Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nucleotide metabolism: a pan-cancer metabolic dependency

Abstract

Metabolic alterations are a key hallmark of cancer cells, and the augmented synthesis and use of nucleotide triphosphates is a critical and universal metabolic dependency of cancer cells across different cancer types and genetic backgrounds. Many of the aggressive behaviours of cancer cells, including uncontrolled proliferation, chemotherapy resistance, immune evasion and metastasis, rely heavily on augmented nucleotide metabolism. Furthermore, most of the known oncogenic drivers upregulate nucleotide biosynthetic capacity, suggesting that this phenotype is a prerequisite for cancer initiation and progression. Despite the wealth of data demonstrating the efficacy of nucleotide synthesis inhibitors in preclinical cancer models and the well-established clinical use of these drugs in certain cancer settings, the full potential of these agents remains unrealized. In this Review, we discuss recent studies that have generated mechanistic insights into the diverse biological roles of hyperactive cancer cell nucleotide metabolism. We explore opportunities for combination therapies that are highlighted by these recent advances and detail key questions that remain to be answered, with the goal of informing urgently warranted future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biosynthetic pathways for pyrimidine and purine nucleotides, relevant inhibitors and oncogenic regulators.
Fig. 2: Nucleotides fuel cancer cell growth and proliferation.
Fig. 3: Altered nucleoside handling facilitates cancer cell immune evasion.
Fig. 4: Supraphysiological GTP abundance promotes metastasis through the activation of RHO-family GTPases.
Fig. 5: Hyperactive nucleotide synthesis confers resistance to a range of therapeutic interventions.

Similar content being viewed by others

References

  1. Biancur, D. E. et al. Functional genomics identifies metabolic vulnerabilities in pancreatic cancer. Cell Metab. 33, 199–210 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Li, L. et al. Identification of DHODH as a therapeutic target in small cell lung cancer. Sci. Transl Med. 11, 517 (2019).

    Article  Google Scholar 

  3. Zhu, X. G. et al. Functional genomics in vivo reveal metabolic dependencies of pancreatic cancer cells. Cell Metab. 33, 211–221 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Sykes, D. B. et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 167, 171–186.e15 (2016). This study demonstrated the potential of DHODH inhibitors to induce leukaemia differentiation and sparked renewed clinical interest in DHODH inhibitors to treat cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koundinya, M. et al. Dependence on the pyrimidine biosynthetic enzyme DHODH is a synthetic lethal vulnerability in mutant KRAS-driven cancers. Cell Chem. Biol. 25, 705–717.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. White, R. M. et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471, 518–522 (2011). This study established the paradigm of pyrimidine nucleotide abundance as a crucial regulator of Pol II elongation control through promoter-proximal pausing and demonstrated the relevance of this mechanism in human melanoma cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, X. et al. Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Sci. Transl. Med. 11, eaau4972 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Santana-Codina, N. et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat. Commun. 9, 4945 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brown, K. K., Spinelli, J. B., Asara, J. M. & Toker, A. Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer. Cancer Discov. 7, 391–399 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mathur, D. et al. PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition. Cancer Discov. 7, 380–390 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shukla, S. K. et al. MUC1 and HIF-1α signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell 32, 71–87.e7 (2017). This study rigorously validated the role that competition between pyrimidine nucleotides and gemcitabine metabolites plays in gemcitabine resistance and showed that hyperactive glucose consumption supports augmented dCTP synthesis in PDAC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maroun, J. et al. Multicenter phase II study of brequinar sodium in patients with advanced lung cancer. Cancer Chemother. Pharmacol. 32, 64–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Moore, M. et al. Multicenter phase II study of brequinar sodium in patients with advanced gastrointestinal cancer. Invest. New Drugs 11, 61–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Natale, R. et al. Multicenter phase II trial of brequinar sodium in patients with advanced melanoma. Ann. Oncol. 3, 659–660 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Cody, R. et al. Multicenter phase II study of brequinar sodium in patients with advanced breast cancer. Am. J. Clin. Oncol. 16, 526–528 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Lane, A. N. & Fan, T. W.-M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43, 2466–2485 (2015). This review provides a quantitative analysis of the (d)NTP requirements of proliferating mammalian cells, as well as a comprehensive discussion of how (d)NTP pools are expanded to support cell division under physiological conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tong, X., Zhao, F. & Thompson, C. B. The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr. Opin. Genet. Dev. 19, 32–37 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Villa, E., Ali, E. S., Sahu, U. & Ben-Sahra, I. Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers 11, 688 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, J. et al. Identification and characterization of human uracil phosphoribosyltransferase (UPRTase). J. Hum. Genet. 52, 415–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Pérignon, J. L., Bories, D. M., Houllier, A. M., Thuillier, L. & Cartier, P. H. Metabolism of pyrimidine bases and nucleosides by pyrimidine-nucleoside phosphorylases in cultured human lymphoid cells. Biochim. Biophys. Acta 928, 130–136 (1987).

    Article  PubMed  Google Scholar 

  21. Ferraro, P., Franzolin, E., Pontarin, G., Reichard, P. & Bianchi, V. Quantitation of cellular deoxynucleoside triphosphates. Nucleic Acids Res. 38, e85 (2010).

    Article  PubMed  Google Scholar 

  22. Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol. Cell Biochem. 140, 1–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323–1328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stillman, B. Deoxynucleoside triphosphate (dNTP) synthesis and destruction regulate the replication of both cell and virus genomes. Proc. Natl Acad. Sci. USA 110, 14120–14121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawada, K., Toda, K. & Sakai, Y. Targeting metabolic reprogramming in KRAS-driven cancers. Int. J. Clin. Oncol. 22, 651–659 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Dong, Y., Tu, R., Liu, H. & Qing, G. Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Signal. Transduct. Target. Ther. 5, 124 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu, Y.-C. et al. Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS ONE 3, e2722 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Franzolin, E. et al. The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc. Natl Acad. Sci. USA 110, 14272–14277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farber, S. & Diamond, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948). This seminal study first identified nucleotide synthesis inhibition as a cancer treatment and reported the first-ever remissions in childhood leukaemia.

    Article  CAS  PubMed  Google Scholar 

  32. Waltham, M. C., Holland, J. W., Robinson, S. C., Winzor, D. J. & Nixon, P. F. Direct experimental evidence for competitive inhibition of dihydrofolate reductase by methotrexate. Biochem. Pharmacol. 37, 535–539 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Cronstein, B. N. & Aune, T. M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 16, 145–154 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Friedman, B. & Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine 86, 301–307 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Neradil, J., Pavlasova, G. & Veselska, R. New mechanisms for an old drug; DHFR- and non-DHFR-mediated effects of methotrexate in cancer cells. Klin. Onkol. 25, 2S87–92 (2012).

    PubMed  Google Scholar 

  36. Sramek, M., Neradil, J., Sterba, J. & Veselska, R. Non-DHFR-mediated effects of methotrexate in osteosarcoma cell lines: epigenetic alterations and enhanced cell differentiation. Cancer Cell Int. 16, 14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Peters, G. J. et al. Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim. Biophys. Acta 1587, 194–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Shih, C. et al. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res. 57, 1116–1123 (1997).

    CAS  PubMed  Google Scholar 

  39. Adjei, A. A. Pharmacology and mechanism of action of pemetrexed. Clin. Lung Cancer 5, S51–S55 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. McLean, J. E., Neidhardt, E. A., Grossman, T. H. & Hedstrom, L. Multiple inhibitor analysis of the brequinar and leflunomide binding sites on human dihydroorotate dehydrogenase. Biochemistry 40, 2194–2200 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Ransom, J. T. Mechanism of action of mycophenolate mofetil. Ther. Drug Monit. 17, 681–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Yokota, S. Mizoribine: mode of action and effects in clinical use. Pediatr. Int. 44, 196–198 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Naffouje, R. et al. Anti-tumor potential of IMP dehydrogenase inhibitors: a century-long story. Cancers 11, 1346 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elledge, S. J., Zhou, Z. & Allen, J. B. Ribonucleotide reductase: regulation, regulation, regulation. Trends Biochem. Sci. 17, 119–123 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Guarino, E., Salguero, I. & Kearsey, S. E. Cellular regulation of ribonucleotide reductase in eukaryotes. Semin. Cell Dev. Biol. 30, 97–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Yarbro, J. W. Mechanism of action of hydroxyurea. Semin. Oncol. 19, 1–10 (1992).

    CAS  PubMed  Google Scholar 

  47. Mini, E., Nobili, S., Caciagli, B., Landini, I. & Mazzei, T. Cellular pharmacology of gemcitabine. Ann. Oncol. 17, v7–v12 (2006).

    Article  PubMed  Google Scholar 

  48. Cerqueira, N. M. F. S. A., Fernandes, P. A. & Ramos, M. J. Understanding ribonucleotide reductase inactivation by gemcitabine. Chemistry 13, 8507–8515 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Plunkett, W. et al. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin. Oncol. 22, 3–10 (1995).

    CAS  PubMed  Google Scholar 

  50. Ahmad, S. I., Kirk, S. H. & Eisenstark, A. Thymine metabolism and thymineless death in prokaryotes and eukaryotes. Annu. Rev. Microbiol. 52, 591–625 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Houghton, J. A., Harwood, F. G. & Tillman, D. M. Thymineless death in colon carcinoma cells is mediated via Fas signaling. Proc. Natl Acad. Sci. USA 94, 8144–8149 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goulian, M. et al. Mechanism of thymineless death: 73. Pediatr. Res. 19, 756–756 (1985).

    Article  Google Scholar 

  53. Gaillard, H., García-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Diehl, F. F. et al. Nucleotide imbalance decouples cell growth from cell proliferation. Nat. Cell Biol. 24, 1252–1264 (2022). This study suggests that the replication stress response is the primary mechanism by which cells sense dNTP shortage and shows that upregulation of dNTP synthesis by ATM and ATR occurs even during division of non-transformed mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beyaert, M., Starczewska, E., Van Den Neste, E. & Bontemps, F. A crucial role for ATR in the regulation of deoxycytidine kinase activity. Biochem. Pharmacol. 100, 40–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Gong, C. et al. ATR-CHK1-E2F3 signaling transactivates human ribonucleotide reductase small subunit M2 for DNA repair induced by the chemical carcinogen MNNG. Biochim. Biophys. Acta 1859, 612–626 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Chang, L. et al. ATM-mediated serine 72 phosphorylation stabilizes ribonucleotide reductase small subunit p53R2 protein against MDM2 to DNA damage. Proc. Natl Acad. Sci. USA 105, 18519–18524 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eaton, J. S., Lin, Z. P., Sartorelli, A. C., Bonawitz, N. D. & Shadel, G. S. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. J. Clin. Invest. 117, 2723–2734 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hubackova, S. et al. Replication and ribosomal stress induced by targeting pyrimidine synthesis and cellular checkpoints suppress p53-deficient tumors. Cell Death Dis. 11, 110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Le, T. M. et al. ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways. Nat. Commun. 8, 241 (2017). This study confirmed the importance of the replication stress response in controlling dNTP synthesis through RNR and DCK and showed that combined inhibition of RNR, DCK and ATR causes apparent cure and long-term disease-free survival in a B-ALL mouse model.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fordham, S. E. et al. Inhibition of ATR acutely sensitizes acute myeloid leukemia cells to nucleoside analogs that target ribonucleotide reductase. Blood Adv. 2, 1157–1169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Christian, S. et al. The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies. Leukemia 33, 2403–2415 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Dembitz, V. et al. The ribonucleoside AICAr induces differentiation of myeloid leukemia by activating the ATR/Chk1 via pyrimidine depletion. J. Biol. Chem. 294, 15257–15270 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kofuji, S. et al. IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma. Nat. Cell Biol. 21, 1003–1014 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lafita-Navarro, M. C. et al. Inhibition of the de novo pyrimidine biosynthesis pathway limits ribosomal RNA transcription causing nucleolar stress in glioblastoma cells. PLoS Genet. 16, e1009117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, M., Tao, Z., Wang, S., Jiang, Y. & Qu, M. Suppression of oncogenic protein translation via targeting eukaryotic translation initiation factor 4E overcomes chemo-resistance in nasopharyngeal carcinoma. Biochem. Biophys. Res. Commun. 512, 902–907 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Xi, C. et al. Inhibition of eukaryotic translation initiation factor 4E is effective against chemo-resistance in colon and cervical cancer. Biochem. Biophys. Res. Commun. 503, 2286–2292 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Zhou, Q., Li, T. & Price, D. H. RNA polymerase II elongation control. Annu. Rev. Biochem. 81, 119–143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fawal, M.-A., Jungas, T. & Davy, A. Inhibition of DHFR targets the self-renewing potential of brain tumor initiating cells. Cancer Lett. 503, 129–137 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Siddiqui, A. et al. Thymidylate synthase maintains the de-differentiated state of triple negative breast cancers. Cell Death Differ. 26, 2223–2236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Makishima, M., Okabe-Kado, J. & Honma, Y. Growth inhibition and differentiation induction in human monoblastic leukaemia cells by 1alpha-hydroxyvitamin D derivatives and their enhancement by combination with hydroxyurea. Br. J. Cancer 77, 33–39 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, H. et al. Disruption of dNTP homeostasis by ribonucleotide reductase hyperactivation overcomes AML differentiation blockade. Blood 139, 3752–3770 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Hanover, J. A., Chen, W. & Bond, M. R. O-GlcNAc in cancer: an oncometabolism-fueled vicious cycle. J. Bioenerg. Biomembr. 50, 155–173 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Dang, W. et al. Pharmacological inhibition of dihydroorotate dehydrogenase induces apoptosis and differentiation in acute myeloid leukemia cells. Haematologica 103, 1472–1483 (2018).

    Article  Google Scholar 

  75. Ferrer, C. M., Sodi, V. L. & Reginato, M. J. O-GlcNAcylation in cancer biology: linking metabolism and signaling. J. Mol. Biol. 428, 3282–3294 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nogueira, V. & Hay, N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 19, 4309–4314 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chatterjee, A. et al. MnTE-2-PyP protects fibroblast mitochondria from hyperglycemia and radiation exposure. Redox Biol. 52, 102301 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Olou, A. A., King, R. J., Yu, F. & Singh, P. K. MUC1 oncoprotein mitigates ER stress via CDA-mediated reprogramming of pyrimidine metabolism. Oncogene 39, 3381–3395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Abrego, J. et al. GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Cancer Lett. 400, 37–46 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lebrecht, D., Vargas-Infante, Y. A., Setzer, B., Kirschner, J. & Walker, U. A. Uridine supplementation antagonizes zalcitabine-induced microvesicular steatohepatitis in mice. Hepatology 45, 72–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Lebrecht, D. et al. Uridine supplementation antagonizes zidovudine-induced mitochondrial myopathy and hyperlactatemia in mice. Arthritis Rheum. 58, 318–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Fang, J. et al. Dihydro-orotate dehydrogenase is physically associated with the respiratory complex and its loss leads to mitochondrial dysfunction. Biosci. Rep. 33, e00021 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bader, J. E., Voss, K. & Rathmell, J. C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol. Cell 78, 1019–1033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Scott, K. E. N. & Cleveland, J. L. Lactate wreaks havoc on tumor-infiltrating T and NK cells. Cell Metab. 24, 649–650 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Ala, M. The footprint of kynurenine pathway in every cancer: a new target for chemotherapy. Eur. J. Pharmacol. 896, 173921 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Giblett, E., Ammann, A., Sandman, R., Wara, D. & Diamond, L. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 305, 1010–1013 (1975).

    Article  Google Scholar 

  90. Giblett, E., Anderson, J., Cohen, F., Pollara, B. & Meuwissen, H. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 300, 1067–1069 (1972).

    Article  Google Scholar 

  91. Cader, M. Z. et al. FAMIN is a multifunctional purine enzyme enabling the purine nucleotide cycle. Cell 180, 278–295.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yasin, S. & Schulert, G. S. Systemic juvenile idiopathic arthritis and macrophage activation syndrome: update on pathogenesis and treatment. Curr. Opin. Rheumatol. 30, 514–520 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132–13137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, J. et al. Tumor-derived adenosine promotes macrophage proliferation in human hepatocellular carcinoma. J. Hepatol. 74, 627–637 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Strakhova, R., Cadassou, O., Cros-Perrial, E. & Jordheim, L. P. Regulation of tumor infiltrated innate immune cells by adenosine. Purinergic Signal. 16, 289–295 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Novitskiy, S. V. et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112, 1822–1831 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Antonioli, L., Blandizzi, C., Pacher, P. & Haskó, G. Immunity, inflammation and cancer: a leading role for adenosine. Nat. Rev. Cancer 13, 842–857 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Vijayan, D., Young, A., Teng, M. W. L. & Smyth, M. J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17, 709–724 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Antonioli, L., Pacher, P., Vizi, E. S. & Haskó, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 19, 355–367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cai, X. Y. et al. High expression of CD39 in gastric cancer reduces patient outcome following radical resection. Oncol. Lett. 12, 4080–4086 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. King, R. J. et al. CD73 induces GM-CSF/MDSC-mediated suppression of T cells to accelerate pancreatic cancer pathogenesis. Oncogene 41, 971–982 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wurm, M. et al. A novel antagonistic CD73 antibody for inhibition of the immunosuppressive adenosine pathway. Mol. Cancer Ther. 20, 2250–2261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Roh, M., Wainwright, D. A., Wu, J. D., Wan, Y. & Zhang, B. Targeting CD73 to augment cancer immunotherapy. Curr. Opin. Pharmacol. 53, 66–76 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stagg, J. & Smyth, M. J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29, 5346–5358 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Allard, B., Longhi, M. S., Robson, S. C. & Stagg, J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol. Rev. 276, 121–144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pellegatti, P. et al. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS ONE 3, e2599 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Saveljeva, S. et al. A purine metabolic checkpoint that prevents autoimmunity and autoinflammation. Cell Metab. 34, 106–124.e10 (2022). This study characterized FAMIN as a biochemical immune checkpoint in dendritic cells, explained the mechanism of Still disease in humans with germline loss-of-function FAMIN mutation, and proposed FAMIN as a target for cancer immunotherapy analogous to CTLA4 or PD(L)1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hu, T., Suter, S. R., Mumbleau, M. M. & Beal, P. A. TLR8 activation and inhibition by guanosine analogs in RNA: importance of functional groups and chain length. Bioorg. Med. Chem. 26, 77–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, Z. et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45, 737–748 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Borghaei, H. et al. 24-Month overall survival from KEYNOTE-021 cohort G: pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous non-small cell lung cancer. J. Thorac. Oncol. 14, 124–129 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Schaer, D. A. et al. The folate pathway inhibitor pemetrexed pleiotropically enhances effects of cancer immunotherapy. Clin. Cancer Res. 25, 7175 (2019). This study established a mechanistic basis for how pemetrexed can enhance anticancer immunity, despite the clinical efficacy of other antifolates, such as MTX, in treating autoimmune syndromes.

    Article  CAS  PubMed  Google Scholar 

  113. Dersh, D. et al. Genome-wide screens identify lineage- and tumor-specific genes modulating MHC-I- and MHC-II-restricted immunosurveillance of human lymphomas. Immunity 54, 116–131.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gu, S. S. et al. Therapeutically increasing MHC-I expression potentiates immune checkpoint blockade. Cancer Discov. 11, 1524–1541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kang, S. H. et al. Inhibition of MEK with trametinib enhances the efficacy of anti-PD-L1 inhibitor by regulating anti-tumor immunity in head and neck squamous cell carcinoma. Oncoimmunology 8, e1515057 (2019).

    Article  PubMed  Google Scholar 

  118. Kalbasi, A. et al. Uncoupling interferon signaling and antigen presentation to overcome immunotherapy resistance due to JAK1 loss in melanoma. Sci. Transl. Med. 12, eabb0152 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Keshet, R. et al. Targeting purine synthesis in ASS1-expressing tumors enhances the response to immune checkpoint inhibitors. Nat. Cancer 1, 894–908 (2020). This study showed that inhibition of IMPDH or GMPS enhances cancer cell immunogenicity by promoting the presentation of cancer-associated neoantigens by MHC class I.

    Article  CAS  PubMed  Google Scholar 

  120. Brown, P. M., Pratt, A. G. & Isaacs, J. D. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat. Rev. Rheumatol. 12, 731–742 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Genestier, L. et al. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J. Clin. Invest. 102, 322–328 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bar-Or, A. et al. Randomized study of teriflunomide effects on immune responses to neoantigen and recall antigens. Neurol. Neuroimmunol. Neuroinflamm. 2, e70 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Brezinschek, H. P., Hofstaetter, T., Leeb, B. F., Haindl, P. & Graninger, W. B. Immunization of patients with rheumatoid arthritis with antitumor necrosis factorα therapy and methotrexate. Curr. Opin. Rheumatol. 20, 295–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Klotz, L. et al. Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects. Sci. Transl. Med. 11, eaao5563 (2019). This study provided a mechanistic rationale for the observed selectivity of DHODH inhibition towards autoreactive T cells and explained how pathogen-directed and cancer-directed adaptive immunity can remain intact under prolonged teriflunomide treatment.

    Article  CAS  PubMed  Google Scholar 

  125. Kaibuchi, K., Kuroda, S. & Amano, M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 68, 459–486 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Wawrzyniak, J. A. et al. A purine nucleotide biosynthesis enzyme guanosine monophosphate reductase is a suppressor of melanoma invasion. Cell Rep. 5, 493–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Oren, M. & Rotter, V. Mutant p53 gain-of-function in cancer. Cold Spring Harb. Perspect. Biol. 2, a001107 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kollareddy, M. et al. Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Nat. Commun. 6, 7389 (2015). This study linked oncogenic gain-of-function p53 mutation to purine metabolism and showed the critical role of de novo GTP synthesis in promoting metastasis through the activation of RHO-family GTPases.

    Article  CAS  PubMed  Google Scholar 

  129. Yamaguchi, N. et al. PCK1 and DHODH drive colorectal cancer liver metastatic colonization and hypoxic growth by promoting nucleotide synthesis. eLife 8, e52135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rainger, J. et al. Miller (Genee-Wiedemann) syndrome represents a clinically and biochemically distinct subgroup of postaxial acrofacial dysostosis associated with partial deficiency of DHODH. Hum. Mol. Genet. 21, 3969–3983 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Kayamori, K. et al. DHODH inhibition synergizes with DNA-demethylating agents in the treatment of myelodysplastic syndromes. Blood Adv. 5, 438–450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Halbrook, C. J. et al. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab. 29, 1390–1399.e6 (2019). This study elucidated the role of pyrimidine nucleoside transfer from stromal cells to cancer cells in the TME in gemcitabine resistance and suggests that such stromal cells are an important source of nucleosides for tumour salvage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dalin, S. et al. Deoxycytidine release from pancreatic stellate cells promotes gemcitabine resistance. Cancer Res. 79, 5723–5733 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shireman, J. M. et al. De novo purine biosynthesis is a major driver of chemoresistance in glioblastoma. Brain 144, 1230–1246 (2021). This study showed that guanine nucleobases damaged by temozolomide are salvaged and reincorporated into DNA and that inhibition of IMPDH accentuates this process, thus providing a mechanistic basis for synergy between IMPDH inhibition and temozolomide treatment in glioblastoma.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dorasamy, M. S., Ab, A., Nellore, K. & Wong, P. F. Synergistic inhibition of melanoma xenografts by brequinar sodium and doxorubicin. Biomed. Pharmacother. 110, 29–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Zhou, W. et al. Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. Nat. Commun. 11, 3811 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gunda, V. et al. MUC1-mediated metabolic alterations regulate response to radiotherapy in pancreatic cancer. Clin. Cancer Res. 23, 5881–5891 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Graves, L. M. et al. Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 403, 328–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Mao, C. et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586–590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Snajdauf, M. et al. The TRAIL in the treatment of human cancer: an update on clinical trials. Front. Mol. Biosci. 8, 628332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. He, T. et al. Inhibition of the mitochondrial pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase by doxorubicin and brequinar sensitizes cancer cells to TRAIL-induced apoptosis. Oncogene 33, 3538–3549 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Gottlieb, E., Armour, S. M., Harris, M. H. & Thompson, C. B. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 10, 709–717 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Abt, E. R. et al. Metabolic modifier screen reveals secondary targets of protein kinase inhibitors within nucleotide metabolism. Cell Chem. Biol. 27, 197–205.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Cuthbertson, C. R. et al. The dihydroorotate dehydrogenase inhibitor brequinar is synergistic with ENT1/2 Inhibitors. ACS Pharmacol. Transl Sci. 3, 1242–1252 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yu, Y. et al. Therapeutic targeting of both dihydroorotate dehydrogenase and nucleoside transport in MYCN-amplified neuroblastoma. Cell Death Dis. 12, 821 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gaidano, V. et al. The synergism between DHODH inhibitors and dipyridamole leads to metabolic lethality in acute myeloid leukemia. Cancers 13, 1003 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pastor-Anglada, M. & Pérez-Torras, S. Emerging roles of nucleoside transporters. Front. Pharmacol. 9, 606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Nielsen-Kudsk, F. & Pedersen, A. K. Pharmacokinetics of dipyridamole. Acta Pharmacol. Toxicol. 44, 391–399 (1979).

    Article  CAS  Google Scholar 

  149. Mullen, N. J. et al. ENT1 blockade by CNX-774 overcomes resistance to DHODH inhibition in pancreatic cancer. Cancer Lett. 552, 215981 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 8, e44235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mimura, K. et al. Genome-wide CRISPR screening reveals nucleotide synthesis negatively regulates autophagy. J. Biol. Chem. 296, 100780 (2021). This study elucidated the role of nucleotide starvation in promoting autophagy and suggests that autophagic recycling of nucleotides can enable cancer cell survival upon pharmacological nucleotide depletion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kimmelman, A. C. & White, E. Autophagy and tumor metabolism. Cell Metab. 25, 1037–1043 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Guo, J. Y. et al. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes Dev. 30, 1704–1717 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu, Y. et al. Autophagy-dependent ribosomal RNA degradation is essential for maintaining nucleotide homeostasis during C. elegans development. eLife 7, e36588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Noe, D. A. et al. Phase I and pharmacokinetic study of brequinar sodium (NSC 368390). Cancer Res. 50, 4595–4599 (1990).

    CAS  PubMed  Google Scholar 

  156. Nathanson, D. A. et al. Co-targeting of convergent nucleotide biosynthetic pathways for leukemia eradication. J. Exp. Med. 211, 473–486 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, Y., Zhou, Q., Song, S. & Tang, S. Integrating metabolic reprogramming and metabolic imaging to predict breast cancer therapeutic responses. Trends Endocrinol. Metab. 32, 762–775 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies are supported by F30CA265277 to N.J.M. and R01CA163649, R01CA270234, R01CA210439, R01CA216853, R01CA256911 and U54CA274329 to P.K.S. from the National Cancer Institute of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

N.J.M. and P.K.S. performed the literature search and developed the outline. N.J.M. developed the initial draft. P.K.S. edited the manuscript, added further content and provided mentoring and supervision.

Corresponding author

Correspondence to Pankaj K. Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Natalia Tretyakova, Caius Radu, Costas Lyssiotis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullen, N.J., Singh, P.K. Nucleotide metabolism: a pan-cancer metabolic dependency. Nat Rev Cancer 23, 275–294 (2023). https://doi.org/10.1038/s41568-023-00557-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-023-00557-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer