Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6

Abstract

The number of old people is rising worldwide, and advancing age is a major risk factor for atherosclerotic cardiovascular disease. However, the mechanisms underlying this phenomenon remain unclear. In this Review, we discuss vascular intrinsic and extrinsic mechanisms of how ageing influences the pathology of atherosclerosis. First, we focus on factors that are extrinsic to the vasculature. We discuss how ageing affects the development of myeloid cells leading to the expansion of certain myeloid cell clones and induces changes in myeloid cell functions that promote atherosclerosis via inflammation, including a potential role for IL-6. Next, we describe vascular intrinsic factors by which ageing promotes atherogenesis — in particular, the effects on mitochondrial function. Studies in mice and humans have shown that ageing leads to a decline in vascular mitochondrial function and impaired mitophagy. In mice, ageing is associated with an elevation in the levels of the inflammatory cytokine IL-6 in the aorta, which participates in a positive feedback loop with the impaired vascular mitochondrial function to accelerate atherogenesis. We speculate that vascular and myeloid cell ageing synergize, via IL-6 signalling, to accelerate atherosclerosis. Finally, we propose future avenues of clinical investigation and potential therapeutic approaches to reduce the burden of atherosclerosis in old people.

Key points

  • Ageing-related alterations in the bone marrow increase the phenomenon of clonal haematopoiesis of indeterminate potential (CHIP) and promote a skewing towards myeloid cell differentiation, both of which can accelerate atherosclerosis.

  • The increased risk of atherosclerotic cardiovascular diseases associated with the presence of CHIP might be mediated by IL-6 signalling and/or inflammasome activation.

  • Ageing is associated with a decline in mitochondrial function and an increase in IL-6 levels in the vasculature, and both effects probably accelerate atherosclerosis independently of chronic hyperlipidaemia.

  • The role of the vasculature and myeloid cells of the immune system in promoting age-related atherosclerosis might be mediated by shared inflammatory pathways, in particular IL-6 signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ageing-related processes that promote atherogenesis: IL-6 as a potential shared pathway.
Fig. 2: IL-6 as a potential therapeutic target in age-related atherosclerosis.

Similar content being viewed by others

References

  1. Sturlaugsdottir, R. et al. Prevalence and determinants of carotid plaque in the cross-sectional REFINE-Reykjavik study. BMJ Open 6, e012457 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benjamin, E. J. et al. Heart disease and stroke statistics–2019 update: a report from the American Heart Association. Circulation 139, e56–e528 (2019).

    Article  PubMed  Google Scholar 

  3. Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shi, S. et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 5, 802–810 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fuster, J. J. & Walsh, K. Somatic mutations and clonal hematopoiesis: unexpected potential new drivers of age-related cardiovascular disease. Circ. Res. 122, 523–532 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bick, A. G. et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141, 124–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, E. P. K. et al. Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness. Arterioscler. Thromb. Vasc. Biol. 37, 2322–2332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tyrrell, D. J. et al. Age-associated mitochondrial dysfunction accelerates atherogenesis. Circ. Res. 126, 298–314 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Ridker, P. M. et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 39, 3499–3507 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Bennett, M. R. & Clarke, M. C. H. Killing the old: cell senescence in atherosclerosis. Nat. Rev. Cardiol. 14, 8–9 (2017).

    Article  CAS  Google Scholar 

  15. McElhaney, J. E., Kuchel, G. A., Zhou, X., Swain, S. L. & Haynes, L. T-cell immunity to influenza in older adults: a pathophysiological framework for development of more effective vaccines. Front. Immunol. 7, 41 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Shaw, A. C., Goldstein, D. R. & Montgomery, R. R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13, 875–887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nikolich-Žugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    Article  PubMed  CAS  Google Scholar 

  18. Hansson, G. R. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 6, 508–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma, S., Wang, C., Mao, X. & Hao, Y. B cell dysfunction associated with aging and autoimmune diseases. Front. Immunol. 10, 318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weyand, C. M. & Goronzy, J. J. Aging of the immune system. Mechanisms and therapeutic targets. Ann. Am. Thorac. Soc. 13, S422–S428 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ventura, M. T., Casciaro, M., Gangemi, S. & Buquicchio, R. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clin. Mol. Allergy 15, 21 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Pérez, V. I. et al. Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta 1790, 1005–1014 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jang, Y. C. et al. Overexpression of Mn superoxide dismutase does not increase life span in mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 64A, 1114–1125 (2009).

    Article  CAS  Google Scholar 

  25. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kattoor, A. J., Pothineni, N. V. K., Palagiri, D. & Mehta, J. L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep. 19, 42 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Franklin, S. S., Khan, S. A., Wong, N. D., Larson, M. G. & Levy, D. Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham Heart Study. Circulation 100, 354–360 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. van Bussel, B. C. et al. Endothelial dysfunction and low-grade inflammation are associated with greater arterial stiffness over a 6-year period. Hypertension 58, 588–595 (2011).

    Article  PubMed  CAS  Google Scholar 

  29. Donato, A. J., Machin, D. R. & Lesniewski, L. A. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ. Res. 123, 825–848 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ungvari, Z., Tarantini, S., Donato, A. J., Galvan, V. & Csiszar, A. Mechanisms of vascular aging. Circ. Res. 123, 849–867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bobryshev, Y. V. & Lord, R. S. S-100 positive cells in human arterial intima and in atherosclerotic lesions. Cardiovasc. Res. 29, 689–696 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Laurat, E. et al. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 104, 197–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, X. & Hansson, G. K. Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand. J. Immunol. 50, 25–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Libby, P., Ridker, P. M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, J., Yoon, S. R., Choi, I. & Jung, H. Causes and mechanisms of hematopoietic stem cell aging. Int. J. Mol. Sci. 20, 1272 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  37. Kovtonyuk, L. V., Fritsch, K., Feng, X., Manz, M. G. & Takizawa, H. Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front. Immunol. 7, 502 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA 107, 5465–5470 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rundberg Nilsson, A., Soneji, S., Adolfsson, S., Bryder, D. & Pronk, C. J. Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias. PLoS ONE 11, e0158369 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chen, J., Astle, C. M. & Harrison, D. E. Genetic regulation of primitive hematopoietic stem cell senescence. Exp. Hematol. 28, 442–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Chambers, S. M. et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 5, e201 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kramer, A. & Challen, G. A. The epigenetic basis of hematopoietic stem cell aging. Semin. Hematol. 54, 19–24 (2017).

    Article  PubMed  Google Scholar 

  45. Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208, 2691–2703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sasaki, M. et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488, 656–659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, C. et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood 126, 1741–1752 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Attema, J. L., Pronk, C. J., Norddahl, G. L., Nygren, J. M. & Bryder, D. Hematopoietic stem cell ageing is uncoupled from p16 INK4A-mediated senescence. Oncogene 28, 2238–2243 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Ho, T. T. et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543, 205–210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mohrin, M. et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grants, J. M. et al. Altered microRNA expression links IL6 and TNF-induced inflammaging with myeloid malignancy. Blood 135, 2235–2251 (2020).

    Article  PubMed  Google Scholar 

  53. Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Harris, T. B. et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am. J. Med. 106, 506–512 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cesari, M. et al. Sarcopenia, obesity, and inflammation–results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study. Am. J. Clin. Nutr. 82, 428–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Ho, Y.-H. et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25, 407–418.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tuljapurkar, S. R. et al. Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging. J. Anat. 219, 574–581 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou, B. O. et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat. Cell Biol. 19, 891–903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yue, R., Zhou, B. O., Shimada, I. S., Zhao, Z. & Morrison, S. J. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 18, 782–796 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Gnani, D. et al. An early-senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic impairment through the activation of a pro-inflammatory program. Aging Cell 18, e12933 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Takeshita, S., Fumoto, T., Naoe, Y. & Ikeda, K. Age-related marrow adipogenesis is linked to increased expression of RANKL. J. Biol. Chem. 289, 16699–16710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Poulos, M. G. et al. Endothelial transplantation rejuvenates aged hematopoietic stem cell function. J. Clin. Invest. 127, 4163–4178 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Esplin, B. L. et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J. Immunol. 186, 5367–5375 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Villa-Bellosta, R. et al. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127, 2442–2451 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shlush, L. I. Age-related clonal hematopoiesis. Blood 131, 496–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guo, H., Callaway, J. B. & Ting, J. P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wang, Y. et al. Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI Insight 5, e135204 (2020).

    Article  PubMed Central  Google Scholar 

  77. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Calabrese, L. H. & Rose-John, S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat. Rev. Rheumatol. 10, 720–727 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Gomez, D. et al. Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat. Med. 24, 1418–1429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Madan, M., Bishayi, B., Hoge, M. & Amar, S. Atheroprotective role of interleukin-6 in diet- and/or pathogen-associated atherosclerosis using an ApoE heterozygote murine model. Atherosclerosis 197, 504–514 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Du, W. et al. Age-associated vascular inflammation promotes monocytosis during atherogenesis. Aging Cell 15, 766–777 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rauscher, F. M. et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108, 457–463 (2003).

    Article  PubMed  Google Scholar 

  84. Belmin, J. et al. Increased production of tumor necrosis factor and interleukin-6 by arterial wall of aged rats. Am. J. Physiol. 268, H2288–H2293 (1995).

    CAS  PubMed  Google Scholar 

  85. Qian, F. et al. Age-associated elevation in TLR5 leads to increased inflammatory responses in the elderly. Aging Cell 11, 104–110 (2011).

    Article  PubMed  CAS  Google Scholar 

  86. Csiszar, A. et al. Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: reversal by resveratrol treatment. J. Gerontol. A Biol. Sci. Med. Sci. 67, 811–820 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Song, Y. et al. Aging enhances the basal production of IL-6 and CCL2 in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 32, 103–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Thorp, E., Subramanian, M. & Tabas, I. The role of macrophages and dendritic cells in the clearance of apoptotic cells in advanced atherosclerosis. Eur. J. Immunol. 41, 2515–2518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Boyd, A. R., Shivshankar, P., Jiang, S., Berton, M. T. & Orihuela, C. J. Age-related defects in TLR2 signaling diminish the cytokine response by alveolar macrophages during murine pneumococcal pneumonia. Exp. Gerontol. 47, 507–518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wong, C. K. et al. Aging impairs alveolar macrophage phagocytosis and increases influenza-induced mortality in mice. J. Immunol. 199, 1060–1068 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Arnardottir, H. H., Dalli, J., Colas, R. A., Shinohara, M. & Serhan, C. N. Aging delays resolution of acute inflammation in mice: reprogramming the host response with novel nano-proresolving medicines. J. Immunol. 193, 4235–4244 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. De Maeyer, R. P. H. et al. Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nat. Immunol. 21, 615–625 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Wu, J. et al. Origin of matrix-producing cells that contribute to aortic fibrosis in hypertension. Hypertension 67, 461–468 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Shao, J.-S. et al. Vascular calcification and aortic fibrosis: a bifunctional role for osteopontin in diabetic arteriosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 1821–1833 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moon, S.-K. et al. Aging, oxidative responses, and proliferative capacity in cultured mouse aortic smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 280, H2779–H2788 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Valcarcel-Ares, M. N. et al. Disruption of Nrf2 signaling impairs angiogenic capacity of endothelial cells: implications for microvascular aging. J. Gerontol. A Biol. Sci. Med. Sci. 67, 821–829 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ungvari, Z. et al. Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. Am. J. Physiol. Heart Circ. Physiol. 301, H363–H372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Foote, K. et al. Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice. Aging Cell 17, e12773 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Ballinger, S. W. et al. Mitochondrial integrity and function in atherogenesis. Circulation 106, 544–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Yu, E. et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation 128, 702–712 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Bárcena, C., Mayoral, P. & Quirós, P. M. in International Review of Cell and Molecular Biology Vol. 340 Ch. 2 (eds. López-Otín, C. & Galluzzi, L.) 35–77 (Academic, 2018).

  102. Vendrov, A. E. et al. NOX4 NADPH oxidase-dependent mitochondrial oxidative stress in aging-associated cardiovascular disease. Antioxid. Redox Signal. 23, 1389–1409 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vendrov, A. E. et al. Attenuated superoxide dismutase 2 activity induces atherosclerotic plaque instability during aging in hyperlipidemic mice. J. Am. Heart Assoc. 6, e006775 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Goszcz, K. et al. Antioxidants in cardiovascular therapy: panacea or false hope? Front. Cardiovasc. Med. 2, 29 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Cherubini, A. et al. Role of antioxidants in atherosclerosis: epidemiological and clinical update. Curr. Pharm. Des. 11, 2017–2032 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. LaRocca, T. J., Hearon, C. M. Jr., Henson, G. D. & Seals, D. R. Mitochondrial quality control and age-associated arterial stiffening. Exp. Gerontol. 58, 78–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Bjorklund, M. M. et al. Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Circ. Res. 114, 1684–1689 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. LaRocca, T. J., Gioscia-Ryan, R. A., Hearon, C. M. Jr & Seals, D. R. The autophagy enhancer spermidine reverses arterial aging. Mech. Ageing Dev. 134, 314–320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. West, A. P., Shadel, G. S. & Ghosh, S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang, L. S. et al. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 52, 475–486.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Song, Y., Shen, H., Du, W. & Goldstein, D. R. Inhibition of x-box binding protein 1 reduces tunicamycin-induced apoptosis in aged murine macrophages. Aging Cell 12, 794–801 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Schoggins, J. W. et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505, 691–695 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Gao, J. L. et al. F2L, a peptide derived from heme-binding protein, chemoattracts mouse neutrophils by specifically activating Fpr2, the low-affinity N-formylpeptide receptor. J. Immunol. 178, 1450–1456 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Wenceslau, C. F., McCarthy, C. G., Szasz, T., Goulopoulou, S. & Webb, R. C. Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome. Am. J. Physiol. Heart Circ. Physiol. 308, H768–H777 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Baylis, D., Bartlett, D. B., Patel, H. P. & Roberts, H. C. Understanding how we age: insights into inflammaging. Longev. Healthspan 2, 8 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Addison, O., LaStayo, P. C., Dibble, L. E. & Marcus, R. L. Inflammation, aging, and adiposity: implications for physical therapists. J. Geriatric Phys. Ther. 35, 86–94 (2012).

    Article  Google Scholar 

  119. Wang, G. C. & Casolaro, V. Immunologic changes in frail older adults. Transl. Med. UniSa 9, 1–6 (2014).

    PubMed  PubMed Central  Google Scholar 

  120. Rose-John, S., Winthrop, K. & Calabrese, L. The role of IL-6 in host defence against infections: immunobiology and clinical implications. Nat. Rev. Rheumatol. 13, 399–409 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Huber, S. A., Sakkinen, P., Conze, D., Hardin, N. & Tracy, R. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 19, 2364–2367 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Schuett, H. et al. Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 281–290 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Scott, L. J. Tocilizumab: a review in rheumatoid arthritis. Drugs 77, 1865–1879 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kang, S., Tanaka, T., Narazaki, M. & Kishimoto, T. Targeting interleukin-6 signaling in clinic. Immunity 50, 1007–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Pawar, A. et al. Risk of serious infections in tocilizumab versus other biologic drugs in patients with rheumatoid arthritis: a multidatabase cohort study. Ann. Rheum. Dis. 78, 456–464 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Soukas, A. A., Hao, H. & Wu, L. Metformin as anti-aging therapy: is it for everyone? Trends Endocrinol. Metab. 30, 745–755 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Miller, R. A. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 66A, 191–201 (2011).

    Article  CAS  Google Scholar 

  130. Michiels, C. F., Kurdi, A., Timmermans, J.-P., De Meyer, G. R. Y. & Martinet, W. Spermidine reduces lipid accumulation and necrotic core formation in atherosclerotic plaques via induction of autophagy. Atherosclerosis 251, 319–327 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.J.T. is supported by NIH award F32-HL1400728, and D.R.G. is supported by NIH awards R01-HL127687, R01-AI138347 and K07-AG050096.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Daniel R. Goldstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks C. Leeuwenburgh, H. Oliveira, A. Tedgui and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Clonal haematopoiesis of indeterminate potential

(CHIP). Clonal expansion of haematopoietic stem cells that carry certain somatic mutations that confer a cell proliferation advantage.

Mitophagy

Type of macroautophagy for the removal of damaged or dysfunctional mitochondria.

Senescence

A state of permanent replicative arrest in normally proliferative cells.

Senescence-associated secretory phenotype

(SASP). Secretion of cytokines, chemokines, growth factors and proteases by senescent cells.

Variant allele frequency

(VAF). The proportion of sequences that match a gene mutation divided by the overall coverage at that gene locus.

Efferocytosis

Phagocytosis of apoptotic cells by phagocytic cells.

Mitochondrial damage-associated molecular patterns

(mtDAMPs). Pro-inflammatory components of mitochondria that are released as a result of mitochondrial dysfunction or damage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyrrell, D.J., Goldstein, D.R. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol 18, 58–68 (2021). https://doi.org/10.1038/s41569-020-0431-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-020-0431-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing