Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disrupting the balance between activating and inhibitory receptors of γδT cells for effective cancer immunotherapy

Abstract

γδT cell biology in cancer has been studied for decades but remains poorly understood mainly due to species differences in preclinical models and a lack of appropriate analytical tools. This lack of knowledge has hindered the clinical translation of promising therapeutic concepts. In recent years, advanced single-cell analysis techniques and comprehensive protein–protein interaction studies have transformed our understanding of γδT cells and their receptors. This insight has revealed new opportunities and challenges in harnessing γδT cells for therapeutic purposes. In this context, we will discuss the latest findings in γδT cell biology, with a special focus on their role in cancer immune therapies. We will explore strategies to overcome tolerance and shift the balance of γδT cells and their receptors towards antitumour efficacy, which has the potential to successfully translate into various engineering approaches in cancer immunotherapy.

Key points

  • Vγ9Vδ2 γδT cells and Vδ2 γδT cells have distinct transcriptomic profiles and different therapeutic potential in cancer therapy.

  • The unique γδT cell receptor–CD3 complex structure and its downstream signalling pathways have implications for the design of effective therapeutics.

  • Shifting the equilibrium between activating and inhibitory receptors is essential for the clinical success of both γδT cell-based biologics and engineered T cells.

  • Biomimetic models and Good Manufacturing Practice simulation will be necessary to accelerate the development process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of BTN2A1 and BTN3A expression and metabolic alterations are required for Vγ9Vδ2 γδT cell activation.
Fig. 2: Structures of γδTCRs in complex with their cognate ligand or CD3 complex reveal a diversity of unique and unexpected topologies.
Fig. 3: Diverse activation mechanisms of γδT cells.
Fig. 4: Metabolic challenges of γδT cells in cancer.
Fig. 5: Therapeutic strategies to break the balance between activating and inhibitory receptors of γδT cells to improve therapeutic efficacy.
Fig. 6: Biomimetic models and GMP simulation are key elements for rapid clinical translation of γδT cell-based therapies.

Similar content being viewed by others

References

  1. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meraviglia, S. et al. Distinctive features of tumor-infiltrating γδ T lymphocytes in human colorectal cancer. Oncoimmunology 6, e1347742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bruni, E. et al. Intrahepatic CD69+Vδ1 T cells re-circulate in the blood of patients with metastatic colorectal cancer and limit tumor progression. J. Immunother. Cancer 10, e004579 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wu, Y. et al. An innate-like Vδ1+ γδ T cell compartment in the human breast is associated with remission in triple-negative breast cancer. Sci. Transl. Med. 11, eaax9364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Willcox, B. E. & Willcox, C. R. γδ TCR ligands: the quest to solve a 500-million-year-old mystery. Nat. Immunol. 20, 121–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Davey, M. S. et al. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9 subsets. Nat. Commun. 9, 1760 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pizzolato, G. et al. Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVδ1 and TCRVδ2 γδ T lymphocytes. Proc. Natl Acad. Sci. USA 116, 11906–11915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vyborova, A. et al. γ9δ2 T-cell expansion and phenotypic profile are reflected in the CDR3δ repertoire of healthy adults. Front. Immunol. 13, 915366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davey, M. S. et al. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun. 8, 14760 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yu, X. et al. Pan-cancer γδ TCR analysis uncovers clonotype diversity and prognostic potential. Cell Rep. Med. 5, 101764 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scheper, W. et al. γδT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia 27, 1328–1338 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Janssen, A. et al. The role of γδ T cells as a line of defense in viral infections after allogeneic stem cell transplantation: opportunities and challenges. Viruses 14, 117 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siblany, L. et al. Unconventional T cells influence clinical outcome after allogeneic hematopoietic cell transplantation. J. Clin. Immunol. 44, 139 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. de Witte, M. A. et al. αβ T-cell graft depletion for allogeneic HSCT in adults with hematological malignancies. Blood Adv. 5, 240–249 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. de Witte, M. A. et al. Activity of ex vivo graft and DLI engineering within the last decade increases, a survey from the EBMT Cellular Therapy & Immunobiology Working Party. Bone Marrow Transpl. 58, 719–722 (2023).

    Article  Google Scholar 

  16. Sebestyen, Z., Prinz, I., Dechanet-Merville, J., Silva-Santos, B. & Kuball, J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat. Rev. Drug Discov. 19, 169–184 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022). Study demonstrating CAR-expressing γδT cells persisting in long-term survivors who primarily received CAR-engineered αβT cells when using CD3+ T cells as starting material.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson, N. D. et al. Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia. Nat. Med. 29, 1700–1709 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gully, B. S. et al. Structure of a fully assembled γδ T-cell antigen receptor. Nature 634, 729–736 (2024). This study used the cryo-electron microscopy structure of the CD3–γδTCR complex to show that γδTCR activation requires higher ligand densities compared to αβTCR activation, owing to flexibility in the γδTCR connecting peptides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fisch, P. et al. Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250, 1269–1273 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Constant, P. et al. Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 264, 267–270 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Morita, C. T. et al. Recognition of nonpeptide prenyl pyrophosphate antigens by human γδ T cells. Microbes Infect. 1, 175–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Gruenbacher, G. & Thurnher, M. Mevalonate metabolism governs cancer immune surveillance. Oncoimmunology 6, e1342917 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T-cell subset. Blood 120, 2269–2279 (2012). This report detailing the identification of BTN3A as a key molecule for Vγ9Vδ2T cell activation was pivotal to many developments in the field over the last decade.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rigau, M. et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science 367, eaay5516 (2020). Published report that identified BTN2A1 as a ligand for the Vγ9Vδ2TCR.

    Article  CAS  PubMed  Google Scholar 

  26. Karunakaran, M. M. et al. Butyrophilin-2A1 directly binds germline-encoded regions of the Vγ9Vδ2 TCR and Is essential for phosphoantigen sensing. Immunity 52, 487–498.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Compte, E., Pontarotti, P., Collette, Y., Lopez, M. & Olive, D. Frontline: characterization of BT3 molecules belonging to the B7 family expressed on immune cells. Eur. J. Immunol. 34, 2089–2099 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Cubillos-Ruiz, J. R. et al. CD277 is a negative co-stimulatory molecule universally expressed by ovarian cancer microenvironmental cells. Oncotarget 1, 329–338 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Benyamine, A. et al. BTN3A is a prognosis marker and a promising target for Vγ9Vδ2 T cells based-immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Oncoimmunology 7, e1372080 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dang, A. T. et al. NLRC5 promotes transcription of BTN3A1-3 genes and Vγ9Vδ2 T cell-mediated killing. iScience 24, 101900 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Liang, F. et al. Comprehensive analysis of BTN3A1 in cancers: mining of omics data and validation in patient samples and cellular models. FEBS Open Bio. 11, 2586–2599 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, W. et al. BTN3A1 promotes tumor progression and radiation resistance in esophageal squamous cell carcinoma by regulating ULK1-mediated autophagy. Cell Death Dis. 13, 984 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mamedov, M. R. et al. CRISPR screens decode cancer cell pathways that trigger gammadelta T cell detection. Nature 621, 188–195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, Z. et al. Unsynchronized butyrophilin molecules dictate cancer cell evasion of Vγ9Vδ2 T-cell killing. Cell Mol. Immunol. 21, 362–373 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sebestyen, Z. et al. RhoB mediates phosphoantigen recognition by Vγ9Vδ2 T cell receptor. Cell Rep. 15, 1973–1985 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sandstrom, A. et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity 40, 490–500 (2014). This study resolved the outstanding question of how pAgs are involved in the recognition of tumour cells by Vγ9Vδ2T cells. The authors showed that pAgs bind to the intracellular B30.2 domain of BTN3A1 and were not able to bind to the extracellular domains of BTN3A1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hsiao, C. C., Nguyen, K., Jin, Y., Vinogradova, O. & Wiemer, A. J. Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. Cell Chem. Biol. 29, 985–995.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Yuan, L. et al. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells. Nature 621, 840–848 (2023). This study describes in molecular detail how the binding of pAgs to the intracellular B30.2 domain of BTN3A1 leads to an interaction with the intracellular B30.2 domain of BTN2A1, leading to Vγ9Vδ2T cell activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wiemer, A. J. Structure-activity relationships of butyrophilin 3 ligands. ChemMedChem 15, 1030–1039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karunakaran, M. M. et al. A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing. Nat. Commun. 14, 7617 (2023). A comprehensive and elegant analysis of how the BTN3A isoform heterodimer composition is important for Vγ9Vδ2T cell activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Willcox, C. R. et al. Phosphoantigen sensing combines TCR-dependent recognition of the BTN3A IgV domain and germline interaction with BTN2A1. Cell Rep. 42, 112321 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Fulford, T. S. et al. Vγ9Vδ2 T cells recognize butyrophilin 2A1 and 3A1 heteromers. Nat. Immunol. 25, 1355–1366 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, M. et al. Cryo-EM structural insights into Vγ9Vδ2 TCR activation via multiple butyrophilins. Preprint at bioRxiv https://doi.org/10.1101/2024.10.02.616253 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  44. van Diest, E. et al. Gamma delta TCR anti-CD3 bispecific molecules (GABs) as novel immunotherapeutic compounds. J. Immunother. Cancer 9, e003850corr1 (2021). Paper showing that Vγ9Vδ2TCR–anti-CD3 TCEs can be effectively used in in vivo preclinical models.

    Article  Google Scholar 

  45. Grunder, C. et al. γ9 and δ2CDR3 domains regulate functional avidity of T cells harboring γ9δ2TCRs. Blood 120, 5153–5162 (2012).

    Article  PubMed  Google Scholar 

  46. Ampuero, J. et al. Fine-mapping butyrophilin family genes revealed several polymorphisms influencing viral genotype selection in hepatitis C infection. Genes Immun. 16, 297–300 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Cleven, A. et al. Sensitivity to Vγ9Vδ2TCR T cells is imprinted after single mutations during early oncogenesis. Preprint at bioRxiv https://doi.org/10.1101/2024.11.19.624272 (2024).

    Article  Google Scholar 

  48. Raute, K. et al. Breast cancer stem cell-derived tumors escape from γδ T-cell immunosurveillance in vivo by modulating γδ T-cell ligands. Cancer Immunol. Res. 11, 810–829 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Willcox, C. R. et al. Butyrophilin-like 3 directly binds a human Vγ4+ T cell receptor using a modality distinct from closnally-restricted antigen. Immunity 51, 813–825.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Melandri, D. et al. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol. 19, 1352–1365 (2018). Report of the ‘superantigen’-like interaction between BTNL molecules with Vγ-domains in γδTCRs, which is conserved between mice and men.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dart, R. J. et al. Conserved γδ T cell selection by BTNL proteins limits progression of human inflammatory bowel disease. Science 381, eadh0301 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hazini, A., Fisher, K. & Seymour, L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J. Immunother. Cancer 9, e002899 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal. Transduct. Target. Ther. 8, 9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kierkels, G. J. J. et al. Identification of a tumor-specific allo-HLA-restricted γδTCR. Blood Adv. 3, 2870–2882 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deseke, M. et al. A CMV-induced adaptive human Vδ1+ γδ T cell clone recognizes HLA-DR. J. Exp. Med. 219, e20212525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Look, A., Burns, D., Tews, I., Roghanian, A. & Mansour, S. Towards a better understanding of human iNKT cell subpopulations for improved clinical outcomes. Front. Immunol. 14, 1176724 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, S., Cho, S. & Kim, J. H. CD1-mediated immune responses in mucosal tissues: molecular mechanisms underlying lipid antigen presentation system. Exp. Mol. Med. 55, 1858–1871 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nelson, A., Lukacs, J. D. & Johnston, B. The current landscape of NKT cell immunotherapy and the hills ahead. Cancers 13, 5174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, M. S. & Webb, T. J. Novel lipid antigens for NKT cells in cancer. Front. Immunol. 14, 1173375 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shahine, A., Van Rhijn, I., Rossjohn, J. & Moody, D. B. CD1 displays its own negative regulators. Curr. Opin. Immunol. 83, 102339 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McWilliam, H. E. G. & Villadangos, J. A. MR1 antigen presentation to MAIT cells and other MR1-restricted T cells. Nat. Rev. Immunol. 24, 178–192 (2024).

    Article  CAS  PubMed  Google Scholar 

  62. Lepore, M. et al. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. eLife 6, e29743 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Crowther, M. D. et al. Genome-wide CRISPR-Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat. Immunol. 21, 178–185 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Constantin, D. et al. MR1 gene and protein expression are enhanced by inhibition of the extracellular signal-regulated kinase ERK. Cancer Immunol. Res 12, 1452–1467 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Willcox, C. R. et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13, 872–879 (2012). This study shows a γδT cell clone that expanded after CMV reactivation bearing a γδTCR that recognizes EPCR, providing evidence that γδT cells are adaptive T cells that can expand in a γδTCR–antigen-specific manner.

    Article  CAS  PubMed  Google Scholar 

  66. Janssen, A. et al. γδ T-cell receptors derived from breast cancer-infiltrating T lymphocytes mediate antitumor reactivity. cancer. Immunol. Res. 8, 530–543 (2020).

    CAS  Google Scholar 

  67. Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C. & Honn, K. V. Endothelial protein C receptor (EPCR), protease activated receptor-1 (PAR-1) and their interplay in cancer growth and metastatic dissemination. Cancers 11, 51 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lal, N. et al. Endothelial protein C receptor is overexpressed in colorectal cancer as a result of amplification and hypomethylation of chromosome 20q. J. Pathol. Clin. Res. 3, 155–170 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Christensen, M. V., Hogdall, C. K., Jochumsen, K. M. & Hogdall, E. V. S. Annexin A2 and cancer: a systematic review. Int. J. Oncol. 52, 5–18 (2018).

    CAS  PubMed  Google Scholar 

  70. Marlin, R. et al. Sensing of cell stress by human γδ TCR-dependent recognition of annexin A2. Proc. Natl Acad. Sci. USA 114, 3163–3168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Harly, C. et al. Human γδ T cell sensing of AMPK-dependent metabolic tumor reprogramming through TCR recognition of EphA2. Sci. Immunol. 6, eaba9010 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Wilson, K., Shiuan, E. & Brantley-Sieders, D. M. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 40, 2483–2495 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Veiga, R. N., de Azevedo, A. L. K., de Oliveira, J. C. & Gradia, D. F. Targeting EphA2: a promising strategy to overcome chemoresistance and drug resistance in cancer. J. Mol. Med. 102, 479–493 (2024).

    Article  PubMed  Google Scholar 

  74. Benveniste, P. M. et al. Generation and molecular recognition of melanoma-associated antigen-specific human γδ T cells. Sci. Immunol. 3, eaav4036 (2018).

    Article  PubMed  Google Scholar 

  75. Luoma, A. M. et al. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39, 1032–1042 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Uldrich, A. P. et al. CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol. 14, 1137–1145 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Le Nours, J. et al. A class of γδ T cell receptors recognize the underside of the antigen-presenting molecule MR1. Science 366, 1522–1527 (2019). Prior to this study, all determined γδTCR–ligand complex structures were consistent with those observed for αβTCR–ligand complexes. However, this study reported a γδTCR–ligand complex that was completely different.

    Article  PubMed  Google Scholar 

  78. Rice, M. T. et al. Recognition of the antigen-presenting molecule MR1 by a Vδ3+ γδ T cell receptor. Proc. Natl Acad. Sci. USA 118, e2110288118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wegrecki, M. et al. Atypical sideways recognition of CD1a by autoreactive γδ T cell receptors. Nat. Commun. 13, 3872 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Siegers, G. M. et al. Different composition of the human and the mouse gammadelta T cell receptor explains different phenotypes of CD3γ and CD3δ immunodeficiencies. J. Exp. Med. 204, 2537–2544 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Susac, L. et al. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell 185, 3201–3213.e19 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xin, W. et al. Structures of human γδ T cell receptor-CD3 complex. Nature 630, 222–229 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hoque, M. et al. Structural characterization of two γδ TCR/CD3 complexes. Nat. Commun. 16, 318 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mallis, R. J. et al. Molecular design of the γδT cell receptor ectodomain encodes biologically fit ligand recognition in the absence of mechanosensing. Proc. Natl Acad. Sci. USA 118, e2023050118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, Y. et al. Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility. Mol. Cell 82, 1278–1287.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Swamy, M. et al. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 44, 1091–1101 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Figueroa, M. G., Parker, L. M., Krol, K. & Zhao, M. Distal lck promoter-driven cre shows cell type-specific function in innate-like T cells. Immunohorizons 5, 772–781 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Tan, L. et al. Single-cell transcriptomics identifies the adaptation of Scart1+ Vγ6+ T cells to skin residency as activated effector cells. Cell Rep. 27, 3657–3671.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Lui, V. G. et al. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. J. Exp. Med. 221, e20230927 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Hartl, F. A. et al. Noncanonical binding of Lck to CD3ε promotes TCR signaling and CAR function. Nat. Immunol. 21, 902–913 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Schamel, W. W., Alarcon, B., Hofer, T. & Minguet, S. The allostery model of TCR regulation. J. Immunol. 198, 47–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Schamel, W. W., Alarcon, B. & Minguet, S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol. Rev. 291, 8–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Rancan, C. et al. Exhausted intratumoral Vδ2 γδ T cells in human kidney cancer retain effector function. Nat. Immunol. 24, 612–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gherardin, N. A. et al. γδ T cells in Merkel cell carcinomas have a proinflammatory profile prognostic of patient survival. Cancer Immunol. Res. 9, 612–623 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Lien, S. C. et al. Tumor reactive γδ T cells contribute to a complete response to PD-1 blockade in a Merkel cell carcinoma patient. Nat. Commun. 15, 1094 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vyborova, A. et al. γ9δ2T cell diversity and the receptor interface with tumor cells. J. Clin. Invest. 130, 4637–4651 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cazzetta, V. et al. NKG2A expression identifies a subset of human Vδ2 T cells exerting the highest antitumor effector functions. Cell Rep. 37, 109871 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Silva-Santos, B. & Strid, J. Working in “NK mode”: natural killer group 2 member D and natural cytotoxicity receptors in stress-surveillance by γδ T cells. Front. Immunol. 9, 851 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Toutirais, O. et al. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vγ9Vδ2 T cells. Eur. J. Immunol. 39, 1361–1368 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Choi, H. et al. Human allogenic γδ T cells kill patient-derived glioblastoma cells expressing high levels of DNAM-1 ligands. Oncoimmunology 11, 2138152 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang, X. et al. Diminished cytolytic activity of γδ T cells with reduced DNAM-1 expression in neuroblastoma patients. Clin. Immunol. 203, 63–71 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Jin, Z. et al. Characteristic of TIGIT and DNAM-1 expression on Foxp3+ γδ T cells in AML patients. Biomed. Res. Int. 2020, 4612952 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mensurado, S. et al. CD155/PVR determines acute myeloid leukemia targeting by delta one T cells. Blood 143, 1488–1495 (2024). The development of Delta One T cells led to the profound insight that the therapeutic efficacy of γδT cells does not necessarily need to rely on γδTCR but can be effectively mediated by other activating immune receptors such as DNAM1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rincon-Orozco, B. et al. Activation of Vγ9Vδ2 T cells by NKG2D. J. Immunol. 175, 2144–2151 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Wolf, N. K., Kissiov, D. U. & Raulet, D. H. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat. Rev. Immunol. 23, 90–105 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Lopes, N. et al. Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Nat. Immunol. 22, 179–192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Goldberg, E. L. et al. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2, 50–61 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, H. et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol. 21, 298–308 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lim, S. A. et al. Lipid signalling enforces functional specialization of Treg cells in tumours. Nature 591, 306–311 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Harmon, C. et al. γδ T cell dichotomy with opposing cytotoxic and wound healing functions in human solid tumors. Nat. Cancer 4, 1122–1137 (2023). This study shows that not all γδT cells are alike; depending on their phenotype, γδT cells can be cytotoxic and thus have the ability to kill tumour cells or can secrete amphiregulin, which promotes tumour cell proliferation.

    Article  CAS  PubMed  Google Scholar 

  111. Mu, X. et al. Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes. Cell Mol. Immunol. 19, 944–956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Park, J. H. et al. Tumor hypoxia represses γδ T cell-mediated antitumor immunity against brain tumors. Nat. Immunol. 22, 336–346 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Zhao, S., Peralta, R. M., Avina-Ochoa, N., Delgoffe, G. M. & Kaech, S. M. Metabolic regulation of T cells in the tumor microenvironment by nutrient availability and diet. Semin. Immunol. 52, 101485 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lim, A. R., Rathmell, W. K. & Rathmell, J. C. The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. eLife 9, e55185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wu, Y. et al. A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer. Nat. Cancer 3, 696–709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chauvin, C. et al. NKG2D controls natural reactivity of Vγ9Vδ2 T lymphocytes against mesenchymal glioblastoma cells. Clin. Cancer Res. 25, 7218–7228 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Knight, A. et al. CMV-independent lysis of glioblastoma by ex vivo expanded/activated Vδ1+ γδ T cells. PLoS One 8, e68729 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kunzmann, V., Bauer, E. & Wilhelm, M. γ/δ T-cell stimulation by pamidronate. N. Engl. J. Med. 340, 737–738 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Kakimi, K. et al. Adoptive transfer of zoledronate-expanded autologous Vγ9Vδ2 T-cells in patients with treatment-refractory non-small-cell lung cancer: a multicenter, open-label, single-arm, phase 2 study. J. Immunother. Cancer 8, e001185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Xu, Y. et al. Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol. Immunol. 18, 427–439 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Reis, B. S. et al. TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. Science 377, 276–284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang, J., Chen, Y., Jing, Y., Green, M. R. & Han, L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat. Rev. Clin. Oncol. 20, 211–228 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Weiss, H. M. et al. Biodistribution and plasma protein binding of zoledronic acid. Drug Metab. Dispos. 36, 2043–2049 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Di Mascolo, D. et al. Nanoformulated zoledronic acid boosts the Vδ2 T cell immunotherapeutic potential in colorectal cancer. Cancers 12, 104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Li, X. et al. Zoledronic acid-containing nanoparticles with minimum premature release show enhanced activity against extraskeletal tumor. ACS Appl. Mater. Interfaces 11, 7311–7319 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Belisario, D. C. et al. ABCA1/ABCB1 ratio determines chemo- and immune-sensitivity in human osteosarcoma. Cells 9, 647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Akman, M. et al. TFEB controls sensitivity to chemotherapy and immuno-killing in non-small cell lung cancer. J. Exp. Clin. Cancer Res. 43, 219 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Johanna, I. et al. Evaluating in vivo efficacy — toxicity profile of TEG001 in humanized mice xenografts against primary human AML disease and healthy hematopoietic cells. J. Immunother. Cancer 7, 69 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ridgley, L. A., Caron, J., Dalgleish, A. & Bodman-Smith, M. Releasing the restraints of Vγ9Vδ2 T-cells in cancer immunotherapy. Front. Immunol. 13, 1065495 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Laskowski, T. J., Biederstadt, A. & Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 22, 557–575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zakeri, N. et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. Nat. Commun. 13, 1372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hu, Y. et al. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal. Transduct. Target. Ther. 8, 434 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, H. et al. Interleukin-15 enhanced the survival of human γδT cells by regulating the expression of Mcl-1 in neuroblastoma. Cell Death Discov. 8, 139 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. de Vries, N. L. et al. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature 613, 743–750 (2023). This study demonstrates that patients with β2-microglobulin-deficient cancers being treated with immune-checkpoint blockade therapy have increased tumour infiltration of γδT cells, resulting in positive clinical responses.

    Article  PubMed  PubMed Central  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05886491 (2023).

  136. Wang, R. N. et al. Optimized protocols for γδ T cell expansion and lentiviral transduction. Mol. Med. Rep. 19, 1471–1480 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ferry, G. M. et al. A simple and robust single-step method for CAR-Vδ1 γδT cell expansion and transduction for cancer immunotherapy. Front. Immunol. 13, 863155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rohaan, M. W. et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N. Engl. J. Med. 387, 2113–2125 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ribeiro, S. T., Ribot, J. C. & Silva-Santos, B. Five layers of receptor signaling in gammadelta T-cell differentiation and activation. Front. Immunol. 6, 15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Goulmy, E. et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N. Engl. J. Med. 334, 281–285 (1996).

    Article  CAS  PubMed  Google Scholar 

  142. Bordoni, V. et al. Antiviral potential of Vδ2 T-cells in children given TCR αβ/CD19 cell depleted HLA-haploidentical HSCT. Blood Adv. 9, 990–1002 (2024).

    Article  PubMed Central  Google Scholar 

  143. Singh, A. et al. A novel bioinformatics pipeline for the identification of immune inhibitory receptors as potential therapeutic targets. eLife 13, RP92870 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Loh, L. et al. Unraveling the phenotypic states of human innate-like T cells: comparative insights with conventional T cells and mouse models. Cell Rep. 43, 114705 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. De Gassart, A. et al. Development of ICT01, a first-in-class, anti-BTN3A antibody for activating Vγ9Vδ2 T cell-mediated antitumor immune response. Sci. Transl. Med. 13, eabj0835 (2021). This paper describes the preclinical development of the agonistic BTN3A antibody, including preliminary safety data with this antibody in the first treated patients.

    Article  CAS  PubMed  Google Scholar 

  146. Girard, P., Ponsard, B., Charles, J., Chaperot, L. & Aspord, C. Potent bidirectional cross-talk between plasmacytoid dendritic cells and γδT cells through BTN3A, type I/II IFNs and immune checkpoints. Front. Immunol. 11, 861 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05307874 (2022).

  148. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04243499 (2020).

  149. Oberg, H. H. et al. Novel bispecific antibodies increase gammadelta T-cell cytotoxicity against pancreatic cancer cells. Cancer Res. 74, 1349–1360 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. de Bruin, R. C. G. et al. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells. Oncoimmunology 7, e1375641 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ganesan, R. et al. Selective recruitment of gammadelta T cells by a bispecific antibody for the treatment of acute myeloid leukemia. Leukemia 35, 2274–2284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Boutin, L. et al. Camelid-derived Tcell engagers harnessing human γδ T cells as promising antitumor immunotherapeutic agents. Eur. J. Immunol. 54, e2350773 (2024).

    Article  PubMed  Google Scholar 

  153. Yang, R. et al. Vγ2 x PD-L1, a bispecific antibody targeting both the Vγ2 TCR and PD-L1, improves the anti-tumor response of Vγ2Vδ2 T cell. Front. Immunol. 13, 923969 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. LAVA-Therapeutics. LAVA Therapeutics Provides Updates on Clinical Programs and Extends the Cash Runway https://ir.lavatherapeutics.com/news-releases/news-release-details/lava-therapeutics-provides-updates-clinical-programs-and-extends/ (2023).

  155. Marcu-Malina, V. et al. Redirecting αβ T cells against cancer cells by transfer of a broadly tumor-reactive γδT-cell receptor. Blood 118, 50–59 (2011). Report of the TEG concept relying on high-affinity Vγ9Vδ2TCRs, which have been successfully developed into first-in-human studies.

    Article  CAS  PubMed  Google Scholar 

  156. Lai, A. Y. et al. Cutting edge: bispecific γδ T cell engager containing heterodimeric BTN2A1 and BTN3A1 promotes targeted activation of Vγ9Vδ2+ T cells in the presence of costimulation by CD28 or NKG2D. J. Immunol. 209, 1475–1480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kuball, J., Beringer, D. X. & Van Diest, E. Btn2a1 Binding Peptide https://patents.google.com/patent/WO2024133301A1/en (2023).

  158. van Diest, E. et al. The making of multivalent gamma delta TCR anti-CD3 bispecific T cell engagers. Front. Immunol. 13, 1052090 (2022).

    Article  PubMed  Google Scholar 

  159. Stary, V. et al. Dysfunctional tumor-infiltrating Vδ1+ T lymphocytes in microsatellite-stable colorectal cancer. Nat. Commun. 15, 6949 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Schamel, W. W. et al. The potential of γδ CAR and TRuC T cells: an unearthed treasure. Eur. J. Immunol. 54, e2451074 (2024).

    Article  PubMed  Google Scholar 

  161. Ganapathy, T., Radhakrishnan, R., Sakshi, S. & Martin, S. CAR γδ T cells for cancer immunotherapy. Is the field more yellow than green? Cancer Immunol. Immunother. 72, 277–286 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Marin, D. et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat. Med. 30, 772–784 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sanchez Martinez, D. et al. Generation and proof-of-concept for allogeneic CD123 CAR-Delta One T (DOT) cells in acute myeloid leukemia. J. Immunother. Cancer 10, e005400 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Le Floch, A. C. et al. Low frequency of Vγ9Vδ2 T cells predicts poor survival in newly diagnosed acute myeloid leukemia. Blood Adv. 8, 4262–4275 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Lv, Z., Luo, F. & Chu, Y. Strategies for overcoming bottlenecks in allogeneic CAR-T cell therapy. Front. Immunol. 14, 1199145 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Velasco Cardenas, R. M. et al. Harnessing CD3 diversity to optimize CAR T cells. Nat. Immunol. 24, 2135–2149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ding, J. et al. Mesothelin-targeting T cells bearing a novel T cell receptor fusion construct (TRuC) exhibit potent antitumor efficacy against solid tumors. Oncoimmunology 12, 2182058 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Juraske, C. et al. Reprogramming of human γδ T cells by expression of an anti-CD19 TCR fusion construct (εTRuC) to enhance tumor killing. J. Leukoc. Biol. 115, 293–305 (2024).

    Article  PubMed  Google Scholar 

  169. Li, H. K. et al. A novel allogeneic rituximab-conjugated gamma delta T cell therapy for the treatment of relapsed/refractory B-cell lymphoma. Cancers 15, 4844 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Fisher, J. et al. Avoidance of on-target off-tumor activation using a co-stimulation-only chimeric antigen receptor. Mol. Ther. 25, 1234–1247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fisher, J. et al. Engineering γδT cells limits tonic signaling associated with chimeric antigen receptors. Sci. Signal. 12, eaax1872 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. van der Veken, L. T. et al. αβ T-cell receptor engineered γδ T cells mediate effective antileukemic reactivity. Cancer Res. 66, 3331–3337 (2006).

    Article  PubMed  Google Scholar 

  173. Immatics. Next-generation ACT https://immatics.com/next-generation-act/ (2023).

  174. Wang, Y. et al. Anti-PD-1 antibody armored γδ T cells enhance anti-tumor efficacy in ovarian cancer. Signal. Transduct. Target. Ther. 8, 399 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fowler, D. et al. Payload-delivering engineered γδ T cells display enhanced cytotoxicity, persistence, and efficacy in preclinical models of osteosarcoma. Sci. Transl. Med. 16, eadg9814 (2024). An interesting example of the current strategies for developing engineered γδT cells for the treatment of cancer.

    Article  CAS  PubMed  Google Scholar 

  176. Huang, S. W. et al. BiTE-secreting CAR-γδT as a dual targeting strategy for the treatment of solid tumors. Adv. Sci. 10, e2206856 (2023).

    Article  Google Scholar 

  177. Branella, G. M. et al. Ligand-based targeting of c-kit using engineered γδ T cells as a strategy for treating acute myeloid leukemia. Front. Immunol. 14, 1294555 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Becker, S. A. et al. Enhancing the effectiveness of γδ T cells by mRNA transfection of chimeric antigen receptors or bispecific T cell engagers. Mol. Ther. Oncolytics 29, 145–157 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hernandez-Lopez, P. et al. Dual targeting of cancer metabolome and stress antigens affects transcriptomic heterogeneity and efficacy of engineered T cells. Nat. Immunol. 25, 88–101 (2024). This paper describes the superior activity of T cells engineered with a Vγ9Vδ2TCR and a CCR in preclinical in vivo models for the treatment of both haematological malignancies and solid tumours.

    Article  CAS  PubMed  Google Scholar 

  180. Chabannon, C. et al. Celebrating the registration of 9.000 patients treated with CAR T cells in the EBMT registry: collection of real-world data in the context of hematopoietic cellular therapies. Best Pract. Res. Clin. Haematol. 37, 101557 (2024).

    Article  CAS  PubMed  Google Scholar 

  181. Peng, J. J., Wang, L., Li, Z., Ku, C. L. & Ho, P. C. Metabolic challenges and interventions in CAR T cell therapy. Sci. Immunol. 8, eabq3016 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Good, Z. et al. Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. Nat. Med. 28, 1860–1871 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Siddiqi, T. et al. CD19-directed CAR T-cell therapy for treatment of primary CNS lymphoma. Blood Adv. 5, 4059–4063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Straetemans, T. et al. Untouched GMP-ready purified engineered immune cells to treat cancer. Clin. Cancer Res. 21, 3957–3968 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. de Witte, M. et al. First in human clinical responses and persistence data on TEG001: a next generation of engineered Αβ T cells targeting AML and MM with a high affinity γ9δ2TCR. Blood 140, 12737–12739 (2022).

    Article  Google Scholar 

  187. Davies, D. M. et al. Engineering a dual specificity γδ T-cell receptor for cancer immunotherapy. Biology 13, 196 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Xu, Y. et al. A novel antibody-TCR (AbTCR) platform combines fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 4, 62 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Li, C. et al. Novel CD19-specific γ/δ TCR-T cells in relapsed or refractory diffuse large B-cell lymphoma. J. Hematol. Oncol. 16, 5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Dao, T. et al. A dual-receptor T-cell platform with Ab-TCR and costimulatory receptor achieves specificity and potency against AML. Blood 143, 507–521 (2024).

    Article  CAS  PubMed  Google Scholar 

  191. Liu, Y. et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci. Transl. Med. 13, eabb5191 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Mansilla-Soto, J. et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat. Med. 28, 345–352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mensurado, S., Blanco-Dominguez, R. & Silva-Santos, B. The emerging roles of γδ T cells in cancer immunotherapy. Nat. Rev. Clin. Oncol. 20, 178–191 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Riano, F. et al. Vγ9Vδ2 TCR-activation by phosphorylated antigens requires butyrophilin 3 A1 (BTN3A1) and additional genes on human chromosome 6. Eur. J. Immunol. 44, 2571–2576 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Braham, M. V. J. et al. Cellular immunotherapy on primary multiple myeloma expanded in a 3D bone marrow niche model. Oncoimmunology 7, e1434465 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Alieva, M. et al. BEHAV3D: a 3D live imaging platform for comprehensive analysis of engineered T cell behavior and tumor response. Nat. Protoc. 19, 2052–2084 (2024).

    Article  CAS  PubMed  Google Scholar 

  197. Dekkers, J. F. et al. Uncovering the mode of action of engineered T cells in patient cancer organoids. Nat. Biotechnol. 41, 60–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Johanna, I. et al. Basics of advanced therapy medicinal product development in academic pharma and the role of a GMP simulation unit. Immunooncol. Technol. 20, 100411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05369000 (2022).

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04887259 (2021).

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05983133 (2023).

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06372236 (2023).

  203. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06092047 (2023).

  204. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04735471 (2021).

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06480565 (2024).

  206. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06193486 (2024).

  207. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06150885 (2024).

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04107142 (2019).

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05302037 (2024).

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04702841 (2020).

  211. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06018363 (2023).

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06592092 (2024).

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06415487 (2024).

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05653271 (2023).

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06404281 (2024).

  216. CCMO. Safety of TEG001 in Patients with r/r AML, High-risk MDS or MM https://onderzoekmetmensen.nl/en/trial/25189 (2017).

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04014894 (2019).

  218. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04864054 (2022).

  219. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04502082 (2021).

  220. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04634357 (2022).

  221. Allison, T. J., Winter, C. C., Fournie, J. J., Bonneville, M. & Garboczi, D. N. Structure of a human γδ T-cell antigen receptor. Nature 411, 820–824 (2001).

    Article  CAS  PubMed  Google Scholar 

  222. Weng, R. R. et al. Epigenetic modulation of immune synaptic-cytoskeletal networks potentiates γδ T cell-mediated cytotoxicity in lung cancer. Nat. Commun. 12, 2163 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Legut, M., Cole, D. K. & Sewell, A. K. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell Mol. Immunol. 12, 656–668 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Dimova, T. et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc. Natl Acad. Sci. USA 112, E556–E565 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Perriman, L. et al. A three-stage developmental pathway for human Vγ9Vδ2 T cells within the postnatal thymus. Sci. Immunol. 8, eabo4365 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Papadopoulou, M. et al. TCR sequencing reveals the distinct development of fetal and adult human Vγ9Vδ2 T cells. J. Immunol. 203, 1468–1479 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Fichtner, A. S., Ravens, S. & Prinz, I. Human γδ TCR repertoires in health and disease. Cells 9, 800 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Tieppo, P. et al. The human fetal thymus generates invariant effector γδ T cells. J. Exp. Med. 217, jem.20190580 (2020).

    Article  PubMed  Google Scholar 

  229. Gray, J. I. et al. Human γδ T cells in diverse tissues exhibit site-specific maturation dynamics across the life span. Sci. Immunol. 9, eadn3954 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Pitard, V. et al. Long-term expansion of effector/memory Vδ2 γδ T cells is a specific blood signature of CMV infection. Blood 112, 1317–1324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Ravens, S. et al. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 18, 393–401 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by Dutch Cancer Society (KWF: 12586, 13043, 13493, 15614, 15570) and KIKA473 to J.K. National Growth Fund Oncode Accelerator (https://www.oncodeaccelerator.nl) provided support to J.K., Z.S., T.S. and D.X.B. S.M. is supported by the German Research Foundation (DFG) under Germany’s Excellence Strategy – EXC-2189 Project ID: 390939984 and under the Excellence Initiative of the German Federal and State Governments – EXC-294, and in part by the Ministry for Science, Research and Arts of the State of Baden-Württemberg. Further support is given by the DFG under FOR2799 (MI1942/3-1), SFB1479 (project ID: 441891347 - P15), SFB1160 (project ID: 256073931 - B01), and projects MI1942/4-1 (project ID: 501418856) and MI1942/5-1 (project ID: 501436442). S.M. is also supported by the Dutch Cancer Society (KWF project ID: 13043). T.S. is supported by grants provided by the Dutch Cancer Society (KWF: 12586 and 13876) and National Growth Fund RegMed XB pilot Factory UMCU Innovation Center of Advanced Therapies. D.X.B. is supported by a grant provided by the Dutch Cancer Society (KWF: 15570).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. D.X.B., T.S., S.M., L.L., C.R., Z.S. and J.K. contributed substantially to discussion of the content. All authors wrote the article. D.X.B., Z.S., S.M. and J.K. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jürgen Kuball.

Ethics declarations

Competing interests

J.K. was a shareholder of Gadeta and is a shareholder of Gadeta Founder BV. J.K., Z.S., L.L. and D.X.B. are inventors on patents with γδTCR-related topics. J.K., Z.S. and D.X.B. are inventors on patents with CD277-related topics. L.L. is on the SAB of MiNK Therapeutics, Faeth Therapeutics and Deciduous Therapeutics. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Michal Besser who co-reviewed with Ilan Bank, Mary Poupot and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Innovation Center for Advanced Therapies (ICAT): https://icat-utrecht.nl/en

Glossary

Activation-induced cell death

Apoptosis of T cells due to strong or prolonged activation of the T cell receptor.

Advanced therapy medicinal products

(ATMPs). Innovative medical therapies based on engineered genes, cells or tissue designed to treat or prevent disease.

Aminobisphosphonates

(NBPs). A nitrogen-containing class of drugs that inhibits the mevalonate pathway, leading to an accumulation of phosphoantigens in tumour cells.

Biomimetic models

Artificial systems or structures designed to imitate biological processes, functions or materials found in nature. These models are used in research and development to study complex biological phenomena, develop new technologies or create therapeutic solutions.

Bispecific T cell engagers

(TCEs). Engineered molecules designed to simultaneously bind to a specific protein on tumour cells and to another protein, normally CD3, on T cells. This dual binding directs the T cells to attack and destroy the cancer cells.

Chimeric antigen receptors

(CARs). Genetically engineered receptors that enhance the capacity of immune effector cells to recognize and kill specific cancer cells.

Clonal expansion

The rapid proliferation of genetically identical T cells from a single parental cell, enhancing the immune response to specific pathogens or abnormal cells.

Complementarity-determining region

(CDR). Specific portion of the variable regions of an antibody or T cell receptor that determines antigen-binding specificity.

CRISPR–Cas9

Genome-editing technology that uses a guide RNA to direct the Cas9 nuclease to specific DNA sequences creating double-strand breaks for precise gene modification.

Cryo-electron microscopy

Technique that captures high-resolution images of biological samples cooled at cryogenic temperature, preserving their native structure.

Cytokine release syndrome

Rapid release of cytokines by immune effector cells caused by immunotherapy treatment, leading to systemic inflammation.

Exhaustion

A dysfunctional state of immune cells caused by chronic exposure to antigen and characterized by increased inhibitory receptor expression and reduced effector function.

Fab

Antibody fragment consisting of variable heavy and first constant heavy domains paired with variable light and constant light domains that binds to antigens.

Functional avidity

The capability of a specific T cell receptor (TCR) to activate T cell functions, such as cytotoxicity, cytokine secretion and proliferation, as a function of ligand concentration. A TCR with high functional avidity is capable of activating T cells at low ligand concentrations.

Glutamine

Most abundant amino acid in the serum essential for T cell activation, proliferation, cytokine production and nucleotide synthesis.

Graft-versus-host

The reactivity of transplanted donor-derived immune cells to healthy cells of the recipient.

Graft-versus-leukaemia

The reactivity of transplanted donor-derived immune cells to leukaemia cells in the patient.

Immune effector cell-associated neurotoxicity syndrome

A common adverse event after immunotherapy affecting neurological functions, caused by inflammation in the central nervous system.

Immunoreceptor tyrosine-based activation motifs

(ITAMs). Highly conserved regions located in the cytoplasmic tail of immune receptors, crucial for conveying activation signals in immune cells.

Lipidome

The complete array of lipids within a biological system representing its metabolic state and function.

Mevalonate pathway

Essential metabolic pathway for the synthesis of important molecules like cholesterol, ubiquinone and dolichol. The enzymes of the mevalonate pathway are frequently overexpressed and highly active in cancer cells, leading to the promotion of tumour growth. One of the central metabolites in the mevalonate pathway is isopentenyl pyrophosphate, the key endogenous phosphoantigen required for Vγ9Vδ2T cell activation.

Nanoparticles

Ultra-small particles, ranging from 1 to 100 nm, characterized by unique physical and chemical properties.

Opsonins

Molecules that enhance the process of phagocytosis by tagging pathogens or cells for recognition by the immune system.

Phosphoantigens

(pAg). Metabolites containing a pyrophosphate group, such as isopentenyl pyrophosphate, dimethylallyl pyrophosphate and (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, and sensed by BTN2A1 and BTN3A, which subsequently induce Vγ9Vδ2T cell activation.

Post-marketing authorization studies

Also known as post-authorization safety studies; clinical studies carried out after a drug has received marketing authorization in order to acquire additional safety and/or efficacy data or to evaluate the effectiveness of risk management measures.

Purine synthesis

A biosynthesis pathway for purine molecules essential for the synthesis of adenine and adenosine monophosphate and guanine and guanosine monophosphate.

Pyroglutamate

A post-translational modification of an N-terminal glutamine of a protein, where the side chain of glutamine reacts with a free amino group, resulting in the cyclic amino acid pyroglutamate. Several enzymes can catalyse this reaction, for example, glutaminyl-peptide cyclotransferase-like protein in the Golgi apparatus and glutaminyl-peptide cyclotransferase in the extracellular space.

Shedding

Highly regulated proteolytic release of extracellular domains of membrane proteins from the cell surface into the surrounding environment.

Single-chain variable fragment

(ScFv). Fusion protein composed of the variable heavy and light chains of immunoglobulins connected by a short linker.

Single nucleotide polymorphisms

Genetic variation involving a change in a single nucleotide in the DNA sequence, potentially influencing phenotypic characteristics or disease susceptibility.

Superantigen

Superantigens are a class of pathogen-derived proteins that bind to TCRs outside of their conventional recognition sites, such as the CDRs, triggering a polyclonal T cell response.

T cell repertoires

Diverse and unique arrays of TCRs present in an individual, enabling the detection of a broad range of antigens.

TCR constant domains

Extracellular membrane-proximal domains of the TCR not involved in antigen recognition. αβTCR constant domains interact with the extracellular domains of CD3, whilst γδTCR constant domains have no interaction with the extracellular domains of CD3.

TCR variable domains

Extracellular membrane distal domains of the TCR important for antigen binding and specificity through their highly variable CDR loops.

Tonic signalling

A sustained, non-specific activation of T cells that occurs independently of ligand binding.

Tumour organoids

3D cell cultures derived from patient tumour samples that recapitulate the complexity of the structure and function of the original tumour.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beringer, D.X., Straetemans, T., Minguet, S. et al. Disrupting the balance between activating and inhibitory receptors of γδT cells for effective cancer immunotherapy. Nat Rev Cancer 25, 590–612 (2025). https://doi.org/10.1038/s41568-025-00830-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00830-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer