Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Fighting rare cancers: lessons from fibrolamellar hepatocellular carcinoma

An Author Correction to this article was published on 20 April 2023

This article has been updated

Abstract

The fight against rare cancers faces myriad challenges, including missed or wrong diagnoses, lack of information and diagnostic tools, too few samples and too little funding. Yet many advances in cancer biology, such as the realization that there are tumour suppressor genes, have come from studying well-defined, albeit rare, cancers. Fibrolamellar hepatocellular carcinoma (FLC), a typically lethal liver cancer, mainly affects adolescents and young adults. FLC is both rare, 1 in 5 million, and problematic to diagnose. From the paucity of data, it was not known whether FLC was one cancer or a collection with similar phenotypes, or whether it was genetically inherited or the result of a somatic mutation. A personal journey through a decade of work reveals answers to these questions and a road map of steps and missteps in our fight against a rare cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mapping reads from the transcriptome onto the genome reveals the fusion transcript.

Similar content being viewed by others

Change history

References

  1. Pinna, A. D. et al. Treatment of fibrolamellar hepatoma with subtotal hepatectomy or transplantation. Hepatology 26, 877–883 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Starzl, T. E. et al. Treatment of fibrolamellar hepatoma with partial or total hepatectomy and transplantation of the liver. Surg. Gynecol. Obstet. 162, 145–148 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Moreno-Luna, L. E. et al. Clinical and pathologic factors associated with survival in young adult patients with fibrolamellar hepatocarcinoma. BMC Cancer 5, 142 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yamashita, S. et al. Prognosis of fibrolamellar carcinoma compared to non-cirrhotic conventional hepatocellular carcinoma. J. Gastrointest. Surg. 20, 1725–1731 (2016).

    Article  PubMed  Google Scholar 

  5. El-Serag, H. B. & Davila, J. A. Is fibrolamellar carcinoma different from hepatocellular carcinoma? A US population-based study. Hepatology 39, 798–803 (2004).

    Article  PubMed  Google Scholar 

  6. Simon, S. M. Gunter Blobel (1936–2018). Nature 556, 32 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tommasini-Ghelfi, S. et al. Cancer-associated mutation and beyond: the emerging biology of isocitrate dehydrogenases in human disease. Sci. Adv. 5, eaaw4543 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Gatta, G. et al. Rare cancers are not so rare: the rare cancer burden in Europe. Eur. J. Cancer 47, 2493–2511 (2011).

    Article  PubMed  Google Scholar 

  11. Simon, J. S., Botero, S. & Simon, S. M. Sequencing the peripheral blood B and T cell repertoire — quantifying robustness and limitations. J. Immunol. Methods 463, 137–147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rich, B. S. et al. Endogenous antibodies for tumor detection. Sci. Rep. 4, 5088 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simon, E. P. et al. Transcriptomic characterization of fibrolamellar hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 112, E5916–E5925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farber, B. A. et al. Non coding RNA analysis in fibrolamellar hepatocellular carcinoma. Oncotarget 9, 10211–10227 (2018).

    Article  PubMed  Google Scholar 

  15. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Darcy, D. G. et al. The genomic landscape of fibrolamellar hepatocellular carcinoma: whole genome sequencing of ten patients. Oncotarget 6, 755–770 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bemmo, A. et al. Exon-level transcriptome profiling in murine breast cancer reveals splicing changes specific to tumors with different metastatic abilities. PLoS ONE 5, e11981 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Honeyman, J. N. et al. Detection of a recurrent DNAJB1–PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science 343, 1010–1014 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cohen, P., Cross, D. & Janne, P. A. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat. Rev. Drug Discov. 20, 551–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Graham, R. P. et al. DNAJB1–PRKACA is specific for fibrolamellar carcinoma. Mod. Pathol. 28, 822–829 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Xu, L. et al. Genomic analysis of fibrolamellar hepatocellular carcinoma. Hum. Mol. Genet. 24, 50–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Kastenhuber, E. R. et al. DNAJB1–PRKACA fusion kinase interacts with β-catenin and the liver regenerative response to drive fibrolamellar hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 114, 13076–13084 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Engelholm, L. H. et al. CRISPR/Cas9 engineering of adult mouse liver demonstrates that the Dnajb1–Prkaca gene fusion is sufficient to induce tumors resembling fibrolamellar hepatocellular carcinoma. Gastroenterology 153, 1662–1673 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Tomasini, M. D. et al. Conformational landscape of the PRKACA–DNAJB1 chimeric kinase, the driver for fibrolamellar hepatocellular carcinoma. Sci. Rep. 8, 720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cao, B. et al. Structures of the PKA RIα holoenzyme with the FLHCC driver J-PKAcα or wild-type PKAcα. Structure 27, 816–828.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Narayan, N. J. C. et al. Human liver organoids for disease modeling of fibrolamellar carcinoma. Stem Cell Rep. 17, 1874–1888 (2022).

    Article  CAS  Google Scholar 

  28. Saltsman, J. A. et al. A human organoid model of aggressive hepatoblastoma for disease modeling and drug testing. Cancers 12, 2668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lalazar, G. et al. Identification of novel therapeutic targets for fibrolamellar carcinoma using patient-derived xenografts and direct-from-patient screening. Cancer Discov. 11, 2544–2563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shebl, B. et al. Targeting BCL-XL in fibrolamellar hepatocellular carcinoma. JCI Insight 7, e161820 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ando, Y. et al. UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Ann. Oncol. 9, 845–847 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Iyer, L. et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J. Clin. Invest. 101, 847–854 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oguri, T. et al. UGT1A10 is responsible for SN-38 glucuronidation and its expression in human lung cancers. Anticancer Res. 24, 2893–2896 (2004).

    CAS  PubMed  Google Scholar 

  34. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khan, S. et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 25, 1938–1947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neumayer, C. et al. Oncogenic addiction of fibrolamellar hepatocellular carcinoma to the fusion kinase DNAJB1–PRKACA. Clin. Cancer Res. 29, 271–278 (2022).

    Article  PubMed Central  Google Scholar 

  37. Felsher, D. W. Oncogene addiction versus oncogene amnesia: perhaps more than just a bad habit? Cancer Res. 68, 3081–3086; discussion 68, 3086 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Weinstein, I. B. & Joe, A. Oncogene addiction. Cancer Res. 68, 3077–3080; discussion 68, 3080 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Ananthakrishnan, A., Gogineni, V. & Saeian, K. Epidemiology of primary and secondary liver cancers. Semin. Interv. Radiol. 23, 47–63 (2006).

    Article  Google Scholar 

  40. Lalazar, G. & Simon, S. M. Fibrolamellar carcinoma: recent advances and unresolved questions on the molecular mechanisms. Semin. Liver Dis. 38, 51–59 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berkovitz, A. et al. Clinical and demographic predictors of survival for fibrolamellar carcinoma patients—a patient community registry-based study. Hepatol. Commun. 6, 3539–3549 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ostendorf, B. N. et al. Common germline variants of the human APOE gene modulate melanoma progression and survival. Nat. Med. 26, 1048–1053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, K. Y. et al. Clinical outcomes in fibrolamellar hepatocellular carcinoma treated with immune checkpoint inhibitors. Cancers 14, 5347 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hakvoort, T. B. et al. Pivotal role of glutamine synthetase in ammonia detoxification. Hepatology 65, 281–293 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Surjan, R. C., Dos Santos, E. S., Basseres, T., Makdissi, F. F. & Machado, M. A. A proposed physiopathological pathway to hyperammonemic encephalopathy in a non-cirrhotic patient with fibrolamellar hepatocellular carcinoma without ornithine transcarbamylase (OTC) mutation. Am. J. Case Rep. 18, 234–241 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bauer, J. et al. The oncogenic fusion protein DNAJB1–PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma. Nat. Commun. 13, 6401 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Callaway, E. & Ledford, H. Virologists who discovered hepatitis C win medicine Nobel. Nature 586, 348 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Krammer, F. SARS-CoV-2 vaccines in development. Nature 586, 516–527 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Wolchok, J. Putting the immunologic brakes on cancer. Cell 175, 1452–1454 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 1000 Genomes Project Consortium. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  Google Scholar 

  52. Barker, K. & Jarasz, O. Online misogyny: a challenge for digital feminism. J. Int. Aff. 72, 95–114 (2019).

    Google Scholar 

  53. Lorenz, T. & Browning, K. Dozens of women in gaming speak out about sexism and harassment. New York Times https://www.nytimes.com/2020/06/23/style/women-gaming-streaming-harassment-sexism-twitch.html (2020).

  54. Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Edmondson, H. A. Differential diagnosis of tumors and tumor-like lesions of liver in infancy and childhood. AMA J. Dis. Child. 91, 168–186 (1956).

    CAS  PubMed  Google Scholar 

  56. Craig, J. R., Peters, R. L., Edmondson, H. A. & Omata, M. Fibrolamellar carcinoma of the liver: a tumor of adolescents and young adults with distinctive clinico-pathologic features. Cancer 46, 372–379 (1980).

    Article  CAS  PubMed  Google Scholar 

  57. Malouf, G. et al. Is histological diagnosis of primary liver carcinomas with fibrous stroma reproducible among experts? J. Clin. Pathol. 62, 519–524 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Abdul-Al, H. M., Wang, G., Makhlouf, H. R. & Goodman, Z. D. Fibrolamellar hepatocellular carcinoma: an immunohistochemical comparison with conventional hepatocellular carcinoma. Int. J. Surg. Pathol. 18, 313–318 (2010).

    Article  PubMed  Google Scholar 

  59. Ross, H. M. et al. Fibrolamellar carcinomas are positive for CD68. Mod. Pathol. 24, 390–395 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Torbenson, M. Fibrolamellar carcinoma: 2012 update. Scientifica 2012, 743790 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Graham, R. P. et al. Fibrolamellar carcinoma in the Carney complex: PRKAR1A loss instead of the classic DNAJB1–PRKACA fusion. Hepatology 68, 1441–1447 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Kirschner, L. S. et al. Mutations of the gene encoding the protein kinase A type Iα regulatory subunit in patients with the Carney complex. Nat. Genet. 26, 89–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Hirsch, T.Z. et al. BAP1 mutations define a homogeneous subgroup of hepatocellular carcinoma with fibrolamellar-like features and activated PKA. J. Hepatol. 72, 924–936 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Singhi, A. D. et al. Recurrent rearrangements in PRKACA and PRKACB in intraductal oncocytic papillary neoplasms of the pancreas and bile duct. Gastroenterology 158, 573–582.e2 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Vyas, M. et al. DNAJB1–PRKACA fusions occur in oncocytic pancreatic and biliary neoplasms and are not specific for fibrolamellar hepatocellular carcinoma. Mod. Pathol. 33, 648–656 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Fritz, A.G. et al. (eds) International Classification of Diseases for Oncology: ICD-O (World Health Organization, 2013).

  67. O’Neill, A. F. et al. Fibrolamellar carcinoma: an entity all its own. Curr. Probl. Cancer 45, 100770 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks the fibrolamellar community for their commitment to defeat this beast. The author also thanks all members of the laboratory who have been working together as an incredible team, backing each other up on every step. Additionally, the author thanks colleagues around the world who have so generously given their time and thoughts.

Author information

Authors and Affiliations

Authors

Contributions

The author handled all aspects of the article.

Corresponding author

Correspondence to Sanford M. Simon.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

B+ Foundation: https://www.bepositive.org/

Bear Necessities: https://bearnecessities.org/about-bn/

Cancer survivor’s brilliant YouTube idea: https://www.today.com/video/cancer-survivors-brilliant-youtube-idea-228752963974

Fibrolamellar Cancer Foundation: https://fibrofoundation.org/about-fibro/

Fibrolamellar Liver Cancer Research: https://youtu.be/Y5lkp_uK9Ww

Fibrolamellar Registry: http://fibroregistry.org

Neucrue Cancer Fight: https://www.neucruecancerfight.org/

Precision Medicine Initiative: https://www.youtube.com/watch?v=qHD-_NYOcVA

Richard Lounsbery Foundation: https://www.rlounsbery.org/

Solving Kids’ Cancer: https://solvingkidscancer.org/

The Rally Foundation: https://rallyfoundation.org/

The Sohn Conference: https://www.sohnconference.org/

The White House Science Fair: https://youtu.be/q0TYR-MxC3I

Truth365: https://www.thetruth365.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, S.M. Fighting rare cancers: lessons from fibrolamellar hepatocellular carcinoma. Nat Rev Cancer 23, 335–346 (2023). https://doi.org/10.1038/s41568-023-00554-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-023-00554-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer