Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Opportunities and challenges of targeting cGAS–STING in cancer

Abstract

The cyclic guanosine monophosphate–adenosine monophosphate synthase (cGAS)–stimulator of interferon genes (STING) pathway has a crucial role in detecting tumour-derived DNA, whether the pathway is generated spontaneously or induced therapeutically. Activation of the cGAS–STING pathway triggers type I interferon signalling and pro-inflammatory responses in both tumour and immune cells, establishing a delicate balance between pathological inflammation and protective immune responses. Although preclinical studies have highlighted the promise of targeting the cGAS–STING pathway to enhance antitumour immunotherapy, clinical results have fallen short of expectations. In this Review, we outline key advances in understanding the tumour-promoting and tumour-suppressive effects mediated by the cGAS–STING pathway and discuss opportunities and challenges for its integration into future cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sources of DNA ligands that activate the cGAS–STING pathway in cancer.
Fig. 2: Dual roles of cGAS–STING pathway activation in cancer cells at different stages of tumour progression.
Fig. 3: The cGAS–STING pathway in immune cells.

Similar content being viewed by others

References

  1. Matthews, H. K., Bertoli, C. & de Bruin, R. A. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 23, 74–88 (2022).

    Article  PubMed  CAS  Google Scholar 

  2. Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Shang, G., Zhang, C., Chen, Z. J., Bai, X. C. & Zhang, X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature 567, 389–393 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ergun, S. L., Fernandez, D., Weiss, T. M. & Li, L. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell 178, 290–301.e210 (2019).

    Article  PubMed  CAS  Google Scholar 

  6. Dobbs, N. et al. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18, 157–168 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Dong, M. & Fitzgerald, K. A. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat. Immunol. 25, 2001–2014 (2024).

    Article  PubMed  CAS  Google Scholar 

  8. Zhu, H. et al. Targeting DNA damage response pathways in tumor drug resistance: mechanisms, clinical implications, and future directions. Drug Resist. Updates 83, 101287 (2025).

    Article  CAS  Google Scholar 

  9. Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Vilenchik, M. M. & Knudson, A. G. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc. Natl Acad. Sci. USA 100, 12871–12876 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Goldstein, M. & Kastan, M. B. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 66, 129–143 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Konno, H. et al. Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING. Cell Rep. 23, 1112–1123 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Li, J. et al. Non-cell-autonomous cancer progression from chromosomal instability. Nature 620, 1080–1088 (2023). This study shows that CIN-mediated engagement of the cGAS–STING pathway promotes metastasis in a TME-dependent manner and that pharmacological inhibition of STING suppresses metastasis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hong, C. et al. cGAS–STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607, 366–373 (2022). This study demonstrates that cancer cells produce the interleukin IL-6 via CIN-driven activation of the cGAS–STING noncanonical NF-κB pathway to promote their own proliferation.

    Article  PubMed  CAS  Google Scholar 

  21. Mitelman, F. Mitelman Database: chromosome aberrations and gene fusions in cancer. Mitelman Database https://mitelmandatabase.isb-cgc.org/ (2025).

  22. Cimini, D. Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim. Biophys. Acta Rev. Cancer 1786, 32–40 (2008).

    Article  CAS  Google Scholar 

  23. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 38, 1043–1048 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Takaki, T., Millar, R., Hiley, C. T. & Boulton, S. J. Micronuclei induced by radiation, replication stress, or chromosome segregation errors do not activate cGAS–STING. Mol. Cell 84, 2203–2213.e2205 (2024).

    Article  PubMed  CAS  Google Scholar 

  25. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Agustinus, A. S. et al. Epigenetic dysregulation from chromosomal transit in micronuclei. Nature 619, 176–183 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gaillard, H., García-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–289 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. Hanada, K. et al. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat. Struct. Mol. Biol. 14, 1096–1104 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. Osman, F. & Whitby, M. C. Exploring the roles of Mus81-Eme1/Mms4 at perturbed replication forks. DNA Repair 6, 1004–1017 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. Ho, S. S. et al. The DNA structure-specific endonuclease MUS81 mediates DNA sensor STING-dependent host rejection of prostate cancer cells. Immunity 44, 1177–1189 (2016).

    Article  PubMed  CAS  Google Scholar 

  31. Xiao, Y. et al. Comprehensive analysis of DNA damage repair deficiency in 10,284 pan-cancer study. Ann. Transl. Med. 9, 1661 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Härtlova, A. et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015).

    Article  PubMed  Google Scholar 

  33. Lopez-Pelaez, M. et al. Targeting DNA damage response components induces enhanced STING-dependent type-I IFN response in ATM deficient cancer cells and drives dendritic cell activation. Oncoimmunology 11, 2117321 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lu, C. et al. DNA sensing in mismatch repair-deficient tumor cells is essential for anti-tumor immunity. Cancer Cell 39, 96–108.e6 (2021).

    Article  PubMed  Google Scholar 

  35. Guan, J. et al. MLH1 deficiency-triggered DNA hyperexcision by exonuclease 1 activates the cGAS-STING pathway. Cancer Cell 39, 109–121.e105 (2021). This study, together with Lu et al. (2021), not only reveals the essential role of the tumour-intrinsic cGAS–STING pathway in establishing a ‘hot’ TME in MMR-deficient cancers and enhancing ICB efficiency, but also provides the molecular mechanism for how deficiency of MLH1 generates cytosolic DNA.

    Article  PubMed  CAS  Google Scholar 

  36. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3, 1271–1274 (1997).

    Article  PubMed  CAS  Google Scholar 

  38. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  PubMed  CAS  Google Scholar 

  39. Henson, J. et al. A robust assay for alternative lengthening of telomeres (ALT) in tumors demonstrates the significance of ALT in sarcomas and astrocytomas. Clin. Cancer Res. 11, 217–225 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. Chen, Y.-A. et al. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS–STING DNA sensing pathway. Nat. Struct. Mol. Biol. 24, 1124–1131 (2017).

    Article  PubMed  CAS  Google Scholar 

  41. Mender, I. et al. Telomere stress potentiates STING-dependent anti-tumor immunity. Cancer Cell 38, 400–411.e406 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hung, K. L. et al. Coordinated inheritance of extrachromosomal DNAs in cancer cells. Nature 635, 201–209 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang, Y. et al. eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature 599, 308–314 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Petermann, E., Lan, L. & Zou, L. Sources, resolution and physiological relevance of R-loops and RNA–DNA hybrids. Nat. Rev. Mol. Cell Biol. 23, 521–540 (2022).

    Article  PubMed  CAS  Google Scholar 

  46. Crossley, M. P. et al. R-loop-derived cytoplasmic RNA–DNA hybrids activate an immune response. Nature 613, 187–194 (2023).

    Article  PubMed  CAS  Google Scholar 

  47. Maxwell, M. B. et al. ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity. Cell 187, 3390–3408.e19 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gulen, M. F. et al. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature 620, 374–380 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014). This study, together with Rongvaux et al. (2014), shows that apoptosis silences immune responses by degrading mitochondrial DNA, which otherwise could trigger the cGAS–STING–IFN signal.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Saha, S. et al. Serine depletion promotes antitumor immunity by activating mitochondrial DNA-mediated cGAS–STING signaling. Cancer Res. 84, 2645–2659 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Han, C. et al. Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat. Immunol. 21, 546–554 (2020).

    Article  PubMed  CAS  Google Scholar 

  56. Lei, Y. et al. Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity. Cell 186, 3013–3032.e3022 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yamazaki, T. et al. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nat. Immunol. 21, 1160–1171 (2020).

    Article  PubMed  CAS  Google Scholar 

  58. Wang, C. et al. Manganese increases the sensitivity of the cGAS–STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 48, 675–687.e677 (2018).

    Article  PubMed  CAS  Google Scholar 

  59. Huang, A. & Zhou, W. Mn-based cGAS–STING activation for tumor therapy. Chin. J. Cancer Res. 35, 19–43 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu, H. P. et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563, 131–136 (2018). This study demonstrates that nuclear cGAS promotes tumorigenesis by inhibiting homologous recombination repair in a STING-independent manner.

    Article  PubMed  Google Scholar 

  61. Jiang, H. et al. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 38, e102718 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chen, H. et al. cGAS suppresses genomic instability as a decelerator of replication forks. Sci. Adv. 6, eabb8941 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lv, G. et al. mTORC2-driven chromatin cGAS mediates chemoresistance through epigenetic reprogramming in colorectal cancer. Nat. Cell Biol. 26, 1585–1596 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Dunphy, G. et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol. Cell 71, 745–760.e745 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhang, L. T. et al. STING is a cell-intrinsic metabolic checkpoint restricting aerobic glycolysis by targeting HK2. Nat. Cell Biol. 25, 1208–1222 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ranoa, D. R. E. et al. STING promotes homeostasis via regulation of cell proliferation and chromosomal stability. Cancer Res. 79, 1465–1479 (2019).

    Article  PubMed  CAS  Google Scholar 

  67. Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. d’Adda di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512–522 (2008).

    Article  PubMed  Google Scholar 

  70. Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–E4620 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017). This study shows that senescence-mediated prevention of tumorigenesis is dependent on STING and further that cGAS or STING expression in human cancers correlates with tumour-promoting chronic inflammation, but not IFN-I signal.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  PubMed  CAS  Google Scholar 

  74. Dou, Z. et al. Autophagy mediates degradation of nuclear lamina. Nature 527, 105–109 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Nassour, J. et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565, 659–663 (2019). This study demonstrates that the cGAS–STING pathway contributes to telomere-driven autophagy, which prevents tumorigenesis by inducing cell death of cultured fibroblasts.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Cho, M.-G. et al. MRE11 liberates cGAS from nucleosome sequestration during tumorigenesis. Nature 625, 585–592 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Mowat, C., Mosley, S. R., Namdar, A., Schiller, D. & Baker, K. Anti-tumor immunity in mismatch repair-deficient colorectal cancers requires type I IFN-driven CCL5 and CXCL10. J. Exp. Med. 218, e20210108 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Vornholz, L. et al. Synthetic enforcement of STING signaling in cancer cells appropriates the immune microenvironment for checkpoint inhibitor therapy. Sci. Adv. 9, eadd8564 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Acha-Sagredo, A. et al. A constitutive interferon-high immunophenotype defines response to immunotherapy in colorectal cancer. Cancer Cell 43, 292–307.e297 (2025).

    Article  PubMed  CAS  Google Scholar 

  81. Li, L., Li, M., Jiang, Z. & Wang, X. ARID1A mutations are associated with increased immune activity in gastrointestinal cancer. Cells 8, 678 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Okamura, R. et al. ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy. J. Immunother. Cancer 8, e000438 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Goswami, S. et al. ARID1A mutation plus CXCL13 expression act as combinatorial biomarkers to predict responses to immune checkpoint therapy in mUCC. Sci. Transl. Med. 12, eabc4220 (2020).

    Article  PubMed  CAS  Google Scholar 

  84. Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020).

    Article  PubMed  CAS  Google Scholar 

  85. Hu, J. et al. STING inhibits the reactivation of dormant metastasis in lung adenocarcinoma. Nature 616, 806–813 (2023). This study shows that tumour-cell-intrinsic STING restricts reactivation of dormant disseminated tumour cells in the lungs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chabanon, R. M. et al. Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat. Rev. Cancer 21, 701–717 (2021).

    Article  PubMed  CAS  Google Scholar 

  87. Yum, S., Li, M. & Chen, Z. J. Old dogs, new trick: classic cancer therapies activate cGAS. Cell Res. 30, 639–648 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014). This study shows that the antitumour effects of radiation are dependent on STING-mediated DNA sensing, which elicits potent antitumour immunity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Chen, D. et al. Tumor treating fields dually activate STING and AIM2 inflammasomes to induce adjuvant immunity in glioblastoma. J. Clin. Invest. 132, e149258 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zierhut, C. et al. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178, 302–315.e323 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ding, L. et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Rep. 25, 2972–2980.e2975 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Pantelidou, C. et al. PARP inhibitor efficacy depends on CD8(+) T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 9, 722–737 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chabanon, R. M. et al. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J. Clin. Invest. 129, 1211–1228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shen, J. et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 79, 311–319 (2019).

    Article  PubMed  CAS  Google Scholar 

  95. Ma, H., Kang, Z., Foo, T. K., Shen, Z. & Xia, B. Disrupted BRCA1–PALB2 interaction induces tumor immunosuppression and T-lymphocyte infiltration in HCC through cGAS–STING pathway. Hepatology 77, 33–47 (2023).

    Article  PubMed  Google Scholar 

  96. Kitai, Y. et al. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J. Immunol. 198, 1649–1659 (2017).

    Article  PubMed  CAS  Google Scholar 

  97. Wang, Z. et al. cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity. J. Clin. Invest. 129, 4850–4862 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Wang, L. L. et al. Inhibition of the ATM/Chk2 axis promotes cGAS/STING signaling in ARID1A-deficient tumors. J. Clin. Invest. 130, 5951–5966 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Sen, T. et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 9, 646–661 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kitajima, S. et al. MPS1 inhibition primes immunogenicity of KRAS-LKB1 mutant lung cancer. Cancer Cell 40, 1128–1144.e1128 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Parkes, E. E. et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J. Natl Cancer Inst. 109, djw199 (2017).

    Article  PubMed  Google Scholar 

  102. Lohard, S. et al. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat. Commun. 11, 259 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Xu, M. M. et al. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity 47, 363–373.e365 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Jneid, B. et al. Selective STING stimulation in dendritic cells primes antitumor T cell responses. Sci. Immunol. 8, eabn6612 (2023).

    Article  PubMed  CAS  Google Scholar 

  105. Jeong, S.-H., Yang, M. J., Choi, S., Kim, J. & Koh, G. Y. Refractoriness of STING therapy is relieved by AKT inhibitor through effective vascular disruption in tumour. Nat. Commun. 12, 4405 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Lam, K. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 184, 5338–5356.e5321 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Marcus, A. et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 49, 754–763.e754 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Nicolai, C. J. et al. NK cells mediate clearance of CD8+ T cell-resistant tumors in response to STING agonists. Sci. Immunol. 5, eaaz2738 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lu, L. et al. STING signaling promotes NK cell antitumor immunity and maintains a reservoir of TCF-1+ NK cells. Cell Rep. 42, 113108 (2023).

    Article  PubMed  CAS  Google Scholar 

  110. Shacter, E. & Weitzman, S. A. Chronic inflammation and cancer. Oncology 16, 217–226 (2002).

    PubMed  Google Scholar 

  111. Ahn, J. et al. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 5, 5166 (2014). This study reveals that carcinogen-induced skin tumorigenesis is dependent on STING, because its knockout in mice dramatically reduces number of tumours.

    Article  PubMed  CAS  Google Scholar 

  112. Chang, L., Guo, R., Huang, Q. & Yen, Y. Chromosomal instability triggered by Rrm2b loss leads to IL-6 secretion and plasmacytic neoplasms. Cell Rep. 3, 1389–1397 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wörmann, S. M. et al. APOBEC3A drives deaminase domain-independent chromosomal instability to promote pancreatic cancer metastasis. Nat. Cancer 2, 1338–1356 (2021).

    Article  PubMed  Google Scholar 

  114. Zhang, H. et al. TMEM173 drives lethal coagulation in sepsis. Cell Host Microbe 27, 556–570.e556 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Smith, J. A. STING, the endoplasmic reticulum, and mitochondria: is three a crowd or a conversation? Front. Immunol. 11, 611347 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Chen, Q. et al. Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Wang, H. et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc. Natl Acad. Sci. USA 114, 1637–1642 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Kong, X. et al. STING as an emerging therapeutic target for drug discovery: perspectives from the global patent landscape. J. Adv. Res. 44, 119–133 (2023).

    Article  PubMed  CAS  Google Scholar 

  121. Yum, S., Li, M., Frankel, A. E. & Chen, Z. J. Roles of the cGAS–STING pathway in cancer immunosurveillance and immunotherapy. Annu. Rev. Cancer Biol. 3, 323–344 (2019).

    Article  Google Scholar 

  122. Lara, P. N. Jr et al. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J. Clin. Oncol. 29, 2965–2971 (2011).

    Article  PubMed  CAS  Google Scholar 

  123. Conlon, J. et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immunol. 190, 5216–5225 (2013).

    Article  PubMed  CAS  Google Scholar 

  124. Sivick, K. E. et al. Magnitude of therapeutic STING activation determines CD8(+) T cell-mediated anti-tumor immunity. Cell Rep. 29, 785–789 (2019).

    Article  PubMed  CAS  Google Scholar 

  125. Meric-Bernstam, F. et al. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clin. Cancer Res. 28, 677–688 (2022).

    Article  PubMed  CAS  Google Scholar 

  126. Zandberg, D. et al. 71PA phase II study of ADU-S100 in combination with pembrolizumab in adult patients with PD-L1+ recurrent or metastatic HNSCC: preliminary safety, efficacy and PK/PD results. Ann. Oncol. 31, S1446–S1447 (2020).

    Article  Google Scholar 

  127. Harrington, K. et al. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann. Oncol. 29, viii712 (2018).

    Article  Google Scholar 

  128. Wu, J., Dobbs, N., Yang, K. & Yan, N. Interferon-independent activities of mammalian STING mediate antiviral response and tumor immune evasion. Immunity 53, 115–126.e115 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8, 427 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Dosta, P., Cryer, A. M., Prado, M. & Artzi, N. Bioengineering strategies to optimize STING agonist therapy. Nat. Rev. Bioeng. 3, 660–680 (2025).

    Article  CAS  Google Scholar 

  132. Zhang, Z. & Zhang, C. Regulation of cGAS–STING signalling and its diversity of cellular outcomes. Nat. Rev. Immunol. 25, 425–444 (2025).

    Article  PubMed  CAS  Google Scholar 

  133. Orzalli, M. H. et al. cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc. Natl Acad. Sci. USA 112, E1773–E1781 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Dvorkin, S., Cambier, S., Volkman, H. E. & Stetson, D. B. New frontiers in the cGAS–STING intracellular DNA-sensing pathway. Immunity 57, 718–730 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Guey, B. et al. BAF restricts cGAS on nuclear DNA to prevent innate immune activation. Science 369, 823–828 (2020).

    Article  PubMed  CAS  Google Scholar 

  136. Volkman, H. E., Cambier, S., Gray, E. E. & Stetson, D. B. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. eLife 8, e47491 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Li, T. et al. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 371, eabc5386 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Xu, P. et al. The CRL5–SPSB3 ubiquitin ligase targets nuclear cGAS for degradation. Nature 627, 873–879 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Barnett, K. C. et al. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA. Cell 176, 1432–1446.e11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wang, H. et al. MYO1F positions cGAS on the plasma membrane to ensure full and functional signaling. Mol. Cell 85, 150–165.e157 (2025).

    Article  PubMed  CAS  Google Scholar 

  141. Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Liu, X. et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat. Med. 21, 1209–1215 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. de Mingo Pulido, Á et al. The inhibitory receptor TIM-3 limits activation of the cGAS–STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity 54, 1154–1167.e1157 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Dixon, K. O. et al. TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature 595, 101–106 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Xia, T., Konno, H., Ahn, J. & Barber, G. N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 14, 282–297 (2016).

    Article  PubMed  CAS  Google Scholar 

  146. Konno, H. et al. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 37, 2037–2051 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Skoulidis, F. et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8, 822–835 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Xia, T., Konno, H. & Barber, G. N. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 76, 6747–6759 (2016).

    Article  PubMed  CAS  Google Scholar 

  149. Falahat, R. et al. Epigenetic reprogramming of tumor cell–intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. Proc. Natl Acad. Sci. USA 118, e2013598118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Wu, M.-Z. et al. miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat. Cell Biol. 19, 1286–1296 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Huang, B., Song, B. -l & Xu, C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat. Metab. 2, 132–141 (2020).

    Article  PubMed  Google Scholar 

  152. Zhang, B. -c et al. Cholesterol-binding motifs in STING that control endoplasmic reticulum retention mediate anti-tumoral activity of cholesterol-lowering compounds. Nat. Commun. 15, 2760 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Ippolito, L., Morandi, A., Giannoni, E. & Chiarugi, P. Lactate: a metabolic driver in the tumour landscape. Trends Biochem. Sci. 44, 153–166 (2019).

    Article  PubMed  CAS  Google Scholar 

  155. Chen, H. et al. NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature 631, 663–669 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Li, H. et al. AARS1 and AARS2 sense l-lactate to regulate cGAS as global lysine lactyltransferases. Nature 634, 1229–1237 (2024).

    Article  PubMed  CAS  Google Scholar 

  157. Gui, X. et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567, 262–266 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Zhao, M. et al. CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 17, 3976–3991 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Konno, H., Konno, K. & Barber, G. N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688–698 (2013).

    Article  PubMed  CAS  Google Scholar 

  160. Prabakaran, T. et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM 1-dependent autophagy pathway activated by TBK1. EMBO J. 37, e97858 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Liu, D. et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 26, 1735–1749 (2019).

    Article  PubMed  CAS  Google Scholar 

  162. Mohr, L. et al. ER-directed TREX1 limits cGAS activation at micronuclei. Mol. Cell 81, 724–738.e729 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Tani, T. et al. TREX1 inactivation unleashes cancer cell STING–interferon signaling and promotes antitumor immunity. Cancer Discov. 14, 752–765 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Ghosh, M., Saha, S., Li, J., Montrose, D. C. & Martinez, L. A. p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression. Mol. Cell 83, 266–280.e266 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Salojin, C. et al. 765 The first-in-class small molecule TREX1 inhibitor CPI-381 demonstrates type I IFN induction and sensitization of tumors to immune checkpoint blockade. J. Immunother. Cancer 9, A800–A800 (2021).

    Google Scholar 

  167. Carozza, J. A. et al. Extracellular cGAMP is a cancer-cell-produced immunotransmitter involved in radiation-induced anticancer immunity. Nat. Cancer 1, 184–196 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Li, L. et al. Hydrolysis of 2′ 3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Mardjuki, R. et al. Identification of the extracellular membrane protein ENPP3 as a major cGAMP hydrolase and innate immune checkpoint. Cell Rep. 43, 114209 (2024).

    Article  PubMed  CAS  Google Scholar 

  170. Hou, Y. F. et al. SMPDL3A is a cGAMP-degrading enzyme induced by LXR-mediated lipid metabolism to restrict cGAS–STING DNA sensing. Immunity 56, 2492–2507.e10 (2023).

    Article  PubMed  Google Scholar 

  171. Carozza, J. A. et al. Structure-aided development of small-molecule inhibitors of ENPP1, the extracellular phosphodiesterase of the immunotransmitter cGAMP. Cell Chem. Biol. 27, 1347–1358.e1345 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Ghosh, M. et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell 39, 494–508.e5 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Hou, Y. et al. Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity 49, 490–503.e494 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Nakajima, S. et al. Radiation-induced remodeling of the tumor microenvironment through tumor cell-intrinsic expression of cGAS–STING in esophageal squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 115, 957–971 (2023).

    Article  PubMed  Google Scholar 

  175. Li, S. et al. STING-induced regulatory B cells compromise NK function in cancer immunity. Nature 610, 373–380 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Liang, H. et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 8, 1736 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Song, H. et al. Targeting tumor monocyte-intrinsic PD-L1 by rewiring STING signaling and enhancing STING agonist therapy. Cancer Cell 43, 503–518.e510 (2025).

    Article  PubMed  CAS  Google Scholar 

  178. Lemos, H. et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res. 76, 2076–2081 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Pang, E. S. et al. Discordance in STING-induced activation and cell death between mouse and human dendritic cell populations. Front. Immunol. 13, 794776 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Gaidt, M. M. et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171, 1110–1124.e1118 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Li, W. et al. cGAS–STING-mediated DNA sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy. Sci. Transl. Med. 12, eaay9013 (2020).

    Article  PubMed  CAS  Google Scholar 

  182. Wu, J. et al. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death. J. Exp. Med. 216, 867–883 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Cerboni, S. et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J. Exp. Med. 214, 1769–1785 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Larkin, B. et al. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 199, 397–402 (2017).

    Article  PubMed  CAS  Google Scholar 

  185. Kuhl, N. et al. STING agonism turns human T cells into interferon-producing cells but impedes their functionality. EMBO Rep. 24, e55536 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Boukhaled, G. M. et al. Pre-encoded responsiveness to type I interferon in the peripheral immune system defines outcome of PD1 blockade therapy. Nat. Immunol. 23, 1273–1283 (2022).

    Article  PubMed  CAS  Google Scholar 

  187. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    Article  PubMed  CAS  Google Scholar 

  188. Shitara, K. et al. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol. 6, 1571–1580 (2020).

    Article  PubMed  Google Scholar 

  189. Lee, N. Y. et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 22, 450–462 (2021).

    Article  PubMed  CAS  Google Scholar 

  190. Machiels, J.-P. et al. Pembrolizumab plus concurrent chemoradiotherapy versus placebo plus concurrent chemoradiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck (KEYNOTE-412): a randomised, double-blind, phase 3 trial. Lancet Oncol. 25, 572–587 (2024).

    Article  PubMed  CAS  Google Scholar 

  191. Grassberger, C., Ellsworth, S. G., Wilks, M. Q., Keane, F. K. & Loeffler, J. S. Assessing the interactions between radiotherapy and antitumour immunity. Nat. Rev. Clin. Oncol. 16, 729–745 (2019).

    Article  PubMed  Google Scholar 

  192. Ogitani, Y. et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res. 22, 5097–5108 (2016).

    Article  PubMed  CAS  Google Scholar 

  193. Powles, T. et al. Enfortumab vedotin and pembrolizumab in untreated advanced urothelial cancer. N. Engl. J. Med. 390, 875–888 (2024).

    Article  PubMed  CAS  Google Scholar 

  194. Powles, T. et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial. Lancet Oncol. 22, 931–945 (2021).

    Article  PubMed  CAS  Google Scholar 

  195. Wu, Y.-t. et al. Tumor-targeted delivery of a STING agonist improves cancer immunotherapy. Proc. Natl Acad. Sci. USA 119, e2214278119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Soomer-James, J. T., Lancaster, K., Damelin, M. & Malli, N. XMT-2056, a HER2-directed STING agonist antibody–drug conjugate, exhibits ADCC function that synergizes with STING pathway activation and contributes to anti-tumor responses. Cancer Res. 83, 4423 (2023).

    Article  Google Scholar 

  197. Cetinbas, N. M. et al. Tumor cell-directed STING agonist antibody–drug conjugates induce type III interferons and anti-tumor innate immune responses. Nat. Commun. 15, 5842 (2024).

    Article  Google Scholar 

  198. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/show/NCT05514717 (2025).

  199. Lin, W. et al. STING trafficking activates MAPK–CREB signaling to trigger regulatory T cell differentiation. Proc. Natl Acad. Sci. USA 121, e2320709121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Liu, B. et al. Human STING is a proton channel. Science 381, 508–514 (2023). This study reveals that STING can transport protons across membranes, resulting in LC3B lipidation and inflammasome activation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Xun, J. et al. A conserved ion channel function of STING mediates noncanonical autophagy and cell death. EMBO Rep. 25, 544–569 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Lv, B. et al. A TBK1-independent primordial function of STING in lysosomal biogenesis. Mol. Cell 84, 3979–3996.e3979 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Xu, Y. et al. The cGAS–STING pathway activates transcription factor TFEB to stimulate lysosome biogenesis and pathogen clearance. Immunity 58, 309–325.e6 (2024).

    Article  PubMed  Google Scholar 

  204. Huang, T., Sun, C., Du, F. & Chen, Z. J. STING-induced noncanonical autophagy regulates endolysosomal homeostasis. Proc. Natl Acad. Sci. USA 122, e2415422122 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Poddar, S. et al. ArfGAP2 promotes STING proton channel activity, cytokine transit, and autoinflammation. Cell 188, 1605–1622.e26 (2025).

    Article  PubMed  CAS  Google Scholar 

  206. Wang, Y. et al. Universal STING mimic boosts antitumour immunity via preferential activation of tumour control signalling pathways. Nat. Nanotechnol. 19, 856–886 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Pao, W. et al. Tissue-specific immunoregulation: a call for better understanding of the “immunostat” in the context of cancer. Cancer Discov. 8, 395–402 (2018).

    Article  PubMed  CAS  Google Scholar 

  208. Siddiqui, I. et al. Intratumoral Tcf1+ PD-1+ CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e110 (2019).

    Article  PubMed  CAS  Google Scholar 

  209. Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1 CD8+ tumor-infiltrating T cells. Immunity 50, 181–194.e186 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Escobar, G. et al. Tumor immunogenicity dictates reliance on TCF1 in CD8+ T cells for response to immunotherapy. Cancer Cell 41, 1662–1679.e1667 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Li, Z. et al. Novel photo-STING agonists delivered by erythrocyte efferocytosis-mimicking pattern to repolarize tumor-associated macrophages for boosting anticancer immunotherapy. Adv. Mater. 36, 2410937 (2024).

    Article  CAS  Google Scholar 

  212. Wei, X. et al. LL-37 transports immunoreactive cGAMP to activate STING signaling and enhance interferon-mediated host antiviral immunity. Cell Rep. 39, 110880 (2022).

    Article  PubMed  CAS  Google Scholar 

  213. Zhang, Q. et al. Molecular basis of SLC19A1-mediated folate and cyclic dinucleotide transport. Nat. Commun. 16, 3146 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Ding, Z. et al. Single atom engineering for radiotherapy-activated immune agonist prodrugs. Nat. Commun. 16, 6021 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Yin, X. et al. Orchestrating intratumoral DC-T cell immunity for enhanced tumor control via radiotherapy-activated TLR7/8 prodrugs in mice. Nat. Commun. 16, 6020 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Jiang, J. et al. Sono-driven STING activation using semiconducting polymeric nanoagonists for precision sono-immunotherapy of head and neck squamous cell carcinoma. Adv. Mater. 35, 2300854 (2023).

    Article  CAS  Google Scholar 

  217. Baxter, A. G. & Hodgkin, P. D. Activation rules: the two-signal theories of immune activation. Nat. Rev. Immunol. 2, 439–446 (2002).

    Article  PubMed  CAS  Google Scholar 

  218. Chen, L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat. Rev. Immunol. 4, 336–347 (2004).

    Article  PubMed  CAS  Google Scholar 

  219. Heemskerk, B., Kvistborg, P. & Schumacher, T. N. M. The cancer antigenome. EMBO J. 32, 194–203 (2013).

    Article  PubMed  CAS  Google Scholar 

  220. Maleki Vareki, S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J. Immunother. Cancer 6, 157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Tang, H. D. et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29, 285–296 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Zak, J. et al. JAK inhibition enhances checkpoint blockade immunotherapy in patients with Hodgkin lymphoma. Science 384, eade8520 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Mathew, D. et al. Combined JAK inhibition and PD-1 immunotherapy for non-small cell lung cancer patients. Science 384, eadf1329 (2024). This study, together with Zak et al. (2024), reveals that JAK1 and JAK2 are a target of chronic inflammation and transient blockade of JAK1/2 signal enhances T cell function and synergizes with anti-PD1 in both mouse model and patients with cancers.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Yu, Y. et al. Post-translational modifications of cGAS–STING: a critical switch for immune regulation. Cells 11, 3043 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Kang, J. et al. Post-translational modifications of STING: a potential therapeutic target. Front. Immunol. 13, 888147 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Seo, G. J. et al. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 13, 440–449 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Zhong, L. et al. Phosphorylation of cGAS by CDK1 impairs self-DNA sensing in mitosis. Cell Discov. 6, 26 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Zhang, C. et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature 567, 394–398 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    Article  PubMed  Google Scholar 

  232. Ma, M. et al. TAK1 is an essential kinase for STING trafficking. Mol. Cell 83, 3885–3903.e3885 (2023).

    Article  PubMed  CAS  Google Scholar 

  233. Wang, C. et al. EGFR-mediated tyrosine phosphorylation of STING determines its trafficking route and cellular innate immunity functions. EMBO J. 39, e104106 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Seo, G. J. et al. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat. Commun. 9, 613 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Wang, Q. et al. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. PLoS Pathog. 13, e1006264 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Chen, X. & Chen, Y. Ubiquitination of cGAS by TRAF6 regulates anti-DNA viral innate immune responses. Biochem. Biophys. Res. Commun. 514, 659–664 (2019).

    Article  PubMed  CAS  Google Scholar 

  237. Tsuchida, T. et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776 (2010).

    Article  PubMed  CAS  Google Scholar 

  238. Zhang, J., Hu, M.-M., Wang, Y.-Y. & Shu, H.-B. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem. 287, 28646–28655 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Ni, G., Konno, H. & Barber, G. N. Ubiquitination of STING at lysine 224 controls IRF3 activation. Sci. Immunol. 2, eaah7119 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Zhang, Z.-D. et al. RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVS and MITA. Nat. Commun. 11, 5536 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Xing, J. et al. TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nat. Commun. 8, 945 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Wang, Y. et al. TRIM30α is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog. 11, e1005012 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Hu, M.-M. et al. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity 45, 555–569 (2016).

    Article  PubMed  CAS  Google Scholar 

  244. Cui, Y. et al. SENP7 potentiates cGAS activation by relieving SUMO-mediated inhibition of cytosolic DNA sensing. PLoS Pathog. 13, e1006156 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Li, C. et al. RNF111-facilitated neddylation potentiates cGAS-mediated antiviral innate immune response. PLoS Pathog. 17, e1009401 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Song, Z.-M. et al. KAT5 acetylates cGAS to promote innate immune response to DNA virus. Proc. Natl Acad. Sci. USA 117, 21568–21575 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Dai, J. et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell 176, 1447–1460.e1414 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Ma, D. et al. Arginine methyltransferase PRMT5 negatively regulates cGAS-mediated antiviral immune response. Sci. Adv. 7, eabc1834 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Xia, P. et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17, 369–378 (2016).

    Article  PubMed  CAS  Google Scholar 

  250. Shi, C. et al. ZDHHC18 negatively regulates cGAS-mediated innate immunity through palmitoylation. EMBO J. 41, e109272 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Mukai, K. et al. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Tao, L. et al. Reactive oxygen species oxidize STING and suppress interferon production. eLife 9, e57837 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Jia, M. et al. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat. Immunol. 21, 727–735 (2020).

    Article  PubMed  CAS  Google Scholar 

  254. Wang, Y. et al. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection. Immunity 46, 393–404 (2017).

    Article  PubMed  CAS  Google Scholar 

  255. Ning, X. et al. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol. Cell 74, 19–31.e17 (2019).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant 82250710684 to Y.-X.F.), the Shenzhen Science and Technology Program (grant KQTD20240729102213019 to C.L.) and by the Major Program of Shenzhen Bay Laboratory (grants S241101007 and S201101004 to C.L.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Changzheng Lu or Yang-Xin Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks David Barbie, Samuel Bakhoum and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Abscopal tumours

A phenomenon where local treatment (such as radiation) of one tumour causes the regression of distant, untreated tumours.

Autophagy

A conserved cellular catabolic process that degrades dysfunctional organelles and proteins within lysosomes, enabling nutrient recycling and maintenance of cellular homeostasis.

Chromosomal instability

Persistent chromosome segregation errors during consecutive cell divisions, frequently leading to aneuploidy and contributing to tumour heterogeneity and drug resistance.

DNA strand invasion

A process in DNA repair where a single-strand DNA invades a homologous double-strand DNA template, with defects in this process contributing to genomic instability and tumorigenesis.

Immune checkpoint blockade

Therapeutic inhibition of checkpoint proteins (such as PD1, PDL1 and CTLA4) to enhance antitumour immune responses by reactivating T cells.

Lactylation

A novel post-translational modification where a lactate molecule is covalently attached to a lysine residue on a protein, thereby altering the protein’s function and expression level.

LC3 lipidation

The attachment of LC3 to phosphatidylethanolamine during autophagy, marking the formation of autophagosomes and serving as a key indicator of autophagic activity.

M2-like macrophage

A macrophage that supports tissue repair, immune suppression and tumour progression by secreting anti-inflammatory cytokines such as IL-10 and TGFβ.

Micronuclei

Membrane-bound structures containing lagging chromosomes that fail to integrate into daughter-cell nuclei during cell division, which indicates genomic instability.

Necroptosis

A form of regulated cell death triggered by RIPK3 and its substrate MLKL, causing cell swelling, plasma membrane rupture, and the release of pro-inflammatory factors.

Neoantigens

Tumour-specific antigens generated from somatic mutations, presented by MHC molecules, making them potential targets for immunotherapies such as cancer vaccines and T cell therapies.

Proliferative crisis

A catastrophic state following replicative senescence, where cells with critically shortened telomeres continue to divide, resulting in genomic instability and massive cell death.

Replication fork

The structure formed during DNA replication where the DNA double helix is unwound and new strands are synthesized, with stalling or collapse causing DNA damage, a hallmark of genomic instability.

R-loop

A three-stranded structure formed when RNA displaces the non-template DNA strand, causing DNA damage and contributing to genomic instability.

Senescence

A state of irreversible cell cycle arrest caused by DNA damage or telomere shortening, in which cells remain metabolically active but no longer divide, acting as a potential tumour-suppressive mechanism.

SPNM nanoparticles

Smart polymeric nanoparticles designed for targeted drug delivery, that respond to specific stimuli (such as pH changes) to release drugs at tumour sites, thereby improving bioavailability and minimizing systemic side effects.

Tumour treating fields

A non-invasive therapy that utilizes low-intensity, intermediate-frequency alternating electric fields to disrupt the normal polymerization and function of microtubules during mitosis, leading to mitotic arrest and programmed cell death in rapidly dividing cancer cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Wang, W. & Fu, YX. Opportunities and challenges of targeting cGAS–STING in cancer. Nat Rev Cancer (2026). https://doi.org/10.1038/s41568-025-00894-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41568-025-00894-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer