Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting macropinocytosis for cancer therapy

Abstract

Macropinocytosis is a nutrient-scavenging process that enables cells to engulf large volumes of extracellular fluid and solutes through dynamic plasma membrane ruffling. In cancer, this evolutionarily conserved process is frequently hijacked to meet the heightened metabolic demands of malignant cells, particularly under conditions of nutrient deprivation. Through macropinocytosis, tumour cells internalize diverse extracellular components — including proteins, nucleotides, lipids, ions and debris from dead cells — which are subsequently degraded in lysosomes and recycled to support biosynthesis and energy production. This process is tightly regulated by oncogenic signalling pathways and cues from the tumour microenvironment, including those associated with oncogene activation, loss of tumour suppressors and hypoxia. Beyond facilitating tumour growth and metabolic adaptation, macropinocytosis is implicated in resistance to chemotherapy, radiotherapy, targeted therapy and immunotherapy. When excessively activated, it can also lead to methuosis, a form of non-apoptotic cell death characterized by macropinosome overload. This Review outlines the molecular mechanisms and functional consequences of macropinocytosis in cancer, highlighting its dual potential as a metabolic vulnerability and a route for therapeutic delivery. Continued investigation into its regulation, context-specific roles and pharmacological modulation may uncover new opportunities for combination therapies and precision cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key processes and regulatory pathways of macropinocytosis.
Fig. 2: Key oncogenic drivers and stress-responsive pathways that regulate macropinocytosis.
Fig. 3: Macropinocytosis as a mechanism of resistance to targeted therapy.

Similar content being viewed by others

References

  1. Amstutz, B. et al. Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J. 27, 956–969 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Francis, C. L., Ryan, T. A., Jones, B. D., Smith, S. J. & Falkow, S. Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364, 639–642 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. Norbury, C. C., Hewlett, L. J., Prescott, A. R., Shastri, N. & Watts, C. Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity 3, 783–791 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. Schmees, C. et al. Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V. Mol. Biol. Cell 23, 2571–2582 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013). This study shows that macropinocytosis contributes to the scavenging of extracellular nutrients in mutant RAS-driven cancers.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kim, S. M. et al. PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Discov. 8, 866–883 (2018). This study demonstrates that loss of PTEN and AMPK activation induces macropinocytosis in prostate cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yao, W. et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature 568, 410–414 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Racoosin, E. L. & Swanson, J. A. M-CSF-induced macropinocytosis increases solute endocytosis but not receptor-mediated endocytosis in mouse macrophages. J. Cell Sci. 102, 867–880 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. Bar-Sagi, D. & Feramisco, J. R. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233, 1061–1068 (1986). This study demonstrates that HRAS protein injection induces macropinocytosis in fibroblasts.

    Article  PubMed  CAS  Google Scholar 

  11. Li, C. et al. AGER-dependent macropinocytosis drives resistance to KRAS-G12D-targeted therapy in advanced pancreatic cancer. Sci. Transl. Med. 17, eadp4986 (2025). This study demonstrates that AGER-dependent macropinocytosis contributes to drug resistance during RAS-targeted therapy.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, Y. et al. Inhibition of tumor cell macropinocytosis driver DHODH reverses immunosuppression and overcomes anti-PD1 resistance. Immunity 58, 2456–2471 (2025).

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, Y. et al. Macropinocytosis maintains CAF subtype identity under metabolic stress in pancreatic cancer. Cancer Cell 43, 1677–1696 (2025).

    Article  PubMed  CAS  Google Scholar 

  14. Puccini, J., Badgley, M. A. & Bar-Sagi, D. Exploiting cancer’s drinking problem: regulation and therapeutic potential of macropinocytosis. Trends Cancer 8, 54–64 (2022).

    Article  PubMed  CAS  Google Scholar 

  15. Zhang, Y. & Commisso, C. Macropinocytosis in cancer: a complex signaling network. Trends Cancer 5, 332–334 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lambies, G. et al. Cell polarity proteins promote macropinocytosis in response to metabolic stress. Nat. Commun. 15, 10541 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bryant, D. M. et al. EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin. J. Cell Sci. 120, 1818–1828 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Lee, S. W. et al. EGFR–Pak signaling selectively regulates glutamine deprivation-induced macropinocytosis. Dev. Cell 50, 381–392.e5 (2019). This study demonstrates that the EGFR–PAK pathway promotes macropinocytosis in response to glutamine starvation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhang, Y. F. et al. A low amino acid environment promotes cell macropinocytosis through the YY1–FGD6 axis in Ras-mutant pancreatic ductal adenocarcinoma. Oncogene 41, 1203–1215 (2022). This study demonstrates that CDC42 promotes macropinocytosis in mutant RAS-driven cancers.

    Article  PubMed  CAS  Google Scholar 

  20. Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wahi, K. et al. Macropinocytosis mediates resistance to loss of glutamine transport in triple-negative breast cancer. EMBO J. 43, 5857–5882 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hodakoski, C. et al. Rac-mediated macropinocytosis of extracellular protein promotes glucose independence in non-small cell lung cancer. Cancers 11, 37 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. Dharmawardhane, S. et al. Regulation of macropinocytosis by p21-activated kinase-1. Mol. Biol. Cell 11, 3341–3352 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chen, B. et al. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. eLife 6, e29795 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mettlen, M. et al. Src triggers circular ruffling and macropinocytosis at the apical surface of polarized MDCK cells. Traffic 7, 589–603 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. Innocenti, M. et al. Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nat. Cell Biol. 7, 969–976 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. Singla, B., Lin, H. P., Ghoshal, P., Cherian-Shaw, M. & Csanyi, G. PKCδ stimulates macropinocytosis via activation of SSH1–cofilin pathway. Cell Signal. 53, 111–121 (2019).

    Article  PubMed  CAS  Google Scholar 

  29. Campa, C. C., Ciraolo, E., Ghigo, A., Germena, G. & Hirsch, E. Crossroads of PI3K and Rac pathways. Small GTPases 6, 71–80 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liao, Y. N. et al. Progesterone receptor potentiates macropinocytosis through CDC42 in pancreatic ductal adenocarcinoma. Oncogenesis 13, 10 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol. 1, 253–259 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. Hewlett, L. J., Prescott, A. R. & Watts, C. The coated pit and macropinocytic pathways serve distinct endosome populations. J. Cell Biol. 124, 689–703 (1994).

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, B. et al. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. Maxson, M. E., Sarantis, H., Volchuk, A., Brumell, J. H. & Grinstein, S. Rab5 regulates macropinocytosis by recruiting the inositol 5-phosphatases OCRL and Inpp5b that hydrolyse PtdIns(4,5)P2. J. Cell Sci. 134, jcs252411 (2021).

    Article  PubMed  CAS  Google Scholar 

  35. Hamasaki, M., Araki, N. & Hatae, T. Association of early endosomal autoantigen 1 with macropinocytosis in EGF-stimulated A431 cells. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 277, 298–306 (2004).

    Article  PubMed  Google Scholar 

  36. Balaji, K. et al. RIN1 orchestrates the activation of RAB5 GTPases and ABL tyrosine kinases to determine the fate of EGFR. J. Cell Sci. 125, 5887–5896 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tall, G. G., Barbieri, M. A., Stahl, P. D. & Horazdovsky, B. F. Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev. Cell 1, 73–82 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. Feliciano, W. D., Yoshida, S., Straight, S. W. & Swanson, J. A. Coordination of the Rab5 cycle on macropinosomes. Traffic 12, 1911–1922 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jayashankar, V. & Edinger, A. L. Macropinocytosis confers resistance to therapies targeting cancer anabolism. Nat. Commun. 11, 1121 (2020). This study demonstrates that macropinocytosis mediates chemotherapy and radiation resistance in cancer cells.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Salloum, G. et al. PI3Kβ is selectively required for growth factor-stimulated macropinocytosis. J. Cell Sci. 132, jcs231639 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Amyere, M. et al. Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol. Biol. Cell 11, 3453–3467 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tisdale, E. J., Shisheva, A. & Artalejo, C. R. Overexpression of atypical protein kinase C in HeLa cells facilitates macropinocytosis via Src activation. Cell Signal. 26, 1235–1242 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Orgaz, J. L. et al. Myosin II reactivation and cytoskeletal remodeling as a hallmark and a vulnerability in melanoma therapy resistance. Cancer Cell 37, 85–103.e9 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Brzeska, H., Koech, H., Pridham, K. J., Korn, E. D. & Titus, M. A. Selective localization of myosin-I proteins in macropinosomes and actin waves. Cytoskeleton 73, 68–82 (2016).

    Article  PubMed  CAS  Google Scholar 

  45. Schink, K. O. et al. The phosphoinositide coincidence detector Phafin2 promotes macropinocytosis by coordinating actin organisation at forming macropinosomes. Nat. Commun. 12, 6577 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Williamson, C. D. & Donaldson, J. G. Arf6, JIP3, and dynein shape and mediate macropinocytosis. Mol. Biol. Cell 30, 1477–1489 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Le, A. H. et al. CYRI-A limits invasive migration through macropinosome formation and integrin uptake regulation. J. Cell Biol. 220, e202012114 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Nikolaou, S. et al. CYRI-B-mediated macropinocytosis drives metastasis via lysophosphatidic acid receptor uptake. eLife 13, e83712 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Puccini, J., Wei, J., Tong, L. & Bar-Sagi, D. Cytoskeletal association of ATP citrate lyase controls the mechanodynamics of macropinocytosis. Proc. Natl Acad. Sci. USA 120, e2213272120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Freeman, S. A. et al. Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science 367, 301–305 (2020).

    Article  PubMed  CAS  Google Scholar 

  51. Wang, X. et al. TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151, 372–383 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zeziulia, M., Blin, S., Schmitt, F. W., Lehmann, M. & Jentsch, T. J. Proton-gated anion transport governs macropinosome shrinkage. Nat. Cell Biol. 24, 885–895 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Krishna, S. et al. PIKfyve regulates vacuole maturation and nutrient recovery following engulfment. Dev. Cell 38, 536–547 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kerr, M. C. et al. Visualisation of macropinosome maturation by the recruitment of sorting nexins. J. Cell Sci. 119, 3967–3980 (2006).

    Article  PubMed  CAS  Google Scholar 

  55. Lim, J. P., Wang, J. T., Kerr, M. C., Teasdale, R. D. & Gleeson, P. A. A role for SNX5 in the regulation of macropinocytosis. BMC Cell Biol. 9, 58 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Alonso-Curbelo, D. et al. RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development. Oncotarget 6, 11848–11862 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Swanson, J. A. & Araki, N. Roles for 3′ phosphoinositides in macropinocytosis. Subcell. Biochem. 98, 119–141 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J. & van Deurs, B. Rab7: a key to lysosome biogenesis. Mol. Biol. Cell 11, 467–480 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  PubMed  CAS  Google Scholar 

  60. Dolat, L. & Spiliotis, E. T. Septins promote macropinosome maturation and traffic to the lysosome by facilitating membrane fusion. J. Cell Biol. 214, 517–527 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Xu, D. et al. Repression of Septin9 and Septin2 suppresses tumor growth of human glioblastoma cells. Cell Death Dis. 9, 514 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jain, A. et al. Leucine aminopeptidase LyLAP enables lysosomal degradation of membrane proteins. Science 387, eadq8331 (2025). This study demonstrates that lysosomal leucine aminopeptidase is the protease responsible for degrading hydrophobic transmembrane domains.

    Article  PubMed  CAS  Google Scholar 

  63. Buckley, C. M. et al. WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proc. Natl Acad. Sci. USA 113, E5906–E5915 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bienvenu, A. et al. The multifunction coxiella effector vice stimulates macropinocytosis and interferes with the ESCRT machinery. Proc. Natl Acad. Sci. USA 121, e2315481121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Maltese, W. A. & Overmeyer, J. H. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. Am. J. Pathol. 184, 1630–1642 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Qian, Y. et al. Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells. Cancer Lett. 351, 242–251 (2014).

    Article  PubMed  CAS  Google Scholar 

  67. Cao, Y. et al. Extracellular and macropinocytosis internalized ATP work together to induce epithelial–mesenchymal transition and other early metastatic activities in lung cancer. Cancer Cell Int. 19, 254 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Olivares, O. et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 8, 16031 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Nakase, I., Kobayashi, N. B., Takatani-Nakase, T. & Yoshida, T. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci. Rep. 5, 10300 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Zhao, H. et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 5, e10250 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Skorda, A. et al. Activation of invasion by oncogenic reprogramming of cholesterol metabolism via increased NPC1 expression and macropinocytosis. Oncogene 42, 2495–2506 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Aubert, L. et al. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat. Commun. 11, 3701 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. King, B., Araki, J., Palm, W. & Thompson, C. B. Yap/Taz promote the scavenging of extracellular nutrients through macropinocytosis. Genes Dev. 34, 1345–1358 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Tang, D., Kroemer, G. & Kang, R. Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Mol. Cancer 20, 128 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mukhopadhyay, S., Vander Heiden, M. G. & McCormick, F. The metabolic landscape of RAS-driven cancers from biology to therapy. Nat. Cancer 2, 271–283 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Davidson, S. M. et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat. Med. 23, 235–241 (2017).

    Article  PubMed  CAS  Google Scholar 

  77. Liu, H. et al. KRAS-enhanced macropinocytosis and reduced FcRn-mediated recycling sensitize pancreatic cancer to albumin-conjugated drugs. J. Control. Rel. 296, 40–53 (2019).

    Article  CAS  Google Scholar 

  78. Seguin, L. et al. An integrin β3–KRAS–RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat. Cell Biol. 16, 457–468 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Seguin, L. et al. Galectin-3, a druggable vulnerability for KRAS-addicted cancers. Cancer Discov. 7, 1464–1479 (2017). This study demonstrates that LGALS3 can induce macropinocytosis in RAS-mutant cancer cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Palm, W. et al. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162, 259–270 (2015). This study demonstrates that mTORC1 inhibits macropinocytosis through a feedback mechanism.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Nofal, M., Zhang, K., Han, S. & Rabinowitz, J. D. mTOR inhibition restores amino acid balance in cells dependent on catabolism of extracellular protein. Mol. Cell 67, 936–946.e5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Rodriguez-Viciana, P. et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89, 457–467 (1997).

    Article  PubMed  CAS  Google Scholar 

  83. Meng, D. et al. SNAT7 regulates mTORC1 via macropinocytosis. Proc. Natl Acad. Sci. USA 119, e2123261119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Chen, F., Kang, R., Liu, J. & Tang, D. The V-ATPases in cancer and cell death. Cancer Gene Ther. 29, 1529–1541 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ramirez, C., Hauser, A. D., Vucic, E. A. & Bar-Sagi, D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature 576, 477–481 (2019). This study demonstrates that plasma membrane V-ATPase is required for macropinocytosis in RAS-mutant cancer cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Zhou, Z. et al. Acetyl-coenzyme A synthetase 2 potentiates macropinocytosis and muscle wasting through metabolic reprogramming in pancreatic cancer. Gastroenterology 163, 1281–1293.e1 (2022).

    Article  PubMed  CAS  Google Scholar 

  87. Hobbs, G. A. et al. Atypical KRASG12R mutant is impaired in PI3K signaling and macropinocytosis in pancreatic cancer. Cancer Discov. 10, 104–123 (2020).

    Article  PubMed  CAS  Google Scholar 

  88. Garg, B. et al. MICAL2 promotes pancreatic cancer growth and metastasis. Cancer Res. 85, 1049–1063 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Zhang, Y. et al. Macropinocytosis in cancer-associated fibroblasts is dependent on CaMKK2/ARHGEF2 signaling and functions to support tumor and stromal cell fitness. Cancer Discov. 11, 1808–1825 (2021). This study demonstrates that macropinocytosis mediates nutrient transfer between CAFs and PDAC cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Alvarez-Garcia, V., Tawil, Y., Wise, H. M. & Leslie, N. R. Mechanisms of PTEN loss in cancer: it’s all about diversity. Semin. Cancer Biol. 59, 66–79 (2019).

    Article  PubMed  CAS  Google Scholar 

  91. Kim, J. et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Mihaylova, M. M. & Shaw, R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Mense, S. M. et al. PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion. Sci. Signal. 8, ra32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Voloshanenko, O. et al. Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat. Commun. 4, 2610 (2013).

    Article  PubMed  Google Scholar 

  95. Wu, X., Que, H., Li, Q. & Wei, X. Wnt/β-catenin mediated signaling pathways in cancer: recent advances, and applications in cancer therapy. Mol. Cancer 24, 171 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Albrecht, L. V. et al. GSK3 inhibits macropinocytosis and lysosomal activity through the Wnt destruction complex machinery. Cell Rep. 32, 107973 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Tejeda-Munoz, N. et al. The PMA phorbol ester tumor promoter increases canonical Wnt signaling via macropinocytosis. eLife 12, RP89141 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Tejeda-Munoz, N., Albrecht, L. V., Bui, M. H. & De Robertis, E. M. Wnt canonical pathway activates macropinocytosis and lysosomal degradation of extracellular proteins. Proc. Natl Acad. Sci. USA 116, 10402–10411 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Redelman-Sidi, G. et al. The canonical Wnt pathway drives macropinocytosis in cancer. Cancer Res. 78, 4658–4670 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Malliri, A. et al. The rac activator Tiam1 is a Wnt-responsive gene that modifies intestinal tumor development. J. Biol. Chem. 281, 543–548 (2006).

    Article  PubMed  CAS  Google Scholar 

  101. Fu, M. et al. The Hippo signalling pathway and its implications in human health and diseases. Signal. Transduct. Target. Ther. 7, 376 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zdzalik-Bielecka, D. et al. The GAS6–AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc. Natl Acad. Sci. USA 118, e2024596118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zeng, J., Li, M., Shi, H. & Guo, J. Upregulation of FGD6 predicts poor prognosis in gastric cancer. Front. Med. 8, 672595 (2021).

    Article  Google Scholar 

  104. Goyette, M. A. & Cote, J. F. AXL receptor tyrosine kinase as a promising therapeutic target directing multiple aspects of cancer progression and metastasis. Cancers 14, 466 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Zhang, M. S. et al. Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nat. Commun. 13, 954 (2022). This study demonstrates that hypoxia induces macropinocytosis in liver cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Blume, J. J., Halbach, A., Behrendt, D., Paulsson, M. & Plomann, M. EHD proteins are associated with tubular and vesicular compartments and interact with specific phospholipids. Exp. Cell Res. 313, 219–231 (2007).

    Article  PubMed  CAS  Google Scholar 

  107. Garcia-Bermudez, J. et al. Adaptive stimulation of macropinocytosis overcomes aspartate limitation in cancer cells under hypoxia. Nat. Metab. 4, 724–738 (2022). This study demonstrates that hypoxia induces macropinocytosis in PDAC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Li, N. et al. Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice. J. Clin. Invest. 123, 2231–2243 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Todoric, J. et al. Stress-activated NRF2-MDM2 cascade controls neoplastic progression in pancreas. Cancer Cell 32, 824–839.e8 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Su, H. et al. Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis. Cancer Cell 39, 678–693.e11 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Hosogi, S. et al. An inhibitor of Na+/H+ exchanger (NHE), ethyl-isopropyl amiloride (EIPA), diminishes proliferation of MKN28 human gastric cancer cells by decreasing the cytosolic Cl concentration via DIDS-sensitive pathways. Cell Physiol. Biochem. 30, 1241–1253 (2012).

    Article  PubMed  CAS  Google Scholar 

  113. Cerrato, G. et al. AI-based classification of anticancer drugs reveals nucleolar condensation as a predictor of immunogenicity. Mol. Cancer 23, 275 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Huang, Z. et al. ATM inhibition drives metabolic adaptation via induction of macropinocytosis. J. Cell Biol. 222, e202007026 (2023).

    Article  PubMed  CAS  Google Scholar 

  115. Xia, H. et al. Inhibition of macropinocytosis enhances the sensitivity of osteosarcoma cells to benzethonium chloride. Cancers 15, 961 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Cullis, J. et al. Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol. Res. 5, 182–190 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Redelman-Sidi, G., Iyer, G., Solit, D. B. & Glickman, M. S. Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells. Cancer Res. 73, 1156–1167 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    Article  PubMed  CAS  Google Scholar 

  119. Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    Article  PubMed  CAS  Google Scholar 

  120. Nazio, F. et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 406–416 (2013).

    Article  PubMed  CAS  Google Scholar 

  121. Han, L. et al. Macroautophagy/autophagy promotes resistance to KRASG12D-targeted therapy through glutathione synthesis. Cancer Lett. 604, 217258 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Song, X. et al. SRC kinase drives multidrug resistance induced by KRAS-G12C inhibition. Sci. Adv. 10, eadq4274 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Yanada, H. et al. Sotorasib resistance in KRAS G12C-mutant invasive mucinous adenocarcinoma with implications for VEGF-A. NPJ Precis. Oncol. 9, 154 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Mohanty, A. et al. Acquired resistance to KRAS G12C small-molecule inhibitors via genetic/nongenetic mechanisms in lung cancer. Sci. Adv. 9, eade3816 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Yaeger, R. & Solit, D. B. Overcoming adaptive resistance to KRAS inhibitors through vertical pathway targeting. Clin. Cancer Res. 26, 1538–1540 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Chen, R. et al. DAMPs in the immunogenicity of cell death. Mol. Cell 85, 3874–3889 (2025).

    Article  PubMed  CAS  Google Scholar 

  127. Kang, R. et al. The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia. Proc. Natl Acad. Sci. USA 109, 7031–7036 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kang, R. et al. RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer. Cell Death Dis. 5, e1480 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Li, R. et al. Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. Nat. Nanotechnol. 16, 830–839 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Hu, H. et al. Thyroid cancers exhibit oncogene-enhanced macropinocytosis that is restrained by IGF1R and promote albumin–drug conjugate response. Clin. Cancer Res. 29, 3457–3470 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Desai, A. S., Hunter, M. R. & Kapustin, A. N. Using macropinocytosis for intracellular delivery of therapeutic nucleic acids to tumour cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180156 (2019).

    Article  PubMed  CAS  Google Scholar 

  132. Bern, M., Sand, K. M., Nilsen, J., Sandlie, I. & Andersen, J. T. The role of albumin receptors in regulation of albumin homeostasis: implications for drug delivery. J. Control. Rel. 211, 144–162 (2015).

    Article  CAS  Google Scholar 

  133. Redka, D. S., Gutschow, M., Grinstein, S. & Canton, J. Differential ability of proinflammatory and anti-inflammatory macrophages to perform macropinocytosis. Mol. Biol. Cell 29, 53–65 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Charpentier, J. C. et al. Macropinocytosis drives T cell growth by sustaining the activation of mTORC1. Nat. Commun. 11, 180 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Chi, S. et al. Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene 18, 2281–2290 (1999).

    Article  PubMed  CAS  Google Scholar 

  139. Mao, Z. & Chai, G. Oral delivery of MOMIPP lipid nanoparticles for methuosis-induced cancer chemotherapy. Nanoscale 17, 4082–4098 (2025).

    Article  PubMed  CAS  Google Scholar 

  140. Chen, Y. et al. Discovery of potent and selective phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) inhibitors as methuosis inducers. J. Med. Chem. 67, 165–179 (2024).

    Article  PubMed  CAS  Google Scholar 

  141. Chen, X. et al. International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy 20, 1213–1246 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lim, R. M. et al. CARMIL1-AA selectively inhibits macropinocytosis while sparing autophagy. Mol. Biol. Cell 36, ar4 (2025).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all of the pioneers in the field and their colleagues who have contributed to advancing the understanding of macropinocytosis. They apologize to those whose work could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Daolin Tang, Jiayi Wang, Guido Kroemer or Rui Kang.

Ethics declarations

Competing interests

G.K. has held research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Osasuna Therapeutics, Samsara Therapeutics, Sanofi, Sutro, Tollys and Vascage; is on the Board of Directors of the Bristol Myers Squibb Foundation France; is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio; is on the scientific advisory boards of Hevolution, Institut Servier, Longevity Vision Funds and Rejuveron Life Sciences/Centenara Labs AG; and is the inventor of patents covering therapeutic targeting of ageing, cancer, cystic fibrosis and metabolic disorders (among these patents, ‘Methods for weight reduction’ (US11905330B1) is relevant to this study). G.K.’s brother, R. Kroemer, was an employee of Sanofi and now consults for Boehringer-Ingelheim. G.K.’s wife, L. Zitvogel, has held research contracts with Glaxo Smyth Kline, Incyte, Lytix, Kaleido, Innovate Pharma, Daiichi Sankyo, Pilege, Merus, Transgene, 9m, Tusk and Roche; was on the on the Board of Directors of Transgene; is a co-founder of everImmune; and holds patents covering the treatment of cancer and the therapeutic manipulation of the microbiota. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Joel Swanson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Actin polymerization

The dynamic assembly of actin filaments that drive membrane protrusions, including ruffles and lamellipodia, that is essential for processes such as macropinocytosis, migration and intracellular trafficking.

Anchorage-independent growth

The ability of cells to proliferate without attachment to the extracellular matrix, often associated with tumorigenicity and supported by metabolic scavenging pathways.

Antigen presentation

The process by which antigen-presenting cells display processed peptide fragments on major histocompatibility complex (MHC) molecules to T cells, linking innate and adaptive immunity.

Autolysosomes

Vesicular structures formed from the fusion of an autophagosome with a lysosome, where enzymatic degradation of the sequestered material occurs.

Autophagosomes

Double-membrane vesicles that sequester cellular cargo for delivery to the lysosome during macroautophagy.

Autophagy

A catabolic process that delivers cytoplasmic components, including damaged organelles and macromolecules, to lysosomes for degradation and nutrient recycling.

Circular dorsal ruffle

A transient, ring-like membrane structure formed on the dorsal surface of cells that can function as an entry site for macropinosomes.

DAMPs

(Damage-associated molecular patterns). Endogenous molecules released from stressed or dying cells that activate immune responses by engaging pattern recognition receptors.

Endosomes

Membrane-bound intracellular vesicles that sort internalized cargo from the plasma membrane and direct it towards recycling, degradation or other trafficking routes.

ESCRT

(Endosomal sorting complex required for transport). A group of protein complexes involved in membrane remodelling events, such as multivesicular body formation, cytokinetic abscission and membrane repair.

Filamentous scaffolds

Cytoskeletal structures, primarily composed of actin or microtubules, that provide mechanical support and spatial organization for membrane trafficking and signalling processes.

Fluid-phase uptake

A non-selective internalization mechanism by which cells ingest solutes and nutrients dissolved in extracellular fluid.

Lysosomes

Acidic organelles containing hydrolytic enzymes that degrade macromolecules delivered by endocytosis, phagocytosis or autophagy to facilitate cellular recycling.

Macropinocytosis

An actin-driven, clathrin-independent endocytic process by which cells engulf extracellular fluid and solutes into large vesicles called macropinosomes.

Macropinolysosomes

Specialized intracellular vesicles formed by the fusion of macropinosomes and lysosomes.

Macropinosomes

Large, irregularly shaped intracellular vesicles formed by plasma membrane ruffling and closure, facilitating bulk nutrient uptake.

Membrane ruffling

Dynamic, actin-rich protrusions of the plasma membrane that initiate macropinocytosis in response to external stimuli such as growth factors or oncogenic signals.

Methuosis

A caspase-independent, non-apoptotic form of cell death caused by uncontrolled accumulation of large, fluid-filled macropinosomes and cytoplasmic vacuoles.

Necrocytosis

A macropinocytosis-mediated process to engulf necrotic debris, facilitating the acquisition of carbohydrates and fatty acids for energy production.

Nutrient scavenging

A metabolic adaptation that enables cancer cells to acquire essential nutrients from the extracellular environment under nutrient-deprived conditions.

Trophic support

The supply of essential growth factors, nutrients or metabolic signals that sustain cell viability, proliferation and differentiation.

WAVE regulatory complexes

(WASP family verprolin-homologous protein regulatory complexes). Multiprotein assemblies that activate the actin-related protein 2/3 (ARP2/3) complex to initiate branched actin polymerization, facilitating membrane ruffling and lamellipodia formation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Wang, J., Kroemer, G. et al. Targeting macropinocytosis for cancer therapy. Nat Rev Cancer (2025). https://doi.org/10.1038/s41568-025-00892-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41568-025-00892-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer