD in recipients of T cell-depleted HLA-haploidentical allogeneic transplantation (TCD-haplo-alloHSCT).

    Article  CAS  PubMed  Google Scholar 

  54. Ruggeri, L. et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94, 333–339 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Davies, S. M. et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Killer immunoglobulin-like receptor. Blood 100, 3825–3827 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Ruggeri, L. et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 110, 433–440 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ciurea, S. O. et al. Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia 36, 155–164 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Hsu, K. C. et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 105, 4878–4884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Verheyden, S., Schots, R., Duquet, W. & Demanet, C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia 19, 1446–1451 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Venstrom, J. M. et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N. Engl. J. Med. 367, 805–816 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boudreau, J. E. et al. KIR3DL1/HLA-B subtypes govern acute myelogenous leukemia relapse after hematopoietic cell transplantation. J. Clin. Oncol. 35, 2268 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schetelig, J. et al. External validation of models for KIR2DS1/KIR3DL1-informed selection of hematopoietic cell donors fails. Blood 135, 1386–1395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Beelen, D. W. et al. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood 105, 2594–2600 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Bishara, A. et al. The beneficial role of inhibitory KIR genes of HLA class I NK epitopes in haploidentically mismatched stem cell allografts may be masked by residual donor-alloreactive T cells causing GVHD. Tissue Antigens 63, 204–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Schaffer, M., Malmberg, K. J., Ringdén, O., Ljunggren, H. G. & Remberger, M. Increased infection-related mortality in KIR-ligand-mismatched unrelated allogeneic hematopoietic stem-cell transplantation. Transplantation 78, 1081–1085 (2004).

    Article  PubMed  Google Scholar 

  66. Mehta, R. S. & Rezvani, K. Can we make a better match or mismatch with KIR genotyping? Hematol. Am. Soc. Hematol. Educ. Program. 2016, 106–118 (2016).

    Article  Google Scholar 

  67. Schmidts, A. et al. Rational design of a trimeric APRIL-based CAR-binding domain enables efficient targeting of multiple myeloma. Blood Adv. 3, 3248–3260 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Leivas, A. et al. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J. 11, 146 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chang, Y. H. et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 73, 1777–1786 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Biederstädt, A. & Rezvani, K. Engineering the next generation of CAR-NK immunotherapies. Int. J. Hematol. 114, 554–571 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Daher, M. & Rezvani, K. Outlook for new CAR-based therapies with a focus on CAR NK cells: what lies beyond CAR-engineered T cells in the race against cancer. Cancer Disco 11, 45–58 (2021).

    Article  CAS  Google Scholar 

  72. Lanier, L. L., Corliss, B. C., Wu, J., Leong, C. & Phillips, J. H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707 (1998). This seminal article elucidates the role of DAP12 as an activating NK cell immunoreceptor through cross-linking with killer cell immunoglobin-like receptor (KIR) family molecules.

    Article  CAS  PubMed  Google Scholar 

  73. Zhao, R. et al. DNAX-activating protein 10 co-stimulation enhances the anti-tumor efficacy of chimeric antigen receptor T cells. Oncoimmunology 8, e1509173 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ng, Y. Y. et al. T cells expressing NKG2D CAR with a DAP12 signaling domain stimulate lower cytokine production while effective in tumor eradication. Mol. Ther. 29, 75–85 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Töpfer, K. et al. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. J. Immunol. 194, 3201 (2015).

    Article  PubMed  Google Scholar 

  76. Billadeau, D. D., Upshaw, J. L., Schoon, R. A., Dick, C. J. & Leibson, P. J. NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat. Immunol. 4, 557–564 (2003). This article uncovers the role of the activating NKG2D–DAP10 immune receptor recognition complex which can induce NK cell-mediated killing in a SYK-independent manner.

    Article  CAS  PubMed  Google Scholar 

  77. Frigault, M. J. et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol. Res. 3, 356–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015). This important article lays out the principle of antigen-independent tonic CAR signalling which can induce T cell exhaustion impairing antitumour efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Watanabe, N. et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology 5, e1253656 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mamonkin, M. et al. Tonic 4-1BB signaling from chimeric antigen receptors (CARs) impairs expansion of T cells due to Fas-mediated apoptosis. J. Immunol. 196 (Suppl 1), 143.7 (2016).

    Google Scholar 

  81. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Bridgeman, J. S. et al. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy. Clin. Exp. Immunol. 175, 258–267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bridgeman, J. S. et al. The optimal antigen response of chimeric antigen receptors harboring the CD3ζ transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J. Immunol. 184, 6938–6949 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Muller, Y. D. et al. The CD28-transmembrane domain mediates chimeric antigen receptor heterodimerization with CD28. Front. Immunol. 12, 639818 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Savoldo, B. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest. 121, 1822–1826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cronk, R. J., Zurko, J. & Shah, N. N. Bispecific chimeric antigen receptor T cell therapy for B cell malignancies and multiple myeloma. Cancers 12, 2523 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  87. Zah, E. et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat. Commun. 11, 2283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shah, N. N. et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat. Med. 26, 1569–1575 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Wallstabe, L. et al. ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models. JCI Insight https://doi.org/10.1172/jci.insight.126345 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Srivastava, S. et al. Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting. Cancer Cell 35, 489–503.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cho, J. H. et al. Engineering advanced logic and distributed computing in human CAR immune cells. Nat. Commun. 12, 792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Garrison, B. S. et al. FLT3 OR CD33 NOT EMCN logic gated CAR-NK cell therapy (SENTI-202) for precise targeting of AML. Blood 138 (suppl. 1), 2799 (2021).

    Article  Google Scholar 

  93. Gonzalez, A. et al. Abstract LB028: Development of logic-gated CAR-NK cells to reduce target-mediated healthy tissue toxicities. Cancer Res. 81, LB028 (2021).

    Article  Google Scholar 

  94. Mensali, N. et al. NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine 40, 106–117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Shao, H. et al. TCR mispairing in genetically modified T cells was detected by fluorescence resonance energy transfer. Mol. Biol. Rep. 37, 3951–3956 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Wiernik, A. et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16×33 bispecific killer cell engager and ADAM17 inhibition. Clin. Cancer Res. 19, 3844–3855 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vallera, D. A. et al. Heterodimeric bispecific single-chain variable-fragment antibodies against EpCAM and CD16 induce effective antibody-dependent cellular cytotoxicity against human carcinoma cells. Cancer Biother. Radiopharm. 28, 274–282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gleason, M. K. et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 123, 3016–3026 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schmohl, J., Gleason, M., Dougherty, P., Miller, J. S. & Vallera, D. A. Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells. Target. Oncol. 11, 353–361 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Kerbauy, L. N. et al. Combining AFM13, a bispecific CD30/CD16 antibody, with cytokine-activated blood and cord blood-derived NK cells facilitates CAR-like responses against CD30+ malignancies. Clin. Cancer Res. 27, 3744–3756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Reusch, U. et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. MAbs 6, 727–738 (2014).

    Article  PubMed Central  Google Scholar 

  102. Schmohl, J. U. et al. Tetraspecific scFv construct provides NK cell mediated ADCC and self-sustaining stimuli via insertion of IL-15 as a cross-linker. Oncotarget 7, 73830–73844 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Vallera, D. A. et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin. Cancer Res. 22, 3440–3450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schmohl, J. U. et al. Engineering of anti-CD133 trispecific molecule capable of inducing NK expansion and driving antibody-dependent cell-mediated cytotoxicity. Cancer Res. Treat. 49, 1140 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Arvindam, U. S. et al. A trispecific killer engager molecule against CLEC12A effectively induces NK-cell mediated killing of AML cells. Leukemia 35, 1586–1596 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Gauthier, L. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713.e16 (2019). This report outlines a novel tri-specific NK cell engager molecule that cross-links the two NK cell activating receptors CD16 and NKp46 with a specific tumour antigen.

    Article  CAS  PubMed  Google Scholar 

  107. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04074746 (2020).

  108. Bryceson, Y. T., March, M. E., Ljunggren, H. G. & Long, E. O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rosario, M. et al. The IL-15-based ALT-803 complex enhances FcγRIIIa-triggered NK cell responses and in vivo clearance of B cell lymphomas. Clin. Cancer Res. 22, 596–608 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. de Rham, C. et al. The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res. Ther. 9, R125 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gang, M. et al. CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood 136, 2308–2318 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Dong, H. et al. Engineered memory-like NK cars targeting a neoepitope derived from intracellular NPM1c exhibit potent activity and specificity against acute myeloid leukemia. Blood 136, 3–4 (2020).

    Article  Google Scholar 

  113. Lasek, W., Zagożdżon, R. & Jakobisiak, M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol. Immunother. 63, 419–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McMichael, E. L. et al. IL-21 enhances natural killer cell response to cetuximab-coated pancreatic tumor cells. Clin. Cancer Res. 23, 489–502 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Miller, J. S. Therapeutic applications: natural killer cells in the clinic. Hematology 2013, 247–253 (2013).

    Article  PubMed  Google Scholar 

  116. Anton, O. M. et al. Trans-endocytosis of intact IL-15Rα–IL-15 complex from presenting cells into NK cells favors signaling for proliferation. Proc. Natl Acad. Sci. USA 117, 522–531 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Tarannum, M. & Romee, R. Cytokine-induced memory-like natural killer cells for cancer immunotherapy. Stem Cell Res. Ther. 12, 592 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Felices, M. et al. Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect. JCI Insight https://doi.org/10.1172/jci.insight.96219 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sarhan, D. et al. Adaptive NK cells resist regulatory T-cell suppression driven by IL37. Cancer Immunol. Res. 6, 766–775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nuñez, S. Y. et al. Human M2 macrophages limit NK cell effector functions through secretion of TGF-β and engagement of CD85j. J. Immunol. 200, 1008–1015 (2018).

    Article  PubMed  Google Scholar 

  121. Tumino, N. et al. Interaction between MDSC and NK cells in solid and hematological malignancies: impact on HSCT. Front. Immunol. https://doi.org/10.3389/fimmu.2021.638841 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zalfa, C. & Paust, S. Natural killer cell interactions with myeloid derived suppressor cells in the tumor microenvironment and implications for cancer immunotherapy. Front. Immunol. https://doi.org/10.3389/fimmu.2021.633205 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ni, J. et al. Single-cell RNA sequencing of tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α unleashes NK cell activity. Immunity 52, 1075–1087.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Van Wilpe, S. et al. Lactate dehydrogenase: a marker of diminished antitumor immunity. Oncoimmunology 9, 1731942 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Cascone, T. et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 27, 977–-987.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT01791595 (2013).

  127. Jin, D. et al. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res. 70, 2245–2255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stagg, J. et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc. Natl Acad. Sci. USA 107, 1547–1552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Allard, B., Longhi, M. S., Robson, S. C. & Stagg, J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol. Rev. 276, 121–144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Perrot, I. et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 27, 2411–2425.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04148937 (2020).

  132. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03454451 (2018).

  133. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03616886 (2018).

  134. Young, A. et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell 30, 391–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Young, A. et al. A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 78, 1003 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Lupo, K. & Matosevic, S. 123 Natural killer cells engineered with an inducible, responsive genetic construct targeting TIGIT and CD73 to relieve immunosuppression within the GBM microenvironment. J. Immunother. Cancer 8, A74–A75 (2020).

    Google Scholar 

  137. Giuffrida, L. et al. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat. Commun. 12, 3236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kim, T.-D. et al. Human microRNA-27a* targets Prf1 and GzmB expression to regulate NK-cell cytotoxicity. Blood, J. Am. Soc. Hematol. 118, 5476–5486 (2011).

    CAS  Google Scholar 

  139. Yvon, E. S. et al. Cord blood natural killer cells expressing a dominant negative TGF-β receptor: implications for adoptive immunotherapy for glioblastoma. Cytotherapy 19, 408–418 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Daher, M. et al. The TGF-β/SMAD signaling pathway as a mediator of NK cell dysfunction and immune evasion in myelodysplastic syndrome. Blood 130, 53–53 (2017).

    Google Scholar 

  141. Shaim, H. et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J. Clin. Investig. https://doi.org/10.1172/JCI142116 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Stojanovic, A., Fiegler, N., Brunner-Weinzierl, M. & Cerwenka, A. CTLA-4 Is expressed by activated mouse NK cells and inhibits NK cell IFN-γ production in response to mature dendritic cells. J. Immunol. 192, 4184–4191 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Russick, J. et al. Natural killer cells in the human lung tumor microenvironment display immune inhibitory functions. J. Immunother. Cancer 8, e001054 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sanseviero, E. et al. Anti-CTLA-4 activates intratumoral NK cells and combined with IL15/IL15Rα complexes enhances tumor control. Cancer Immunol. Res. 7, 1371–1380 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Judge, S. J. et al. Minimal PD-1 expression in mouse and human NK cells under diverse conditions. J. Clin. Investig. 130, 3051–3068 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Judge, S. J., Murphy, W. J. & Canter, R. J. Characterizing the dysfunctional NK cell: assessing the clinical relevance of exhaustion, anergy, and senescence. Front. Cell Infect. Microbiol. 10, 49–49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Davis, Z. et al. Low-density PD-1 expression on resting human natural killer cells is functional and upregulated after transplantation. Blood Adv. 5, 1069–1080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hsu, J. et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Investig. 128, 4654–4668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Dong, W. et al. The mechanism of anti-PD-L1 antibody efficacy against PD-L1-negative tumors identifies NK cells expressing PD-L1 as a cytolytic effector. Cancer Discov. 9, 1422–1437 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Newman, J. & Horowitz, A. NK cells seize PD1 from leukaemia cells. Nat. Rev. Immunol. 21, 345–345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. da Silva, I. P. et al. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol. Res. 2, 410–422 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Farkas, A. M. et al. Tim-3 and TIGIT mark natural killer cells susceptible to effector dysfunction in human bladder cancer. J. Immunol. 200, 124.114 (2018).

    Google Scholar 

  154. Chauvin, J.-M. et al. IL15 stimulation with TIGIT blockade reverses CD155-mediated NK-cell dysfunction in melanoma. Clin. Cancer Res. 26, 5520–5533 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sarhan, D. et al. Adaptive NK cells with low TIGIT expression are inherently resistant to myeloid-derived suppressor cells. Cancer Res. 76, 5696–5706 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Ali, A. et al. LAG-3 modulation of natural killer cell immunoregulatory function. J. Immunol. 202, 76.77 (2019).

    Google Scholar 

  158. Kohrt, H. E. et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood 123, 678–686 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Vey, N. et al. Randomized phase 2 trial of Lirilumab (anti-KIR monoclonal antibody, mAb) as maintenance treatment in elderly patients (pts) with acute myeloid leukemia (AML): results of the Effikir trial. Blood 130, 889–889 (2017).

    Article  Google Scholar 

  160. Vey, N. et al. A phase 1 study of Lirilumab (antibody against killer immunoglobulin-like receptor antibody KIR2D; IPH2102) in patients with solid tumors and hematologic malignancies. Oncotarget 9, 17675–17688 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005). This seminal work lays out the concept of NK cell ‘licensing’ through which NK cells acquire functional competence and self-tolerance by interaction of inhibitory receptors and self-MHC molecules.

    Article  CAS  PubMed  Google Scholar 

  162. Kim, S. et al. HLA alleles determine differences in human natural killer cell responsiveness and potency. Proc. Natl Acad. Sci. USA 105, 3053–3058 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. André, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kamiya, T., Seow, S. V., Wong, D., Robinson, M. & Campana, D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Investig. 129, 2094–2106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Delconte, R. B. et al. CIS is a potent checkpoint in NK cell–mediated tumor immunity. Nat. Immunol. 17, 816–824 (2016). This important article identifies the intracellular NK cell checkpoint CIS, which negatively regulates IL-15 signalling.

    Article  CAS  PubMed  Google Scholar 

  166. Delconte, R. B. et al. NK cell priming from endogenous homeostatic signals is modulated by CIS. Front. Immunol. https://doi.org/10.3389/fimmu.2020.00075 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Daher, M. et al. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood 137, 624–636 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhu, H. et al. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell 27, 224–237.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Coca, S. et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79, 2320–2328 (1997).

    Article  CAS  PubMed  Google Scholar 

  170. Ishigami, S. et al. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88, 577–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Villegas, F. R. et al. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35, 23–28 (2002).

    Article  PubMed  Google Scholar 

  172. Donskov, F. & von der Maase, H. Impact of immune parameters on long-term survival in metastatic renal cell carcinoma. J. Clin. Oncol. 24, 1997–2005 (2006).

    Article  PubMed  Google Scholar 

  173. Geissler, K. et al. Immune signature of tumor infiltrating immune cells in renal cancer. Oncoimmunology 4, e985082 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wendel, M., Galani, I. E., Suri-Payer, E. & Cerwenka, A. Natural killer cell accumulation in tumors is dependent on IFN-γ and CXCR3 ligands. Cancer Res. 68, 8437–8445 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Mlecnik, B. et al. Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 138, 1429–1440 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Park, M. H., Lee, J. S. & Yoon, J. H. High expression of CX3CL1 by tumor cells correlates with a good prognosis and increased tumor-infiltrating CD8+ T cells, natural killer cells, and dendritic cells in breast carcinoma. J. Surg. Oncol. 106, 386–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Castriconi, R. et al. Molecular mechanisms directing migration and retention of natural killer cells in human tissues. Front. Immunol. 9, 2324 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Levy, E. R., Clara, J. A., Reger, R. N., Allan, D. S. J. & Childs, R. W. RNA-seq analysis reveals CCR5 as a key target for CRISPR gene editing to regulate in vivo NK cell trafficking. Cancers https://doi.org/10.3390/cancers13040872 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wennerberg, E., Kremer, V., Childs, R. & Lundqvist, A. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer Immunol. Immunother. 64, 225–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Somanchi, S. S., Somanchi, A., Cooper, L. J. N. & Lee, D. A. Engineering lymph node homing of ex vivo–expanded human natural killer cells via trogocytosis of the chemokine receptor CCR7. Blood 119, 5164–5172 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Carlsten, M. et al. Efficient mRNA-based genetic engineering of human NK cells with high-affinity CD16 and CCR7 augments rituximab-induced ADCC against lymphoma and targets NK cell migration toward the lymph node-associated chemokine CCL19. Front. immunol. 7, 105 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Müller, N. et al. Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma. J. Immunother. 38, 197 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kremer, V. et al. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J. ImmunoTher. Cancer 5, 73 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Ponzetta, A. et al. Multiple myeloma impairs bone marrow localization of effector natural killer cells by altering the chemokine microenvironment. Cancer Res. 75, 4766–4777 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Bonanni, V., Antonangeli, F., Santoni, A. & Bernardini, G. Targeting of CXCR3 improves anti-myeloma efficacy of adoptively transferred activated natural killer cells. J. ImmunoTher. Cancer 7, 290 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Lee, J. et al. An antibody designed to improve adoptive NK-cell therapy inhibits pancreatic cancer progression in a murine model. Cancer Immunol. Res. 7, 219 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Ng, Y. Y., Tay, J. C. & Wang, S. CXCR1 expression to improve anti-cancer efficacy of intravenously injected CAR-NK cells in mice with peritoneal xenografts. Mol. Ther. Oncolytics 16, 75–85 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Walle, T. et al. Radiotherapy orchestrates natural killer cell dependent antitumor immune responses through CXCL8. Sci. Adv. 8, eabh4050 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Larson, R. C. & Maus, M. V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21, 145–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Gill, S. & Brudno, J. N. CAR T-cell therapy in hematologic malignancies: clinical role, toxicity, and unanswered questions. Am. Soc. Clin. Oncol. Educ. Book https://doi.org/10.1200/EDBK_320085 (2021).

    Article  PubMed  Google Scholar 

  192. Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Strati, P. & Neelapu, S. S. CAR-T failure: beyond antigen loss and T cells. Blood 137, 2567–2568 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Biederstädt, A. & Rezvani, K. How I treat high-risk acute myeloid leukemia using pre-emptive adoptive cellular immunotherapy. Blood https://doi.org/10.1182/blood.2021012411 (2022).

    Article  PubMed  Google Scholar 

  195. Abdel-Hakeem, M. S. et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nat. Immunol. 22, 1008–1019 (2021). This article elucidates how exhausted T cell subsets fail to restore their full functional capacity upon elimination of antigenic stimulation due to persistent epigenetic scarring.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yates, K. B. et al. Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans. Nat. Immunol. 22, 1020–1029 (2021). This report demonstrates the fixed nature of exhausted T cell epigenetic signatures following resolution of chronic antigenic stimulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Biederstädt, A. et al. SUMO pathway inhibition targets an aggressive pancreatic cancer subtype. Gut 69, 1472–1482 (2020).

    Article  PubMed  Google Scholar 

  198. Kumar, S. et al. Targeting pancreatic cancer by TAK-981: a SUMOylation inhibitor that activates the immune system and blocks cancer cell cycle progression in a preclinical model. Gut https://doi.org/10.1136/gutjnl-2021-324834 (2022).

    Article  PubMed  Google Scholar 

  199. Demel, U. M. et al. Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer. J. Clin. Investig. https://doi.org/10.1172/JCI152383 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Saha, K. et al. The NIH Somatic Cell Genome Editing program. Nature 592, 195–204 (2021). This report lays out the aims and scope of the NIH SCGE Consortium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Tsai, S. Q. et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-targets. Nat. Methods 14, 607–614 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Dobosy, J. R. et al. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol. 11, 80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hu, J. et al. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. 11, 853–871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021). This seminal work demonstrates the first successful clinical application of in vivo CRISPR–Cas9 gene editing.

    Article  CAS  PubMed  Google Scholar 

  206. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022). This study demonstrates the first successful in vivo engineering of CAR T cells using a CD5-directed lipid nanoparticle containing CAR-encoding mRNA.

    Article  CAS  PubMed  Google Scholar 

  208. Bender, R. R., Muth, A., Schneider, I. C., Maisner, A. & Buchholz, C. J. Developing an engineered nipah virus glycoprotein based lentiviral vector system retargeted to cell surface receptors of choice. Mol. Ther. 23, S2 (2015).

    Article  Google Scholar 

  209. Micklethwaite, K. P. et al. Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood 138, 1391–1405 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02742727 (2016).

  211. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT00995137 (2009).

  212. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT01974479 (2013).

  213. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02892695 (2016).

  214. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03056339 (2017).

  215. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03824951 (2019).

  216. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03690310 (2019).

  217. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05020678 (2021).

  218. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04245722 (2020).

  219. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04639739 (2020).

  220. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04887012 (2021).

  221. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04796675 (2021).

  222. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04796688 (2021).

  223. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05379647 (2021).

  224. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05336409 (2022).

  225. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04023071 (2019).

  226. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03692767 (2019).

  227. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03824964 (2019).

  228. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02944162 (2016).

  229. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05008575 (2021).

  230. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05215015 (2020).

  231. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05092451 (2022).

  232. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03559764 (2018).

  233. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03940833 (2019).

  234. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05008536 (2021).

  235. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05182073 (2021).

  236. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04614636 (2020).

  237. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04623944 (2020).

  238. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03415100 (2018).

  239. Xiao, L. et al. Adoptive transfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Mol. Ther. 27, 1114–1125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05213195 (2021).

  241. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05247957 (2021).

  242. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02839954 (2016).

  243. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03383978 (2017).

  244. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03692663 (2018).

  245. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03692637 (2019).

  246. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04630769 (2021).

  247. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03940820 (2019).

  248. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03931720 (2019).

  249. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03941457 (2019).

  250. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04551885 (2020).

  251. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04847466 (2021).

  252. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05194709 (2021).

  253. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04324996 (2020).

  254. Wu, L. et al. lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab-treated CD20+ tumor cells. Clin. Cancer Res. 14, 4650–4657 (2008).

    Article  CAS  PubMed  Google Scholar 

  255. Tai, Y. T. et al. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 65, 11712–11720 (2005).

    Article  CAS  PubMed  Google Scholar 

  256. Nahas, M. R. et al. Hypomethylating agent alters the immune microenvironment in acute myeloid leukaemia (AML) and enhances the immunogenicity of a dendritic cell/AML vaccine. Br. J. Haematol. 185, 679–690 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hicks, K. C. et al. Epigenetic priming of both tumor and NK cells augments antibody-dependent cellular cytotoxicity elicited by the anti-PD-L1 antibody avelumab against multiple carcinoma cell types. OncoImmunology 7, e1466018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Leung, E. Y. L. et al. NK cells augment oncolytic adenovirus cytotoxicity in ovarian cancer. Mol. Ther. Oncolytics 16, 289–301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Marotel, M., Hasim, M. S., Hagerman, A. & Ardolino, M. The two-faces of NK cells in oncolytic virotherapy. Cytokine Growth Factor. Rev. 56, 59–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  260. Cichocki, F. et al. GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity. Cancer Res. 77, 5664–5675 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Parameswaran, R. et al. Repression of GSK3 restores NK cell cytotoxicity in AML patients. Nat. Commun. 7, 11154 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. van Hall, T. et al. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J. Immunother. Cancer 7, 263 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Yalniz, F. F. et al. A pilot trial of Lirilumab with or without azacitidine for patients with myelodysplastic syndrome. Clin. Lymphoma Myeloma Leuk. 18, 658–663.e2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Bachier, C. et al. A phase 1 study of NKX101, an allogeneic CAR natural killer (NK) cell therapy, in subjects with relapsed/refractory (R/R) acute myeloid leukemia (AML) or higher-risk myelodysplastic syndrome (MDS). Blood 136, 42–43 (2020).

    Article  Google Scholar 

  265. Pinz, K. G. et al. Targeting T-cell malignancies using anti-CD4 CAR NK-92 cells. Oncotarget 8, 112783–112796 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Romanski, A. et al. CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J. Cell Mol. Med. 20, 1287–1294 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. You, F. et al. A novel CD7 chimeric antigen receptor-modified NK-92MI cell line targeting T-cell acute lymphoblastic leukemia. Am. J. Cancer Res. 9, 64–78 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Xu, Y. et al. 2B4 costimulatory domain enhancing cytotoxic ability of anti-CD5 chimeric antigen receptor engineered natural killer cells against T cell malignancies. J. Hematol. Oncol. 12, 49 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Martín, E. M. et al. Exploring NKG2D and BCMA-CAR NK-92 for adoptive cellular therapy to multiple myeloma. Clin. Lymphoma, Myeloma Leuk. 19, e24–e25 (2019).

    Article  Google Scholar 

  270. Jiang, H. et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol. Oncol. 8, 297–310 (2014).

    Article  CAS  PubMed  Google Scholar 

  271. Han, J. et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci. Rep. 5, 11483 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Chu, J. et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 28, 917–927 (2014).

    Article  CAS  PubMed  Google Scholar 

  273. Chen, K. H. et al. Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia 31, 2151–2160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Chen, K. H. et al. Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies. Oncotarget 7, 56219–56232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Vallera, D. A. et al. NK-cell-mediated targeting of various solid tumors using a B7-H3 tri-specific killer engager in vitro and in vivo. Cancers https://doi.org/10.3390/cancers12092659 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Cooper, L. J. et al. T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood 101, 1637–1644 (2003).

    Article  CAS  PubMed  Google Scholar 

  277. Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004).

    Article  CAS  PubMed  Google Scholar 

  278. Maher, J., Brentjens, R. J., Gunset, G., Rivière, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  279. Schubert, M.-L. et al. Third-generation CAR T cells targeting CD19 are associated with an excellent safety profile and might improve persistence of CAR T cells in treated patients. Blood 134, 51–51 (2019).

    Article  Google Scholar 

  280. Bjordahl, R. et al. Abstract 1539: development of off-the-shelf B7H3 chimeric antigen receptor NK cell therapeutic with broad applicability across many solid tumors. Cancer Res. 81, 1539 (2021).

    Article  Google Scholar 

  281. Basar, R. et al. Generation of glucocorticoid-resistant SARS-CoV-2 T cells for adoptive cell therapy. Cell Rep. https://doi.org/10.1016/j.celrep.2021.109432 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  283. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  284. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Shang, W. et al. Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation. Proc. Natl Acad. Sci. 115, E4051 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  289. Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Sheffer, M. et al. Genome-scale screens identify factors regulating tumor cell responses to natural killer cells. Nat. Genet. 53, 1196–1206 (2021). This report uses an orthogonal approach combining genome-wide CRISPR screening with multiplexed cancer cell line screening to decipher cancer type-specific vulnerabilities towards NK cells.

    Article  CAS  PubMed  Google Scholar 

  291. Ting, P. Y. et al. Guide Swap enables genome-scale pooled CRISPR–Cas9 screening in human primary cells. Nat. Methods 15, 941–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  292. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Wang, D. et al. CRISPR screening of CAR T cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 11, 1192–1211 (2021).

    Article  CAS  PubMed  Google Scholar 

  294. Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Legut, M. et al. A genome-scale screen for synthetic drivers of T cell proliferation. Nature 603, 728–735 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. S. Moyes for providing editing support during the preparation of this manuscript. A.B. received support from the German Research Foundation as Walter Benjamin Postdoctoral Fellow (464778766). This work was supported, in part, by generous philanthropic contributions to The University of Texas MD Anderson Cancer Center Moon Shots Program, The Sally Cooper Murray endowment, generous support of Ann and Clarence Cazalot, and Lyda Hill Philanthropies; and by grants from CPRIT (RP160693), a Stand Up To Cancer Dream Team Research Grant (Grant number: SU2C-AACR-DT-29-19), grants from the National Institutes of Health (NIH) (1 R01 CA211044-01, 5 P01CA148600-03, and P50CA100632-16), the Specialized Program of Research Excellence (SPORE) in Brain Cancer Grant (P50CA127001) and a grant to MD Anderson Cancer Center from the NIH (CA016672). The SU2C research grant is administered by the American Association for Cancer Research, the scientific partner of SU2C.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Katayoun Rezvani.

Ethics declarations

Competing interests

K.R. and The University of Texas MD Anderson Cancer Center have an institutional financial conflict of interest with Takeda Pharmaceutical and Affimed GmbH. K.R. participates on the Scientific Advisory Board for GemoAb, AvengeBio, Virogin Biotech, GSK, Bayer, Navan Technologies and Caribou Biosciences. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks E. Vivier, who co-reviewed with P. Andre, and A. Cerwenka and S. Gill for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autologous chimeric antigen receptor (CAR) T cell therapy

A patient-specific cellular therapy in which the patient’s own T cells are genetically modified to express a chimeric antigen receptor.

Lymphopenic

A lower than normal number of lymphocytes in the blood.

Allogeneic setting

The therapy setting in which adoptive cell therapies are generated from material obtained from a different individual of the same species.

Graft-versus-host disease

(GvHD). A potentially fatal condition that results from the response of allogeneic T cells against the host tissues of recipients who are immunosuppressed, which can occur after adoptive cell therapy or allogeneic haematopoietic stem cell transplantation.

Killer cell immunoglobulin-like receptors

(KIRs). A family of polymorphic activating and inhibitory transmembrane proteins that regulate natural killer cell development and function through interactions with major histocompatibility complex class I molecules.

Induced pluripotent stem cells

(iPSCs). Cells that result from the reprogramming of adult somatic cells into an embryonic-like pluripotent stem cell state, capable of self-renewal and differentiation into tissues originated from the three germ layers (endoderm, mesoderm and ectoderm).

Apheresis

The process that allows for collection of specific components from blood, such as white blood cells, by separating the cellular and soluble fractions, retaining what is of interest and returning the remainder to circulation.

Chimeric antigen receptors

(CARs). Genetically engineered cell surface receptors designed to recognize specific proteins on tumour cells.

Tonic signalling

The constitutive signalling mediated by a chimeric antigen receptor in a ligand-independent manner.

Logic gated

A term derived from electronics that refers to implementation of a Boolean strategy to execute a logical function on one or more input signals to generate a single output signal.

Licensing

A process of education in maturing natural killer (NK) cells that is driven by the interaction of inhibitory receptors and self-major histocompatibility complex class I molecules, which potentiates NK cell responses to activating signals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laskowski, T.J., Biederstädt, A. & Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat Rev Cancer 22, 557–575 (2022). https://doi.org/10.1038/s41568-022-00491-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-022-00491-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing