Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension

Abstract

High blood pressure is one of the most important risk factors for ischaemic heart disease, stroke, other cardiovascular diseases, chronic kidney disease and dementia. Mean blood pressure and the prevalence of raised blood pressure have declined substantially in high-income regions since at least the 1970s. By contrast, blood pressure has risen in East, South and Southeast Asia, Oceania and sub-Saharan Africa. Given these trends, the prevalence of hypertension is now higher in low-income and middle-income countries than in high-income countries. In 2015, an estimated 8.5 million deaths were attributable to systolic blood pressure >115 mmHg, 88% of which were in low-income and middle-income countries. Measures such as increasing the availability and affordability of fresh fruits and vegetables, lowering the sodium content of packaged and prepared food and staples such as bread, and improving the availability of dietary salt substitutes can help lower blood pressure in the entire population. The use and effectiveness of hypertension treatment vary substantially across countries. Factors influencing this variation include a country’s financial resources, the extent of health insurance and health facilities, how frequently people interact with physicians and non-physician health personnel, whether a clear and widely adopted clinical guideline exists and the availability of medicines. Scaling up treatment coverage and improving its community effectiveness can substantially reduce the health burden of hypertension.

Key points

  • Hypertension is more prevalent in low-income and middle-income countries than in high-income countries.

  • In 2015, 8.5 million deaths were associated with high blood pressure, 88% of which were in low-income and middle-income countries.

  • Population-level measures, such as increasing the availability and affordability of fresh fruits and vegetables and lowering the sodium content of packaged and prepared foods, can lower blood pressure in the entire population.

  • Effective use of pharmacological treatment for people with hypertension varies substantially globally and is particularly low in low-income and middle-income countries.

  • Scaling up treatment coverage and improving its effectiveness can substantially reduce the health burden of hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in blood pressure by region.
Fig. 2: Worldwide systolic blood pressure.
Fig. 3: Worldwide diastolic blood pressure.
Fig. 4: Worldwide prevalence of raised blood pressure.
Fig. 5: Association between country characteristics and blood pressure.
Fig. 6: Comparison of female and male blood pressures.
Fig. 7: Deaths attributable to high blood pressure.

Similar content being viewed by others

References

  1. Olsen, M. H. et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet 388, 2665–2712 (2016).

    Article  PubMed  Google Scholar 

  2. Xie, X. et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet 387, 435–443 (2016).

    Article  PubMed  Google Scholar 

  3. Bundy, J. D. et al. Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis. JAMA Cardiol. 2, 775–781 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).

    Article  PubMed  Google Scholar 

  5. Lewington, S. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2002).

    Article  PubMed  Google Scholar 

  6. Lawes, C. M. M. et al. Blood pressure and cardiovascular disease in the Asia Pacific region. J. Hypertens. 21, 707–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Czernichow, S. et al. The effects of blood pressure reduction and of different blood pressure-lowering regimens on major cardiovascular events according to baseline blood pressure: meta-analysis of randomized trials. J. Hypertens. 29, 4–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Singh, G. M. et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS ONE 8, e65174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kennelly, S. P., Lawlor, B. A. & Kenny, R. A. Blood pressure and dementia – a comprehensive review. Ther. Adv. Neurol. Disord. 2, 241–260 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharp, S. I. et al. Hypertension is a potential risk factor for vascular dementia: systematic review. Int. J. Geriatr. Psychiatry 26, 661–669 (2011).

    Article  PubMed  Google Scholar 

  11. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment. Lancet Diabetes Endocrinol. 2, 634–647 (2014).

    Article  Google Scholar 

  12. Kontis, V. et al. Contribution of six risk factors to achieving the 25×25 non-communicable disease mortality reduction target: a modelling study. Lancet 384, 427–437 (2014).

    Article  PubMed  Google Scholar 

  13. Kontis, V. et al. Regional contributions of six preventable risk factors to achieving the 25 × 25 non-communicable disease mortality reduction target: a modelling study. Lancet Glob. Health 3, e746–e757 (2015).

    Article  PubMed  Google Scholar 

  14. World Health Organization. NCD global monitoring framework (WHO, 2013).

  15. Ni, M. The Yellow Emperor’s Classic of Medicine: A New Translation of the Neijing Suwen with Commentary (Shambhala, 1995).

  16. Freis, E. D. in Hypertension: Pathophysiology, Diagnosis and Management Ch. 164 (eds Laragh, J. H. & Brenner, B. M.) 2741–2751 (Raven, 1995).

  17. Beevers, D. G. & Robertson, J. I. S. in Comprehensive hypertension (eds Lip, G. Y. H. & Hall, J. E.) 3–20 (Elsevier, 2007).

  18. Esunge, P. M. From blood pressure to hypertension: the history of research. J. R. Soc. Med. 84, 621 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghasemzadeh, N. & Zafari, A. M. A brief journey into the history of the arterial pulse. Cardiol. Res. Pract. 2011, 164832 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aird, W. C. Discovery of the cardiovascular system: from Galen to William Harvey. J. Thromb. Haemost. 9 (Suppl 1), 118–129 (2011).

    Article  PubMed  Google Scholar 

  21. Cameron, J. S. & Hicks, J. Frederick Akbar Mahomed and his role in the description of hypertension at Guy’s Hospital. Kidney Int. 49, 1488–1506 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Booth, J. A short history of blood pressure measurement. Proc. R. Soc. Med. 70, 793–799 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Brien, E. & Fitzgerald, D. The history of blood pressure measurement. J. Hum. Hypertens. 8, 73–84 (1994).

    PubMed  Google Scholar 

  24. Fisher, J. W. The diagnostic value of the sphygmomanometer in examinations for life insurance. JAMA LXIII, 1752–1754 (1914).

    Article  Google Scholar 

  25. Tzoulaki, I., Elliott, P., Kontis, V. & Ezzati, M. Worldwide exposures to cardiovascular risk factors and associated health effects: current knowledge and data gaps. Circulation 133, 2314–2333 (2016).

    Article  PubMed  Google Scholar 

  26. Kotchen, T. A. Historical trends and milestones in hypertension research: a model of the process of translational research. Hypertension 58, 522–538 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Kannel, W. B., Dawber, T. R., Kagan, A., Revotskie, N. & Stokes, J., 3rd. Factors of risk in the development of coronary heart disease–six year follow-up experience. The Framingham Study. Ann. Intern. Med. 55, 33–50 (1961).

    Article  CAS  PubMed  Google Scholar 

  28. Vasan, R. S. et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N. Engl. J. Med. 345, 1291–1297 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. [No authors listed]. Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA 202, 1028–1034 (1967).

    Article  Google Scholar 

  30. [No authors listed]. Effects of treatment on morbidity in hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 mm Hg. JAMA 213, 1143–1152 (1970).

    Article  Google Scholar 

  31. Stamler, J., Stamler, R. & Neaton, J. D. Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch. Intern. Med. 153, 598–615 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Turnbull, F. et al. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch. Intern. Med. 165, 1410–1419 (2005).

    Article  PubMed  Google Scholar 

  33. Blood Pressure Lowering Treatment Trialists Collaboration. Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. Lancet 384, 591–598 (2014).

    Article  Google Scholar 

  34. Karmali, K. N. et al. Blood pressure-lowering treatment strategies based on cardiovascular risk versus blood pressure: a meta-analysis of individual participant data. PLoS Med. 15, e1002538 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. SPRINT Research Group. et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 373, 2103–2116 (2015).

    Article  CAS  Google Scholar 

  36. Brouwer, T. F. et al. Intensive blood pressure lowering in patients with and patients without type 2 diabetes: a pooled analysis from two randomized trials. Diabetes Care 41, 1142–1148 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Verdecchia, P., Angeli, F., Gentile, G. & Reboldi, G. More versus less intensive blood pressure-lowering strategy: cumulative evidence and trial sequential analysis. Hypertension 68, 642–653 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Wallner, A., Hirz, A., Schober, E., Harbich, H. & Waldhoer, T. Evolution of cardiovascular risk factors among 18-year-old males in Austria between 1986 and 2005. Wien. Klin. Wochenschr. 122, 152–158 (2010).

    Article  PubMed  Google Scholar 

  39. Ulmer, H., Kelleher, C. C., Fitz-Simon, N., Diem, G. & Concin, H. Secular trends in cardiovascular risk factors: an age-period cohort analysis of 698,954 health examinations in 181,350 Austrian men and women. J. Intern. Med. 261, 566–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Joossens, J. V. & Kesteloot, H. Trends in systolic blood pressure, 24-hour sodium excretion, and stroke mortality in the elderly in Belgium. Am. J. Med. 90, 5S–11S (1991).

    Article  CAS  PubMed  Google Scholar 

  41. McAlister, F. A. et al. Changes in the rates of awareness, treatment and control of hypertension in Canada over the past two decades. CMAJ 183, 1007–1013 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Andersen, U. O. & Jensen, G. Decreasing population blood pressure: 15 years of follow-up in the Copenhagen City Heart Study (CCHS). Blood Press. 13, 176–182 (2004).

    Article  PubMed  Google Scholar 

  43. Borodulin, K. et al. Forty-year trends in cardiovascular risk factors in Finland. Eur. J. Public. Health 25, 539–546 (2015).

    Article  PubMed  Google Scholar 

  44. Nuotio, J. et al. Cardiovascular risk factors in 2011 and secular trends since 2007: the Cardiovascular Risk in Young Finns Study. Scand. J. Public Health 42, 563–571 (2014).

    Article  PubMed  Google Scholar 

  45. Heinemann, L., Barth, W. & Hoffmeister, H. Trend of cardiovascular risk factors in the East German population 1968-1992. J. Clin. Epidemiol. 48, 787–795 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Di Lonardo, A., Donfrancesco, C., Palmieri, L., Vanuzzo, D. & Giampaoli, S. Time trends of high blood pressure prevalence, awareness and control in the Italian general population: surveys of the National Institute of Health. High Blood Press. Cardiovasc. Prev. 24, 193–200 (2017).

    Article  PubMed  Google Scholar 

  47. Ueshima, H., Tatara, K., Asakura, S. & Okamoto, M. Declining trends in blood pressure level and the prevalence of hypertension, and changes in related factors in Japan, 1956–1980. J. Chronic Dis. 40, 137–147 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Miura, K. Epidemiology and prevention of hypertension in Japanese: how could Japan get longevity? EPMA J. 2, 59–64 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hopstock, L. A. et al. Longitudinal and secular trends in blood pressure among women and men in birth cohorts born between 1905 and 1977: the Tromsø Study 1979 to 2008. Hypertension 66, 496–501 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Pereira, M. et al. Trends in hypertension prevalence (1990-2005) and mean blood pressure (1975-2005) in Portugal: a systematic review. Blood Press. 21, 220–226 (2012).

    Article  PubMed  Google Scholar 

  51. Bjorkelund, C. et al. Secular trends in cardiovascular risk factors with a 36-year perspective: observations from 38- and 50-year-olds in the Population Study of Women in Gothenburg. Scand. J. Prim. Health Care 26, 140–146 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rosengren, A. et al. Secular changes in cardiovascular risk factors over 30 years in Swedish men aged 50: the study of men born in 1913, 1923, 1933 and 1943. J. Intern. Med. 247, 111–118 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Falaschetti, E., Mindell, J., Knott, C. & Poulter, N. Hypertension management in England: a serial cross-sectional study from 1994 to 2011. Lancet 383, 1912–1919 (2014).

    Article  PubMed  Google Scholar 

  54. Drizd, T., Dannenberg, A. L. & Engel, A. Blood pressure levels in persons 18-74 years of age in 1976-80, and trends in blood pressure from 1960 to 1980 in the United States. Vital. Health Stat. 11, 1–68 (1986).

    Google Scholar 

  55. Kumanyika, S. K., Landis, J. R., Matthews-Cook, Y. L., Almy, S. L. & Boehmer, S. J. Systolic blood pressure trends in US adults between 1960 and 1980: influence of antihypertensive drug therapy. Am. J. Epidemiol. 148, 528–538 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Burt, V. L. et al. Trends in the prevalence, awareness, treatment, and control of hypertension in the adult US population. Data from the health examination surveys, 1960 to 1991. Hypertension 26, 60–69 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Egan, B. M., Zhao, Y. & Axon, R. N. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA 303, 2043–2050 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Goff, D. C., Gillespie, C., Howard, G. & Labarthe, D. R. Is the obesity epidemic reversing favorable trends in blood pressure? Evidence from cohorts born between 1890 and 1990 in the United States. Ann. Epidemiol. 22, 554–561 (2012).

    Article  PubMed  Google Scholar 

  59. Bromfield, S. G. et al. Trends in hypertension prevalence, awareness, treatment, and control among US adults 80 years and older, 1988-2010. J. Clin. Hypertens. 16, 270–276 (2014).

    Article  Google Scholar 

  60. Cifkova, R. et al. Longitudinal trends in cardiovascular mortality and blood pressure levels, prevalence, awareness, treatment, and control of hypertension in the Czech population from 1985 to 2007/2008. J. Hypertens. 28, 2196–2203 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Heiniger, S., Viswanathan, B., Gedeon, J., Paccaud, F. & Bovet, P. Trends in prevalence, awareness, treatment and control of high blood pressure in the Seychelles between 1989 and 2013. J. Hypertens. 35, 1465–1473 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Diaz, A. & Ferrante, D. Trends in prevalence of hypertension in Argentina in the last 25 years: a systematic review of observational studies. Rev. Panam. Salud Publica 38, 496–503 (2015).

    PubMed  Google Scholar 

  63. Guo, J. et al. The dynamics of hypertension prevalence, awareness, treatment, control and associated factors in Chinese adults: results from CHNS 1991-2011. J. Hypertens. 33, 1688–1696 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Bosu, W. K. Epidemic of hypertension in Ghana: a systematic review. BMC Public Health 10, 418 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gupta, R. Trends in hypertension epidemiology in India. J. Hum. Hypertens. 18, 73–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Ogah, O. S. et al. Blood pressure, prevalence of hypertension and hypertension related complications in Nigerian Africans: a review. World J. Cardiol. 4, 327–340 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zerba, K. E., Friedlaender, J. S. & Sing, C. F. Heterogeneity of the blood pressure distribution among Solomon Islands societies with increasing acculturation. Am. J. Phys. Anthropol. 81, 493–511 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Lanti, M. et al. Long-term trends in major cardiovascular risk factors in cohorts of aging men in the European cohorts of the Seven Countries Study. Aging Clin. Exp. Res. 17, 306–315 (2005).

    Article  PubMed  Google Scholar 

  69. [No authors listed]. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 297, 319–328 (1988).

    Article  Google Scholar 

  70. Evans, A. et al. Trends in coronary risk factors in the WHO MONICA project. Int. J. Epidemiol. 30 (Suppl 1), 35–40 (2001).

    Article  Google Scholar 

  71. Tunstall-Pedoe, H., Connaghan, J., Woodward, M., Tolonen, H. & Kuulasmaa, K. Pattern of declining blood pressure across replicate population surveys of the WHO MONICA project, mid-1980s to mid-1990s, and the role of medication. BMJ 332, 629–635 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Antikainen, R. L. et al. Trends in the prevalence, awareness, treatment and control of hypertension: the WHO MONICA Project. Eur. J. Cardiovasc. Prev. Rehabil. 13, 13–29 (2006).

    PubMed  Google Scholar 

  73. Chow, C. K. et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 310, 959–968 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Basu, S. & Millett, C. Social epidemiology of hypertension in middle-income countries: determinants of prevalence, diagnosis, treatment, and control in the WHO SAGE study. Hypertension 62, 18–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Lloyd-Sherlock, P., Beard, J., Minicuci, N., Ebrahim, S. & Chatterji, S. Hypertension among older adults in low- and middle-income countries: prevalence, awareness and control. Int. J. Epidemiol. 43, 116–128 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rubinstein, A. L. et al. Prevalence, awareness, treatment, and control of hypertension in the Southern Cone of Latin America. Am. J. Hypertens. 29, 1343–1352 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Whelton, P. K., He, J. & Muntner, P. Prevalence, awareness, treatment and control of hypertension in North America, North Africa and Asia. J. Hum. Hypertens. 18, 545–551 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Hernandez-Hernandez, R., Armas-Padilla, M. C., Armas-Hernandez, M. J. & Velasco, M. Hypertension and cardiovascular health in Venezuela and Latin American countries. J. Hum. Hypertens. 14 (Suppl 1), 2–5 (2000).

    Article  Google Scholar 

  79. Sozmen, K. et al. Cardiovascular risk factor trends in the Eastern Mediterranean region: evidence from four countries is alarming. Int. J. Public. Health 60 (Suppl 1), 3–11 (2015).

    Article  Google Scholar 

  80. Xi, B. et al. Recent blood pressure trends in adolescents from China, Korea, Seychelles and the United States of America, 1997-2012. J. Hypertens. 34, 1948–1958 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Joffres, M. et al. Hypertension prevalence, awareness, treatment and control in national surveys from England, the USA and Canada, and correlation with stroke and ischaemic heart disease mortality: a cross-sectional study. BMJ Open 3, e003423 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Motlagh, B., O’Donnell, M. & Yusuf, S. Prevalence of cardiovascular risk factors in the Middle East: a systematic review. Eur. J. Cardiovasc. Prev. Rehabil. 16, 268–280 (2009).

    Article  PubMed  Google Scholar 

  83. Adeloye, D. & Basquill, C. Estimating the prevalence and awareness rates of hypertension in Africa: a systematic analysis. PLoS ONE 9, e104300 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ogah, O. S. & Rayner, B. L. Recent advances in hypertension in sub-Saharan Africa. Heart 99, 1390–1397 (2013).

    Article  PubMed  Google Scholar 

  85. Ataklte, F. et al. Burden of undiagnosed hypertension in sub-Saharan Africa: a systematic review and meta-analysis. Hypertension 65, 291–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Burroughs Pena, M. S., Mendes Abdala, C. V., Silva, L. C. & Ordunez, P. Usefulness for surveillance of hypertension prevalence studies in Latin America and the Caribbean: the past 10 years. Rev. Panam. Salud Publica 32, 15–21 (2012).

    Article  PubMed  Google Scholar 

  87. Pereira, M., Lunet, N., Azevedo, A. & Barros, H. Differences in prevalence, awareness, treatment and control of hypertension between developing and developed countries. J. Hypertens. 27, 963–975 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Ikeda, N. et al. Control of hypertension with medication: a comparative analysis of national surveys in 20 countries. Bull. World Health Organ. 92, 10–19C (2014).

    Article  PubMed  Google Scholar 

  89. Yang, F. et al. Prevalence, awareness, treatment, and control of hypertension in the older population: results from the multiple national studies on ageing. J. Am. Soc. Hypertens. 10, 140–148 (2016).

    Article  PubMed  Google Scholar 

  90. Roulet, C. et al. Secular trends in blood pressure in children: a systematic review. J. Clin. Hypertens. 19, 488–497 (2017).

    Article  Google Scholar 

  91. Irazola, V. E. et al. Hypertension prevalence, awareness, treatment, and control in selected LMIC communities: results from the NHLBI/UHG network of Centers of Excellence for Chronic Diseases. Glob. Heart 11, 47–59 (2016).

    Article  PubMed  Google Scholar 

  92. Geldsetzer, P. et al. The state of hypertension care in 44 low-income and middle-income countries: a cross-sectional study of nationally representative individual-level data from 1.1 million adults. Lancet 394, 652–662 (2019).

    Article  PubMed  Google Scholar 

  93. McCarron, P., Smith, G. D. & Okasha, M. Secular changes in blood pressure in childhood, adolescence and young adulthood: systematic review of trends from 1948 to 1998. J. Hum. Hypertens. 16, 677–689 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Wolf-Maier, K. et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 289, 2363–2369 (2003).

    Article  PubMed  Google Scholar 

  95. NCD Risk Factor Collaboration (NCD-RisC). Long-term and recent trends in hypertension awareness, treatment, and control in 12 high-income countries: an analysis of 123 nationally representative surveys. Lancet 394, 639–651 (2019).

    Article  Google Scholar 

  96. Kearney, P. M., Whelton, M., Reynolds, K., Whelton, P. K. & He, J. Worldwide prevalence of hypertension: a systematic review. J. Hypertens. 22, 11–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Kearney, P. M. et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005).

    Article  PubMed  Google Scholar 

  98. Mills, K. T. et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 134, 441–450 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lawes, C. M. et al. Blood pressure and the global burden of disease 2000. Part 1: estimates of blood pressure levels. J. Hypertens. 24, 413–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Danaei, G. et al. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. Lancet 377, 568–577 (2011).

    Article  PubMed  Google Scholar 

  101. Forouzanfar, M. H. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015. JAMA 317, 165–182 (2017).

    Article  PubMed  Google Scholar 

  102. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 389, 37–55 (2017).

    Article  Google Scholar 

  103. Sacks, F. M. & Campos, H. Dietary therapy in hypertension. N. Engl. J. Med. 362, 2102–2112 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Danaei, G. et al. The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation 127, 1493–1502 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ezzati, M. et al. Rethinking the “diseases of affluence” paradigm: global patterns of nutritional risks in relation to economic development. PLoS Med. 2, e133 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bentham, J. et al. Multidimensional characterization of global food supply from 1961 to 2013. Nat. Food 1, 70–75 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gregg, E. W. et al. Secular trends in cardiovascular disease risk factors according to body mass index in US adults. JAMA 293, 1868–1874 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Micha, R. et al. Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 5, e008705 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Powles, J. et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3, e003733 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Article  Google Scholar 

  111. Stevens, G. A. et al. Trends in mild, moderate, and severe stunting and underweight, and progress towards MDG 1 in 141 developing countries: a systematic analysis of population representative data. Lancet 380, 824–834 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  112. NCD Risk Factor Collaboration (NCD-RisC). A century of trends in adult human height. eLife 5, e13410 (2016).

    Article  Google Scholar 

  113. Victora, C. G. et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371, 340–357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. He, F. J., Li, J. & Macgregor, G. A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 346, f1325 (2013).

    Article  PubMed  Google Scholar 

  115. Aburto, N. J. et al. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 346, f1378 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Roerecke, M. et al. The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health 2, e108–e120 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Virdis, A., Giannarelli, C., Neves, M. F., Taddei, S. & Ghiadoni, L. Cigarette smoking and hypertension. Curr. Pharm. Des. 16, 2518–2525 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Cornelissen, V. A. & Smart, N. A. Exercise training for blood pressure: a systematic review and meta-analysis. J. Am. Heart Assoc. 2, e004473 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cai, Y. et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: a systematic review and meta-analysis. Hypertension 68, 62–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Munzel, T., Gori, T., Babisch, W. & Basner, M. Cardiovascular effects of environmental noise exposure. Eur. Heart J. 35, 829–836 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gasperin, D., Netuveli, G., Dias-da-Costa, J. S. & Pattussi, M. P. Effect of psychological stress on blood pressure increase: a meta-analysis of cohort studies. Cad. Saude Publica 25, 715–726 (2009).

    Article  PubMed  Google Scholar 

  122. NCD Risk Factor Collaboration (NCD-RisC). Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: a pooled analysis of 1018 population-based measurement studies with 88.6 million participants. Int. J. Epidemiol. 47, 872–883i (2018).

    Article  Google Scholar 

  123. He, F. J., Pombo-Rodrigues, S. & Macgregor, G. A. Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 4, e004549 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ikeda, N., Gakidou, E., Hasegawa, T. & Murray, C. J. Understanding the decline of mean systolic blood pressure in Japan: an analysis of pooled data from the National Nutrition Survey, 1986-2002. Bull. World Health Organ. 86, 978–988 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Laatikainen, T. et al. Sodium in the Finnish diet: 20-year trends in urinary sodium excretion among the adult population. Eur. J. Clin. Nutr. 60, 965–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Du, S. et al. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am. J. Clin. Nutr. 99, 334–343 (2014).

    Article  CAS  Google Scholar 

  127. Bernstein, A. M. & Willett, W. C. Trends in 24-h urinary sodium excretion in the United States, 1957-2003: a systematic review. Am. J. Clin. Nutr. 92, 1172–1180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee, H. S., Duffey, K. J. & Popkin, B. M. Sodium and potassium intake patterns and trends in South Korea. J. Hum. Hypertens. 27, 298–303 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Johnson, C. et al. Mean population salt consumption in India: a systematic review. J. Hypertens. 35, 3–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Sarno, F., Claro, R. M., Levy, R. B., Bandoni, D. H. & Monteiro, C. A. Estimated sodium intake for the Brazilian population, 2008-2009 [Portuguese]. Rev. Saude Publica 47, 571–578 (2013).

    Article  PubMed  Google Scholar 

  131. Bilano, V. et al. Global trends and projections for tobacco use, 1990-2025: an analysis of smoking indicators from the WHO Comprehensive Information Systems for Tobacco Control. Lancet 385, 966–976 (2015).

    Article  PubMed  Google Scholar 

  132. World Health Organization. Global status report on slcohol and health (WHO, 2014).

  133. Lewington, S. et al. Seasonal variation in blood pressure and its relationship with outdoor temperature in 10 diverse regions of China: the China Kadoorie Biobank. J. Hypertens. 30, 1383–1391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Saeki, K. et al. Influence of room heating on ambulatory blood pressure in winter: a randomised controlled study. J. Epidemiol. Community Health 67, 484–490 (2013).

    Article  PubMed  Google Scholar 

  135. Wang, Q. et al. Environmental ambient temperature and blood pressure in adults: a systematic review and meta-analysis. Sci. Total Environ. 575, 276–286 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Dong, B., Wang, Z., Song, Y., Wang, H. J. & Ma, J. Understanding trends in blood pressure and their associations with body mass index in Chinese children, from 1985 to 2010: a cross-sectional observational study. BMJ Open 5, e009050 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Khang, Y. H. & Lynch, J. W. Exploring determinants of secular decreases in childhood blood pressure and hypertension. Circulation 124, 397–405 (2011).

    Article  PubMed  Google Scholar 

  138. Chiolero, A. et al. Discordant secular trends in elevated blood pressure and obesity in children and adolescents in a rapidly developing country. Circulation 119, 558–565 (2009).

    Article  PubMed  Google Scholar 

  139. Xi, B. et al. Trends in elevated blood pressure among US children and adolescents: 1999-2012. Am. J. Hypertens. 29, 217–225 (2016).

    Article  PubMed  Google Scholar 

  140. Reckelhoff, J. F. Gender differences in the regulation of blood pressure. Hypertension 37, 1199–1208 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Marmot, M. G. et al. Health inequalities among British civil servants: the Whitehall II study. Lancet 337, 1387–1393 (1991).

    Article  CAS  PubMed  Google Scholar 

  142. Colhoun, H. M., Hemingway, H. & Poulter, N. R. Socio-economic status and blood pressure: an overview analysis. J. Hum. Hypertens. 12, 91–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Ezzati, M., Oza, S., Danaei, G. & Murray, C. J. Trends and cardiovascular mortality effects of state-level blood pressure and uncontrolled hypertension in the United States. Circulation 117, 905–914 (2008).

    Article  PubMed  Google Scholar 

  144. Danaei, G. et al. The promise of prevention: the effects of four preventable risk factors on national life expectancy and life expectancy disparities by race and county in the United States. PLoS Med. 7, e1000248 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Di Cesare, M. et al. Inequalities in non-communicable diseases and effective responses. Lancet 381, 585–597 (2013).

    Article  PubMed  Google Scholar 

  146. Bennett, S. Cardiovascular risk factors in Australia: trends in socioeconomic inequalities. J. Epidemiol. Community Health 49, 363–372 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Peltonen, M., Huhtasaari, F., Stegmayr, B., Lundberg, V. & Asplund, K. Secular trends in social patterning of cardiovascular risk factor levels in Sweden. The Northern Sweden MONICA Study 1986-1994. Multinational Monitoring of Trends and Determinants in Cardiovascular Disease. J. Intern. Med. 244, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Bartley, M., Fitzpatrick, R., Firth, D. & Marmot, M. Social distribution of cardiovascular disease risk factors: change among men in England 1984-1993. J. Epidemiol. Community Health 54, 806–814 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ferrario, M. et al. Time trends of major coronary risk factors in a northern Italian population (1986-1994). How remarkable are socioeconomic differences in an industrialized low CHD incidence country? Int. J. Epidemiol. 30, 285–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Galobardes, B., Costanza, M. C., Bernstein, M. S., Delhumeau, C. & Morabia, A. Trends in risk factors for lifestyle-related diseases by socioeconomic position in Geneva, Switzerland, 1993-2000: health inequalities persist. Am. J. Public Health 93, 1302–1309 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kanjilal, S. et al. Socioeconomic status and trends in disparities in 4 major risk factors for cardiovascular disease among US adults, 1971-2002. Arch. Intern. Med. 166, 2348–2355 (2006).

    Article  PubMed  Google Scholar 

  152. Scholes, S. et al. Persistent socioeconomic inequalities in cardiovascular risk factors in England over 1994-2008: a time-trend analysis of repeated cross-sectional data. BMC Public Health 12, 129 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bleich, S. N., Jarlenski, M. P., Bell, C. N. & LaVeist, T. A. Health inequalities: trends, progress, and policy. Annu. Rev. Public Health 33, 7–40 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  154. SarrafZadegan, N. & AminiNik, S. Blood pressure pattern in urban and rural areas in Isfahan, Iran. J. Hum. Hypertens. 11, 425–428 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Agyemang, C. Rural and urban differences in blood pressure and hypertension in Ghana, West Africa. Public Health 120, 525–533 (2006).

    Article  PubMed  Google Scholar 

  156. Addo, J., Smeeth, L. & Leon, D. A. Hypertension in sub-saharan Africa: a systematic review. Hypertension 50, 1012–1018 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Conen, D., Glynn, R. J., Ridker, P. M., Buring, J. E. & Albert, M. A. Socioeconomic status, blood pressure progression, and incident hypertension in a prospective cohort of female health professionals. Eur. Heart J. 30, 1378–1384 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Brummett, B. H. et al. Systolic blood pressure, socioeconomic status, and biobehavioral risk factors in a nationally representative US young adult sample. Hypertension 58, 161–166 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Cois, A. & Ehrlich, R. Analysing the socioeconomic determinants of hypertension in South Africa: a structural equation modelling approach. BMC Public Health 14, 414 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Li, J. et al. Urban-rural disparities in hypertension prevalence, detection, and medication use among Chinese adults from 1993 to 2011. Int. J. Equity Health 16, 50 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Osler, M. et al. Socioeconomic status and trends in risk factors for cardiovascular diseases in the Danish MONICA population, 1982-1992. J. Epidemiol. Community Health 54, 108–113 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Damasceno, A. et al. Hypertension prevalence, awareness, treatment, and control in Mozambique: urban/rural gap during epidemiological transition. Hypertension 54, 77–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Stringhini, S., Viswanathan, B., Gedeon, J., Paccaud, F. & Bovet, P. The social transition of risk factors for cardiovascular disease in the African region: evidence from three cross-sectional surveys in the Seychelles. Int. J. Cardiol. 168, 1201–1206 (2013).

    Article  PubMed  Google Scholar 

  164. Basit, A., Tanveer, S., Fawwad, A., Naeem, N. & NDSP Members. Prevalence and contributing risk factors for hypertension in urban and rural areas of Pakistan; a study from second National Diabetes Survey of Pakistan (NDSP) 2016–2017. Clin. Exp. Hypertens. 42, 218–224 (2020).

    Article  PubMed  Google Scholar 

  165. Padmavati, S. & Gupta, S. Blood pressure studies in rural and urban groups in Delhi. Circulation 19, 395–405 (1959).

    Article  CAS  PubMed  Google Scholar 

  166. Shaper, A. G. Cardiovascular disease in the tropics. 3. Blood pressure and hypertension. Br. Med. J. 3, 805–807 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sarki, A. M., Nduka, C. U., Stranges, S., Kandala, N. B. & Uthman, O. A. Prevalence of hypertension in low- and middle-income countries: a systematic review and meta-analysis. Medicine 94, e1959 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Leng, B., Jin, Y., Li, G., Chen, L. & Jin, N. Socioeconomic status and hypertension: a meta-analysis. J. Hypertens. 33, 221–229 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Murray, C. J. & Lopez, A. D. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349, 1436–1442 (1997).

    Article  CAS  PubMed  Google Scholar 

  170. Ezzati, M., Lopez, A. D., Rodgers, A., Vander Hoorn, S. & Murray, C. J. Selected major risk factors and global and regional burden of disease. Lancet 360, 1347–1360 (2002).

    Article  PubMed  Google Scholar 

  171. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  172. GBD Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1923–1994 (2018).

    Article  Google Scholar 

  173. Labarthe, D. & Ayala, C. Nondrug interventions in hypertension prevention and control. Cardiol. Clin. 20, 249–263 (2002).

    Article  PubMed  Google Scholar 

  174. Asaria, P., Chisholm, D., Mathers, C., Ezzati, M. & Beaglehole, R. Chronic disease prevention: health effects and financial costs of strategies to reduce salt intake and control tobacco use. Lancet 370, 2044–2053 (2007).

    Article  PubMed  Google Scholar 

  175. Prabhakaran, D. et al. Cardiovascular, respiratory, and related disorders: key messages from Disease Control Priorities, 3rd edition. Lancet 391, 1224–1236 (2018).

    Article  PubMed  Google Scholar 

  176. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013–2020 (WHO, 2013).

  177. Rabi, D. M. et al. Hypertension Canada’s 2020 comprehensive guidelines for the prevention, diagnosis, risk assessment, and treatment of hypertension in adults and children. Can. J. Cardiol. 36, 596–624 (2020).

    Article  PubMed  Google Scholar 

  178. Williams, B. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018).

    Article  PubMed  Google Scholar 

  179. Carey, R. M., Muntner, P., Bosworth, H. B. & Whelton, P. K. Prevention and control of hypertension: JACC Health Promotion Series. J. Am. Coll. Cardiol. 72, 1278–1293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Wilson, E. et al. Platform for international action on cardiovascular disease. Prev. Control. 1, 185–217 (2005).

    Google Scholar 

  181. Jorgensen, T. et al. Population-level changes to promote cardiovascular health. Eur. J. Prev. Cardiol. 20, 409–421 (2013).

    Article  PubMed  Google Scholar 

  182. He, F. J. & MacGregor, G. A. Role of salt intake in prevention of cardiovascular disease: controversies and challenges. Nat. Rev. Cardiol. 15, 371–377 (2018).

    Article  PubMed  Google Scholar 

  183. Thomopoulos, C., Parati, G. & Zanchetti, A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and meta-regression analyses of randomized trials. J. Hypertens. 32, 2285–2295 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Unger, T. et al. 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension 75, 1334–1357 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Joint Committee for Guideline Revision. 2018 Chinese guidelines for prevention and treatment of hypertension–A report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. J. Geriatr. Cardiol. 16, 182–241 (2019).

    PubMed Central  Google Scholar 

  186. Shah, S. N. et al. Indian guidelines on hypertension-IV (2019). J. Hum. Hypertens. 34, 745–758 (2020).

    Article  PubMed  Google Scholar 

  187. Division of Non-Communicable Diseases. Kenya national guidelines for cardiovascular diseases management (Ministry of Health, 2018).

  188. National Institute for Health and Clinical Excellence. Hypertension in adults: diagnosis and management. NICE guideline [NG136] (NICE, 2019).

  189. Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force. Hypertension 71, 1269–1324 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Wald, D. S., Law, M., Morris, J. K., Bestwick, J. P. & Wald, N. J. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am. J. Med. 122, 290–300 (2009).

    Article  PubMed  Google Scholar 

  191. Gupta, A. K., Arshad, S. & Poulter, N. R. Compliance, safety, and effectiveness of fixed-dose combinations of antihypertensive agents: a meta-analysis. Hypertension 55, 399–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Kaptoge, S. et al. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob. Health 7, e1332–e1345 (2019).

    Article  Google Scholar 

  193. Vedanthan, R. et al. Innovative approaches to hypertension control in low- and middle-income countries. Cardiol. Clin. 35, 99–115 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Feldman, R. D. et al. A simplified approach to the treatment of uncomplicated hypertension: a cluster randomized, controlled trial. Hypertension 53, 646–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Angell, S. Y., De Cock, K. M. & Frieden, T. R. A public health approach to global management of hypertension. Lancet 385, 825–827 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Patel, P. et al. Improved blood pressure control to reduce cardiovascular disease morbidity and mortality: the Standardized Hypertension Treatment and Prevention Project. J. Clin. Hypertens. 18, 1284–1294 (2016).

    Article  Google Scholar 

  197. Attaei, M. W. et al. Availability and affordability of blood pressure-lowering medicines and the effect on blood pressure control in high-income, middle-income, and low-income countries: an analysis of the PURE study data. Lancet Public Health 2, e411–e419 (2017).

    Article  PubMed  Google Scholar 

  198. Jaffe, M. G., Lee, G. A., Young, J. D., Sidney, S. & Go, A. S. Improved blood pressure control associated with a large-scale hypertension program. JAMA 310, 699–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Padwal, R. S., Bienek, A., McAlister, F. A., Campbell, N. R. & Outcomes Research Task Force of the Canadian Hypertension Education Program. Epidemiology of hypertension in Canada: an update. Can. J. Cardiol. 32, 687–694 (2016).

    Article  PubMed  Google Scholar 

  200. Campbell, N. R. & Sheldon, T. The Canadian effort to prevent and control hypertension: can other countries adopt Canadian strategies? Curr. Opin. Cardiol. 25, 366–372 (2010).

    Article  PubMed  Google Scholar 

  201. Anand, T. N., Joseph, L. M., Geetha, A. V., Prabhakaran, D. & Jeemon, P. Task sharing with non-physician health-care workers for management of blood pressure in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Glob. Health 7, e761–e771 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. McAlister, F. A. The Canadian Hypertension Education Program–a unique Canadian initiative. Can. J. Cardiol. 22, 559–564 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. He, J. et al. Effect of a community health worker-led multicomponent intervention on blood pressure control in low-income patients in Argentina: a randomized clinical trial. JAMA 318, 1016–1025 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Victor, R. G. et al. A cluster-randomized trial of blood-pressure reduction in black barbershops. N. Engl. J. Med. 378, 1291–1301 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Lu, X. et al. Interactive mobile health intervention and blood pressure management in adults. Hypertension 74, 697–704 (2019).

    Article  CAS  PubMed  Google Scholar 

  206. Schwalm, J.-D. et al. A community-based comprehensive intervention to reduce cardiovascular risk in hypertension (HOPE 4): a cluster-randomised controlled trial. Lancet 394, 1231–1242 (2019).

    Article  PubMed  Google Scholar 

  207. Shariful Islam, S. M. et al. Mobile phone text-messaging interventions aimed to prevent cardiovascular diseases (Text2PreventCVD): systematic review and individual patient data meta-analysis. Open. Heart 6, e001017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Jafar, T. H. et al. A community-based intervention for managing hypertension in rural South Asia. N. Engl. J. Med. 382, 717–726 (2020).

    Article  PubMed  Google Scholar 

  209. Sherrill, B., Halpern, M., Khan, S., Zhang, J. & Panjabi, S. Single-pill vs free-equivalent combination therapies for hypertension: a meta-analysis of health care costs and adherence. J. Clin. Hypertens. 13, 898–909 (2011).

    Article  Google Scholar 

  210. Chow, C. K. et al. Quarter-dose quadruple combination therapy for initial treatment of hypertension: placebo-controlled, crossover, randomised trial and systematic review. Lancet 389, 1035–1042 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Noah, B. et al. Impact of remote patient monitoring on clinical outcomes: an updated meta-analysis of randomized controlled trials. NPJ Digit. Med. 1, 20172 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Timpel, P., Oswald, S., Schwarz, P. E. H. & Harst, L. Mapping the evidence on the effectiveness of telemedicine interventions in diabetes, dyslipidemia, and hypertension: an umbrella review of systematic reviews and meta-analyses. J. Med. Internet Res. 22, e16791 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Zullig, L. L., Melnyk, S. D., Goldstein, K., Shaw, R. J. & Bosworth, H. B. The role of home blood pressure telemonitoring in managing hypertensive populations. Curr. Hypertens. Rep. 15, 346–355 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Alessa, T., Hawley, M. S., Hock, E. S. & de Witte, L. Smartphone apps to support self-management of hypertension: review and content analysis. JMIR Mhealth Uhealth 7, e13645 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Kitt, J., Fox, R., Tucker, K. L. & McManus, R. J. New approaches in hypertension management: a review of current and developing technologies and their potential impact on hypertension care. Curr. Hypertens. Rep. 21, 44 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Li, R., Liang, N., Bu, F. & Hesketh, T. The effectiveness of self-management of hypertension in adults using mobile health: systematic review and meta-analysis. JMIR Mhealth Uhealth 8, e17776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  217. World Health Organization. Global Hearts Initiative, working together to promote cardiovascular health (WHO, 2018).

  218. Adler, A. J. et al. Reducing cardiovascular mortality through prevention and management of raised blood pressure: a World Heart Federation roadmap. Glob. Heart 10, 111–122 (2015).

    Article  PubMed  Google Scholar 

  219. Dzudie, A. et al. Roadmap to achieve 25% hypertension control in Africa by 2025. Cardiovasc. J. Afr. 28, 262–272 (2017).

    Article  PubMed  Google Scholar 

  220. Frieden, T. R. & Bloomberg, M. R. Saving an additional 100 million lives. Lancet 391, 709–712 (2018).

    Article  PubMed  Google Scholar 

  221. The World Bank. Tracking universal health coverage: 2017 global monitoring report (The World Bank, 2017).

  222. Guan, W. J. et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur. Respir. J. 55, 2000547 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Chudasama, Y. V. et al. Multimorbidity and SARS-CoV-2 infection in UK Biobank. Diabetes Metab. Syndr. 14, 775–776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Richardson, S. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 323, 2052–2059 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Rodriguez-Morales, A. J. et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med. Infect. Dis. 34, 101623 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Yang, J. et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int. J. Infect. Dis. 94, 91–95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Garg, S. et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 – COVID-NET, 14 states, March 1–30, 2020. MMWR 69, 458–464 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Singh, A. K. et al. Prevalence of co-morbidities and their association with mortality in patients with COVID-19: a systematic review and meta-analysis. Diabetes Obes. Metab. 22, 1915–1924 (2020).

    Article  CAS  PubMed  Google Scholar 

  230. Hamer, M., Gale, C. R., Kivimaki, M. & Batty, G. D. Overweight, obesity, and risk of hospitalization for COVID-19: a community-based cohort study of adults in the United Kingdom. Proc. Natl Acad. Sci. USA 117, 21011–21013 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Gao, C. et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. Eur. Heart J. 41, 2058–2066 (2020).

    Article  CAS  PubMed  Google Scholar 

  232. Atkins, J. L. et al. Preexisting comorbidities predicting COVID-19 and mortality in the UK Biobank Community Cohort. J. Gerontol. A 75, 2224–2230 (2020).

    Article  CAS  Google Scholar 

  233. Williamson, E. J. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 584, 430–436 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Iaccarino, G. et al. Age and multimorbidity predict death among COVID-19 patients: results of the SARS-RAS study of the Italian Society of Hypertension. Hypertension 76, 366–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  235. Schiffrin, E. L., Flack, J. M., Ito, S., Muntner, P. & Webb, R. C. Hypertension and COVID-19. Am. J. Hypertens. 33, 373–374 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Cariou, B. et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia 63, 1500–1515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zheng, Z. et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J. Infect. 81, e16–e25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Fang, L., Karakiulakis, G. & Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 8, e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. de Abajo, F. J. et al. Use of renin–angiotensin–aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. Lancet 395, 1705–1714 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Mehta, N. et al. Association of use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 5, 1020–1026 (2020).

    Article  PubMed  Google Scholar 

  242. Hypertension Canada. Hypertension Canada’s statement on: hypertension, ACE-inhibitors and angiotensin receptor blockers and COVID-19. Hypertension Canada https://hypertension.ca/media/ (2020).

  243. Kario, K. et al. COVID-19 and hypertension-evidence and practical management: Guidance from the HOPE Asia Network. J. Clin. Hypertens. 22, 1109–1119 (2020).

    Article  CAS  Google Scholar 

  244. Shibata, S. et al. Hypertension and related diseases in the era of COVID-19: a report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertens. Res. 43, 1028–1046 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. American College of Cardiology. HFSA/ACC/AHA Statement addresses concerns re: using RAAS antagonists in COVID-19 (ACC, 2020).

  246. European Society of Cardiology. Position statement of the ESC Council on hypertension on ACE-inhibitors and angiotensin receptor blockers (ESC, 2020).

  247. Kreutz, R. et al. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc. Res. 116, 1688–1699 (2020).

    Article  CAS  PubMed  Google Scholar 

  248. National Institute for Health and Clinical Excellence. Angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) in people with or at risk of COVID-19 (NICE, 2020).

  249. Baral, R., White, M. & Vassiliou, V. S. Effect of renin-angiotensin-aldosterone system inhibitors in patients with COVID-19: a systematic review and meta-analysis of 28,872 patients. Curr. Atheroscler. Rep. 22, 61 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Hippisley-Cox, J. et al. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart 106, 1503–1511 (2020).

    Article  CAS  PubMed  Google Scholar 

  251. Mancia, G., Rea, F., Ludergnani, M., Apolone, G. & Corrao, G. Renin-angiotensin-aldosterone system blockers and the risk of Covid-19. N. Engl. J. Med. 382, 2431–2440 (2020).

    Article  CAS  PubMed  Google Scholar 

  252. Wang, J. J. et al. Good or bad: application of RAAS inhibitors in COVID-19 patients with cardiovascular comorbidities. Pharmacol. Ther. 215, 107628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Kluge, H. H. P. et al. Prevention and control of non-communicable diseases in the COVID-19 response. Lancet 395, 1678–1680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Nadar, S. K., Tayebjee, M. H., Stowasser, M. & Byrd, J. B. Managing hypertension during the COVID-19 pandemic. J. Hum. Hypertens. 34, 415–417 (2020).

    Article  CAS  PubMed  Google Scholar 

  255. Chudasama, Y. V. et al. Impact of COVID-19 on routine care for chronic diseases: a global survey of views from healthcare professionals. Diabetes Metab. Syndr. 14, 965–967 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  256. World Health Organization. The impact of the COVID-19 pandemic on noncommunicable disease resources and services: results of a rapid assessment (WHO, 2020).

  257. Wright, A., Salazar, A., Mirica, M., Volk, L. A. & Schiff, G. D. The invisible epidemic: neglected chronic disease management during COVID-19. J. Gen. Intern. Med. 35, 2816–2817 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  258. British Medical Association. The hidden impact of COVID-19 on patient care in the NHS in England (BMA, 2020).

  259. Douglas, M., Katikireddi, S. V., Taulbut, M., McKee, M. & McCartney, G. Mitigating the wider health effects of covid-19 pandemic response. BMJ 369, m1557 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Tison, G. H. et al. Worldwide effect of COVID-19 on physical activity: a descriptive study. Ann. Intern. Med. 173, 767–770 (2020).

    Article  PubMed  Google Scholar 

  261. Kontis, V. et al. Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries. Nat. Med. 26, 1919–1928 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.Z. is supported by an Institutional Strategic Support Fund Springboard Fellowship from the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Contributions

B.Z. researched data for the article. All the authors contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Majid Ezzati.

Ethics declarations

Competing interests

M.E. reports a charitable grant from the AstraZeneca Young Health Programme and personal fees from Prudential, unrelated to this Review. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks D. Arnett and C. Tsioufis for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NCD-RisC: www.ncdrisc.org

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Perel, P., Mensah, G.A. et al. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat Rev Cardiol 18, 785–802 (2021). https://doi.org/10.1038/s41569-021-00559-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-021-00559-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing