Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heart failure with mid-range or mildly reduced ejection fraction

Abstract

Left ventricular ejection fraction (EF) remains the major parameter for diagnosis, phenotyping, prognosis and treatment decisions in heart failure. The 2016 ESC heart failure guidelines introduced a third EF category for an EF of 40–49%, defined as heart failure with mid-range EF (HFmrEF). This category has been largely unexplored compared with heart failure with reduced EF (HFrEF; defined as EF <40% in this Review) and heart failure with preserved EF (HFpEF; defined as EF ≥50%). The prevalence of HFmrEF within the overall population of patients with HF is 10–25%. HFmrEF seems to be an intermediate clinical entity between HFrEF and HFpEF in some respects, but more similar to HFrEF in others, in particular with regard to the high prevalence of ischaemic heart disease in these patients. HFmrEF is milder than HFrEF, and the risk of cardiovascular events is lower in patients with HFmrEF or HFpEF than in those with HFrEF. By contrast, the risk of non-cardiovascular adverse events is similar or greater in patients with HFmrEF or HFpEF than in those with HFrEF. Evidence from post hoc and subgroup analyses of randomized clinical trials and a trial of an SGLT1–SGLT2 inhibitor suggests that drugs that are effective in patients with HFrEF might also be effective in patients with HFmrEF. Although the EF is a continuous measure with considerable variability, in this comprehensive Review we suggest that HFmrEF is a useful categorization of patients with HF and shares the most important clinical features with HFrEF, which supports the renaming of HFmrEF to HF with mildly reduced EF.

Key points

  • Heart failure (HF) with mildly reduced ejection fraction (EF) (HFmrEF) has been extensively studied, generally using an EF of 40–49%, and accounts for up to 25% of patients with HF.

  • On the basis of contemporary trials and definitions, HFmrEF might be defined as an EF of 41–49%.

  • HFmrEF is an intermediate HF type between HF with preserved EF (HFpEF) and HF with reduced EF (HFrEF) for some characteristics but is more similar to HFrEF for others, especially for the high prevalence of ischaemic heart disease.

  • HFmrEF and HFpEF are milder forms of HF than HFrEF and are associated with a lower risk of cardiovascular and HF events but with a similar or greater risk of non-cardiovascular adverse events.

  • Clinical trials on therapies for HFpEF enrolled patients with an ejection fraction of >40% or ≥45% and did not demonstrate a clear treatment effect; however, subgroup and post hoc analyses suggest that some therapies for HFrEF might also be effective in HFmrEF.

  • These arguments support the current redefinition of HFmrEF as HF with mildly reduced EF instead of HF with mid-range EF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenotype, risk of cause-specific outcomes and effect of therapies in HFrEF, HFmrEF and HFpEF.
Fig. 2: HFmrEF clinical characteristics and similarities to HFrEF and HFpEF in major HF registries.
Fig. 3: HFmrEF clinical characteristics and similarities to HFrEF and HFpEF in major RCTs of HF.
Fig. 4: Outcomes according to EF in patients with HF in major registries and RCTs.
Fig. 5: Trajectories and changes in EF and outcomes over time in patients with HF.
Fig. 6: Outcomes in patients with HF according to EF.

Similar content being viewed by others

References

  1. Conrad, N. et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 391, 572–580 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jernberg, T. et al. Association between adoption of evidence-based treatment and survival for patients with ST-elevation myocardial infarction. JAMA 305, 1677–1684 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. van Riet, E. E. et al. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur. J. Heart Fail. 18, 242–252 (2016).

    Article  PubMed  Google Scholar 

  4. Taylor, C. J. et al. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000–2017: population based cohort study. BMJ 364, l223 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yancy, C. W. et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 136, e137–e161 (2017).

    Article  PubMed  Google Scholar 

  6. Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 37, 2129–2200 (2016).

    Article  PubMed  Google Scholar 

  7. Virani, S. S. et al. Heart disease and stroke statistics — 2021 update: a report from the American Heart Association. Circulation 143, e254–e743 (2021).

    Article  Google Scholar 

  8. Thorvaldsen, T., Benson, L., Dahlstrom, U., Edner, M. & Lund, L. H. Use of evidence-based therapy and survival in heart failure in Sweden 2003–2012. Eur. J. Heart Fail. 18, 503–511 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Ambrosy, A. P. et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 63, 1123–1133 (2014).

    Article  PubMed  Google Scholar 

  10. Lund, L. H., Benson, L., Dahlstrom, U. & Edner, M. Association between use of renin–angiotensin system antagonists and mortality in patients with heart failure and preserved ejection fraction. JAMA 308, 2108–2117 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Lund, L. H. et al. Association between enrolment in a heart failure quality registry and subsequent mortality — a nationwide cohort study. Eur. J. Heart Fail. 19,1107–1116 (2017).

    Article  PubMed  Google Scholar 

  12. Crespo-Leiro, M. G. et al. Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 20, 1505–1535 (2018).

    Article  PubMed  Google Scholar 

  13. Ahmad, T. et al. Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J. Am. Heart Assoc. 7, e008081 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lund, L. H. Heart failure with “mid-range” ejection fraction — new opportunities. J. Card. Fail. 22, 769–771 (2016).

    Article  PubMed  Google Scholar 

  15. Lund, L. H., Vedin, O. & Savarese, G. Is ejection fraction in heart failure a limitation or an opportunity? Eur. J. Heart Fail. 20, 431–432 (2018).

    Article  PubMed  Google Scholar 

  16. Marwick, T. H. Ejection fraction pros and cons: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2360–2379 (2018).

    Article  PubMed  Google Scholar 

  17. Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and recent worsening heart Failure. N. Engl. J. Med. 384, 117–128 (2020).

    Article  PubMed  Google Scholar 

  18. Lam, C. S. & Solomon, S. D. The middle child in heart failure: heart failure with mid-range ejection fraction (40–50%). Eur. J. Heart Fail. 16, 1049–1055 (2014).

    Article  PubMed  Google Scholar 

  19. Bozkurt, B. et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by Canadian Heart Failure Society, Heart Failure Association of India, the Cardiac Society of Australia and New Zealand, and the Chinese Heart Failure Association. Eur. J. Heart Fail. 23, 352–380 (2021).

    Article  PubMed  Google Scholar 

  20. Lam, C. S. P., Voors, A. A., Piotr, P., McMurray, J. J. V. & Solomon, S. D. Time to rename the middle child of heart failure: heart failure with mildly reduced ejection fraction. Eur. Heart J. 41, 2353–2355 (2020).

    Article  PubMed  Google Scholar 

  21. Kou, S. et al. Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur. Heart J. Cardiovasc. Imaging 15, 680–690 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Borlaug, B. A. & Redfield, M. M. Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation 123, 2006–2013; discussion 2014 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dunlay, S. M., Roger, V. L., Weston, S. A., Jiang, R. & Redfield, M. M. Longitudinal changes in ejection fraction in heart failure patients with preserved and reduced ejection fraction. Circ. Heart Fail. 5, 720–726 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 16, 233–270 (2015).

    Article  PubMed  Google Scholar 

  25. Galderisi, M. et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 18, 1301–1310 (2017).

    Article  PubMed  Google Scholar 

  26. Solomon, S. D. et al. Sacubitril/valsartan across the spectrum of ejection fraction in heart failure. Circulation 141, 352–361 (2020).

    Article  PubMed  Google Scholar 

  27. Dougherty, A. H., Naccarelli, G. V., Gray, E. L., Hicks, C. H. & Goldstein, R. A. Congestive heart failure with normal systolic function. Am. J. Cardiol. 54, 778–782 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Soufer, R. et al. Intact systolic left ventricular function in clinical congestive heart failure. Am. J. Cardiol. 55, 1032–1036 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Armstrong, P. W. et al. Vericiguat in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 382, 1883–1893 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Cohn, J. N. & Tognoni, G., Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 345, 1667–1675 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. No Authors Listed. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet 353, 2001–2007 (1999).

    Article  Google Scholar 

  32. Young, J. B. et al. Mortality and morbidity reduction with candesartan in patients with chronic heart failure and left ventricular systolic dysfunction: results of the CHARM low-left ventricular ejection fraction trials. Circulation 110, 2618–2626 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. No Authors Listed. A randomized trial of beta-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). CIBIS Investigators and Committees. Circulation 90, 1765–1773 (1994).

    Article  Google Scholar 

  34. McMurray, J. J. et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  PubMed  Google Scholar 

  35. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Zannad, F. et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364, 11–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Investigators, S. et al. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med. 325, 293–302 (1991).

    Article  Google Scholar 

  40. Bardy, G. H. et al. Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Teerlink, J. R. et al. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N. Engl. J. Med. (2020).

  43. Moss, A. J. et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 346, 877–883 (2002).

    Article  PubMed  Google Scholar 

  44. Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009).

    Article  PubMed  Google Scholar 

  45. Packer, M. et al. Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 344, 1651–1658 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Savarese, G. et al. Utilizing NT-proBNP for eligibility and enrichment in trials in HFpEF, HFmrEF, and HFrEF. JACC Heart Fail. 6, 246–256 (2018).

    Article  PubMed  Google Scholar 

  47. Meta-analysis Global Group in Chronic Heart Failure. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur. Heart J. 33, 1750–1757 (2012).

    Article  Google Scholar 

  48. Koh, A. S. et al. A comprehensive population-based characterization of heart failure with mid-range ejection fraction. Eur. J. Heart Fail. 19, 1624–1634 (2017).

    Article  PubMed  Google Scholar 

  49. Wehner, G. J. et al. Routinely reported ejection fraction and mortality in clinical practice: where does the nadir of risk lie? Eur. Heart J. 41, 1249–1257 (2020).

    Article  PubMed  Google Scholar 

  50. Toma, M. et al. The relationship between left ventricular ejection fraction and mortality in patients with acute heart failure: insights from the ASCEND-HF Trial. Eur. J. Heart Fail. 16, 334–341 (2014).

    Article  PubMed  Google Scholar 

  51. Yusuf, S. et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 362, 777–781 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Anker, S. D. et al. Evaluation of the effects of sodium–glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved trial. Eur. J. Heart Fail. 21, 1279–1287 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT03619213 (2021).

  54. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/search?query=2017-000697-11 (2021).

  55. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02901184 (2021).

  56. Lund, L. H., Oldgren, J. & James, S. Registry-based pragmatic trials in heart failure: current experience and future directions. Curr. Heart Fail. Rep. 14, 59–70 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pitt, B. et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 370, 1383–1392 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Massie, B. M. et al. Irbesartan in patients with heart failure and preserved ejection fraction. N. Engl. J. Med. 359, 2456–2467 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Solomon, S. D. et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N. Engl. J. Med. 381, 1609–1620 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N. Engl. J. Med. 384, 117–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128, 1810–1852 (2013).

    Article  PubMed  Google Scholar 

  62. Savarese, G. & Lund, L. H. Global public health burden of heart failure. Card. Fail. Rev. 3, 7–11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Groenewegen, A., Rutten, F. H., Mosterd, A. & Hoes, A. W. Epidemiology of heart failure. Eur. J. Heart Fail. 22, 1342–1356 (2020).

    Article  PubMed  Google Scholar 

  64. Bhambhani, V. et al. Predictors and outcomes of heart failure with mid-range ejection fraction. Eur. J. Heart Fail. 20, 651–659 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Chioncel, O. et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC heart failure long-term registry. Eur. J. Heart Fail. 19, 1574–1585 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Douglas, P. S. et al. Echocardiographic imaging in clinical trials: American Society of Echocardiography Standards for echocardiography core laboratories: endorsed by the American College of Cardiology Foundation. J. Am. Soc. Echocardiogr. 22, 755–765 (2009).

    Article  PubMed  Google Scholar 

  67. Kapoor, J. R. et al. Precipitating clinical factors, heart failure characterization, and outcomes in patients hospitalized with heart failure with reduced, borderline, and preserved ejection fraction. JACC Heart Fail. 4, 464–472 (2016).

    Article  PubMed  Google Scholar 

  68. Lam, C. S. P. et al. Mortality associated with heart failure with preserved vs. reduced ejection fraction in a prospective international multi-ethnic cohort study. Eur. Heart J. 39, 1770–1780 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Rickenbacher, P. et al. Heart failure with mid-range ejection fraction: a distinct clinical entity? Insights from the Trial of Intensified versus standard Medical therapy in Elderly patients with Congestive Heart Failure (TIME-CHF). Eur. J. Heart Fail. 19, 1586–1596 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Tsuji, K. et al. Characterization of heart failure patients with mid-range left ventricular ejection fraction-a report from the CHART-2 Study. Eur. J. Heart Fail. 19, 1258–1269 (2017).

    Article  PubMed  Google Scholar 

  71. Steinberg, B. A. et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation 126, 65–75 (2012).

    Article  PubMed  Google Scholar 

  72. Lund, L. H. et al. Heart failure with mid-range ejection fraction in CHARM: characteristics, outcomes and effect of candesartan across the entire ejection fraction spectrum. Eur. J. Heart Fail. 20, 1230–1239 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Srivastava, P. K., Hsu, J. J., Ziaeian, B. & Fonarow, G. C. Heart failure with mid-range ejection fraction. Curr. Heart Fail. Rep. 17, 1–8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fonarow, G. C. et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF registry. J. Am. Coll. Cardiol. 50, 768–777 (2007).

    Article  PubMed  Google Scholar 

  75. Shah, K. S. et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J. Am. Coll. Cardiol. 70, 2476–2486 (2017).

    Article  PubMed  Google Scholar 

  76. Sweitzer, N. K., Lopatin, M., Yancy, C. W., Mills, R. M. & Stevenson, L. W. Comparison of clinical features and outcomes of patients hospitalized with heart failure and normal ejection fraction (> or =55%) versus those with mildly reduced (40% to 55%) and moderately to severely reduced (<40%) fractions. Am. J. Cardiol. 101, 1151–1156 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kalogeropoulos, A. P. et al. Characteristics and outcomes of adult outpatients with heart failure and improved or recovered ejection fraction. JAMA Cardiol. 1, 510–518 (2016).

    Article  PubMed  Google Scholar 

  78. Vedin, O. et al. Significance of ischemic heart disease in patients with heart failure and preserved, midrange, and reduced ejection fraction: a nationwide cohort study. Circ Heart Fail. 10, e003875 (2017).

    Article  PubMed  Google Scholar 

  79. Stolfo, D. et al. Sex-based differences in heart failure across the ejection fraction spectrum: phenotyping, and prognostic and therapeutic implications. JACC Heart Fail. 7, 505–515 (2019).

    Article  PubMed  Google Scholar 

  80. Savarese, G. et al. Associations with and prognostic and discriminatory role of N-terminal pro-b-type natriuretic peptide in heart failure with preserved versus mid-range versus reduced ejection fraction. J. Card. Fail. 24, 365–374 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Tromp, J. et al. Biomarker profiles of acute heart failure patients with a mid-range ejection fraction. JACC Heart Fail. 5, 507–517 (2017).

    Article  PubMed  Google Scholar 

  82. Sartipy, U., Dahlstrom, U., Fu, M. & Lund, L. H. Atrial fibrillation in heart failure with preserved, mid-range, and reduced ejection fraction. JACC Heart Fail. 5, 565–574 (2017).

    Article  PubMed  Google Scholar 

  83. Lofman, I., Szummer, K., Dahlstrom, U., Jernberg, T. & Lund, L. H. Associations with and prognostic impact of chronic kidney disease in heart failure with preserved, mid-range, and reduced ejection fraction. Eur. J. Heart Fail. 19, 1606–1614 (2017).

    Article  PubMed  Google Scholar 

  84. Lofman, I. et al. Incidence of, associations with and prognostic impact of worsening renal function in heart failure with different ejection fraction categories. Am. J. Cardiol. 124, 1575–1583 (2019).

    Article  PubMed  Google Scholar 

  85. Savarese, G. et al. Prevalence of, associations with, and prognostic role of anemia in heart failure across the ejection fraction spectrum. Int. J. Cardiol. 298, 59–65 (2020).

    Article  PubMed  Google Scholar 

  86. Streng, K. W. et al. Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int. J. Cardiol. 271, 132–139 (2018).

    Article  PubMed  Google Scholar 

  87. Solomon, S. D. et al. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur. Heart J. 37, 455–462 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Borlaug, B. A. et al. Effect of inorganic nitrite vs placebo on exercise capacity among patients with heart failure with preserved ejection fraction: the INDIE-HFpEF randomized clinical trial. JAMA 320, 1764–1773 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Redfield, M. M. et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N. Engl. J. Med. 373, 2314–2324 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Savji, N. et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 6, 701–709 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pandey, A. et al. Relationship between physical activity, body mass index, and risk of heart failure. J. Am. Coll. Cardiol. 69, 1129–1142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pandey, A. et al. Physical activity, fitness, and obesity in heart failure with preserved ejection fraction. JACC Heart Fail. 6, 975–982 (2018).

    Article  PubMed  Google Scholar 

  93. Rao, V. N. et al. Adiposity and incident heart failure and its subtypes: MESA (Multi-Ethnic Study of Atherosclerosis). JACC Heart Fail. 6, 999–1007 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bartko, P. E. et al. Secondary valve regurgitation in patients with heart failure with preserved ejection fraction, heart failure with mid-range ejection fraction, and heart failure with reduced ejection fraction. Eur. Heart J. 41, 2799–2810 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ghio, S. et al. Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur. J. Heart Fail. 19, 873–879 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Li, D. L., Quispe, R., Onyekwelu, C., Faillace, R. T. & Taub, C. C. Racial differences of heart failure with midrange ejection fraction (HFmrEF): a large urban centre-based retrospective cohort study in the USA. BMJ Open 9, e026479 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jimenez-Marrero, S. et al. Sympathetic activation and outcomes in chronic heart failure: does the neurohormonal hypothesis apply to mid-range and preserved ejection fraction patients? Eur. J. Intern. Med. 81, 60–66 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Vergaro, G. et al. Sympathetic and renin–angiotensin–aldosterone system activation in heart failure with preserved, mid-range and reduced ejection fraction. Int. J. Cardiol. 296, 91–97 (2019).

    Article  PubMed  Google Scholar 

  99. Cleland, J. G. F. et al. Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials. Eur. Heart J. 39, 26–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Lauritsen, J., Gustafsson, F. & Abdulla, J. Characteristics and long-term prognosis of patients with heart failure and mid-range ejection fraction compared with reduced and preserved ejection fraction: a systematic review and meta-analysis. ESC Heart Fail. 5, 685–694 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cheng, R. K. et al. Outcomes in patients with heart failure with preserved, borderline, and reduced ejection fraction in the Medicare population. Am. Heart J. 168, 721–730 (2014).

    Article  PubMed  Google Scholar 

  102. Pocock, S. J. et al. Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur. Heart J. 34, 1404–1413 (2013).

    Article  PubMed  Google Scholar 

  103. Levy, W. C. et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 113, 1424–1433 (2006).

    Article  PubMed  Google Scholar 

  104. Simpson, J. et al. Prognostic models derived in PARADIGM-HF and validated in atmosphere and the swedish heart failure registry to predict mortality and morbidity in chronic heart failure. JAMA Cardiol. 5, 432–441 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Parikh, M. N., Lund, L. H., Goda, A. & Mancini, D. Usefulness of peak exercise oxygen consumption and the heart failure survival score to predict survival in patients >65 years of age with heart failure. Am. J. Cardiol. 103, 998–1002 (2009).

    Article  PubMed  Google Scholar 

  106. Sartipy, U., Dahlstrom, U., Edner, M. & Lund, L. H. Predicting survival in heart failure: validation of the MAGGIC heart failure risk score in 51,043 patients from the Swedish heart failure registry. Eur. J. Heart Fail. 16, 173–179 (2014).

    Article  PubMed  Google Scholar 

  107. Yang, S., Lund, L. H., Li, S., Dahlstrom, U., Sartipy, U. & Levy, V. Validation of the Seattle heart failure model in the Swedish heart failure registry (abstr.). Circulation 140, A9844 (2019).

    Google Scholar 

  108. Goliasch, G. et al. Refining the prognostic impact of functional mitral regurgitation in chronic heart failure. Eur. Heart J. 39, 39–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Priori, S. G. et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 36, 2793–2867 (2015).

    Article  PubMed  Google Scholar 

  110. Vaduganathan, M. et al. Mode of death in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 69, 556–569 (2017).

    Article  PubMed  Google Scholar 

  111. Bilchick, K. C., Stukenborg, G. J., Kamath, S. & Cheng, A. Prediction of mortality in clinical practice for medicare patients undergoing defibrillator implantation for primary prevention of sudden cardiac death. J. Am. Coll. Cardiol. 60, 1647–1655 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Shadman, R. et al. A novel method to predict the proportional risk of sudden cardiac death in heart failure: derivation of the seattle proportional risk model. Heart Rhythm. 12, 2069–2077 (2015).

    Article  PubMed  Google Scholar 

  113. Bilchick, K. C. et al. Seattle heart failure and proportional risk models predict benefit from implantable cardioverter–defibrillators. J. Am. Coll. Cardiol. 69, 2606–2618 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Halliday, B. P. et al. Association between midwall late gadolinium enhancement and sudden cardiac death in patients with dilated cardiomyopathy and mild and moderate left ventricular systolic dysfunction. Circulation 135, 2106–2115 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lam, C. S. & Teng, T. H. Understanding heart failure with mid-range ejection fraction. JACC Heart Fail. 4, 473–476 (2016).

    Article  PubMed  Google Scholar 

  116. Greenberg, B. Heart failure preserved ejection fraction with coronary artery disease: time for a new classification? J. Am. Coll. Cardiol. 63, 2828–2830 (2014).

    Article  PubMed  Google Scholar 

  117. Hwang, S. J., Melenovsky, V. & Borlaug, B. A. Implications of coronary artery disease in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 63, 2817–2827 (2014).

    Article  PubMed  Google Scholar 

  118. Lupon, J. et al. Heart failure with preserved ejection fraction infrequently evolves toward a reduced phenotype in long-term survivors. Circ. Heart Fail. 12, e005652 (2019).

    Article  PubMed  Google Scholar 

  119. Rusinaru, D. et al. Coronary artery disease and 10-year outcome after hospital admission for heart failure with preserved and with reduced ejection fraction. Eur. J. Heart Fail. 16, 967–976 (2014).

    Article  PubMed  Google Scholar 

  120. Savarese, G. et al. Reductions in N-terminal pro-brain natriuretic peptide levels are associated with lower mortality and heart failure hospitalization rates in patients with heart failure with mid-range and preserved ejection fraction. Circ. Heart Fail. 9, e003105 (2016).

    Article  PubMed  Google Scholar 

  121. Savarese, G. et al. Changes of natriuretic peptides predict hospital admissions in patients with chronic heart failure. A meta-analysis. JACC: Heart Fail. 2, 148–158 (2014).

    Google Scholar 

  122. Savarese, G. et al. Prevalence and prognostic implications of longitudinal ejection fraction change in heart failure. JACC Heart Fail. 7, 306–317 (2019).

    Article  PubMed  Google Scholar 

  123. Kim, Y. J. & Kim, R. J. The role of cardiac MR in new-onset heart failure. Curr. Cardiol. Rep. 13, 185–193 (2011).

    Article  PubMed  Google Scholar 

  124. Celutkiene, J. et al. Innovative imaging methods in heart failure: a shifting paradigm in cardiac assessment. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 20, 1615–1633 (2018).

    Article  PubMed  Google Scholar 

  125. Quarta, G. et al. Cardiac magnetic resonance in heart failure with preserved ejection fraction: myocyte, interstitium, microvascular, and metabolic abnormalities. Eur. J. Heart Fail. 22, 1065–1075 (2020).

    Article  PubMed  Google Scholar 

  126. Gulati, A. et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309, 896–908 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Klem, I. et al. Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation. J. Am. Coll. Cardiol. 60, 408–420 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Potter, E. & Marwick, T. H. Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc. Imaging 11, 260–274 (2018).

    Article  PubMed  Google Scholar 

  129. Venkateshvaran, A., Manouras, A., Kjellstrom, B. & Lund, L. H. The additive value of echocardiographic pulmonary to left atrial global strain ratio in the diagnosis of pulmonary hypertension. Int. J. Cardiol. 292, 205–210 (2019).

    Article  PubMed  Google Scholar 

  130. Kraigher-Krainer, E. et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 63, 447–456 (2014).

    Article  PubMed  Google Scholar 

  131. Stokke, T. M. et al. Geometry as a confounder when assessing ventricular systolic function: comparison between ejection fraction and strain. J. Am. Coll. Cardiol. 70, 942–954 (2017).

    Article  PubMed  Google Scholar 

  132. Kalam, K., Otahal, P. & Marwick, T. H. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100, 1673–1680 (2014).

    Article  PubMed  Google Scholar 

  133. Stanton, T., Leano, R. & Marwick, T. H. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ. Cardiovasc. Imaging 2,356–364 (2009).

    Article  PubMed  Google Scholar 

  134. Adamo, L. et al. Proteomic signatures of heart failure in relation to left ventricular ejection fraction. J. Am. Coll. Cardiol. 76, 1982–1994 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Trivieri, M. G. et al. Challenges in cardiac and pulmonary sarcoidosis: JACC state-of-the-art review. J. Am. Coll. Cardiol. 76, 1878–1901 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Gigli, M. et al. Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 74, 1480–1490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wahbi, K. et al. Development and validation of a new risk prediction score for life-threatening ventricular tachyarrhythmias in laminopathies. Circulation 140, 293–302 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Wilcox, J. E., Fang, J. C., Margulies, K. B. & Mann, D. L. Heart failure with recovered left ventricular ejection fraction: JACC scientific expert panel. J. Am. Coll. Cardiol. 76, 719–734 (2020).

    Article  PubMed  Google Scholar 

  139. Kramer, D. G. et al. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J. Am. Coll. Cardiol. 56, 392–406 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ueda, T. et al. Left ventricular ejection fraction (EF) of 55% as cutoff for late transition from heart failure (HF) with preserved EF to HF with mildly reduced EF. Circ. J. 79, 2209–2215 (2015).

    Article  PubMed  Google Scholar 

  141. Januzzi, J. L. Jr. et al. Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA 322, 1085–1095 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Desai, A. S. et al. Effect of sacubitril–valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 322, 1077–1084 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lupon, J. et al. Recovered heart failure with reduced ejection fraction and outcomes: a prospective study. Eur. J. Heart Fail. 19, 1615–1623 (2017).

    Article  PubMed  Google Scholar 

  144. Brann, A., Janvanishstaporn, S. & Greenberg, B. Association of prior left ventricular ejection fraction with clinical outcomes in patients with heart failure with midrange ejection fraction. JAMA Cardiol. 5, 1027–1035 (2020).

    Article  PubMed  Google Scholar 

  145. Lupon, J. et al. Dynamic trajectories of left ventricular ejection fraction in heart failure. J. Am. Coll. Cardiol. 72, 591–601 (2018).

    Article  PubMed  Google Scholar 

  146. Cleland, J. G. et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur. Heart J. 27, 2338–2345 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Flather, M. D. et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur. Heart J. 26, 215–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03057951 (2021).

  149. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03448406 (2020).

  150. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03877224 (2020).

  151. Lund, L. H., Benson, L., Dahlstrom, U., Edner, M. & Friberg, L. Association between use of beta-blockers and outcomes in patients with heart failure and preserved ejection fraction. JAMA 312, 2008–2018 (2014).

    Article  PubMed  Google Scholar 

  152. Savarese, G. et al. Comorbidities and cause-specific outcomes in heart failure across the ejection fraction spectrum: A blueprint for clinical trial design. Int. J. Cardiol. 313, 76–82 (2020).

    Article  PubMed  Google Scholar 

  153. Ibrahim, N. E. et al. Heart failure with mid-range ejection fraction: characterization of patients from the PINNACLE registry(R). ESC. Heart Fail 6, 784–792 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Halliday, B. P. et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 393, 61–73 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Rogers, J. K. et al. Analysing recurrent hospitalizations in heart failure: a review of statistical methodology, with application to CHARM-Preserved. Eur. J. Heart Fail. 16, 33–40 (2014).

    Article  PubMed  Google Scholar 

  156. Alzahrani, T., Tiu, J., Panjrath, G. & Solomon, A. The effect of angiotensin-converting enzyme inhibitors on clinical outcomes in patients with ischemic cardiomyopathy and midrange ejection fraction: a post hoc subgroup analysis from the PEACE trial. Ther. Adv. Cardiovasc. Dis. 12, 351–359 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Girerd, N., Ferreira, J. P., Rossignol, P. & Zannad, F. A tentative interpretation of the TOPCAT trial based on randomized evidence from the brain natriuretic peptide stratum analysis. Eur. J. Heart Fail. 18, 1411–1414 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. FDA. Final Summary Minutes of the Cardiovascular and Renal Drugs Advisory Committee Meeting December 16, 2020. https://www.fda.gov/media/145548/download (2020).

  159. Abdul-Rahim, A. H. et al. Effect of digoxin in patients with heart failure and mid-range (borderline) left ventricular ejection fraction. Eur. J. Heart Fail. 20, 1139–1145 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. U.S. Food and Drug Administration. Highlights of Prescribing Information – Sacubitril/Valsartan https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/207620s018lbl.pdf (2020).

  161. Seferovic, P. M. et al. Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 21, 1169–1186 (2019).

    Article  PubMed  Google Scholar 

  162. Savarese, G. et al. Non-insulin antihyperglycaemic drugs and heart failure: an overview of current evidence from randomized controlled trials. ESC Heart Fail. 7, 3438–3451 (2020).

    Article  PubMed Central  Google Scholar 

  163. Kini, V. et al. Appropriateness of primary prevention implantable cardioverter–defibrillators at the time of generator replacement: are indications still met? J. Am. Coll. Cardiol. 63, 2388–2394 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Adabag, S. et al. Association of implantable cardioverter defibrillators with survival in patients with and without improved ejection fraction: secondary analysis of the sudden cardiac death in heart failure trial. JAMA Cardiol. 2, 767–774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. No Authors Listed. Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic Heart Disease. Australia/New Zealand Heart Failure Research Collaborative Group. Lancet 349, 375–380 (1997).

    Article  Google Scholar 

  166. Braunwald, E. et al. Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N. Engl. J. Med. 351, 2058–2068 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Ahmed, A. et al. Effects of digoxin on morbidity and mortality in diastolic heart failure: the ancillary digitalis investigation group trial. Circulation 114, 397–403 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Linde, C. et al. Cardiac resynchronization therapy in chronic heart failure with moderately reduced left ventricular ejection fraction: lessons from the Multicenter InSync Randomized Clinical Evaluation MIRACLE EF study. Int. J. Cardiol. 202, 349–355 (2016).

    Article  PubMed  Google Scholar 

  169. Yamamoto, K., Origasa, H., Hori, M. & Investigators, J. D. Effects of carvedilol on heart failure with preserved ejection fraction: the Japanese Diastolic Heart Failure Study (J-DHF). Eur. J. Heart Fail. 15, 110–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03988634 (2021).

  171. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04435626 (2021).

  172. Pfeffer, M. A. et al. Regional variation in patients and outcomes in the treatment of preserved cardiac function heart failure with an aldosterone antagonist (TOPCAT) trial. Circulation 131, 34–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. McGowan, J. H. & Cleland, J. G. Reliability of reporting left ventricular systolic function by echocardiography: a systematic review of 3 methods. Am. Heart J. 146, 388–397 (2003).

    Article  PubMed  Google Scholar 

  174. Sievers, B. et al. Visual estimation versus quantitative assessment of left ventricular ejection fraction: a comparison by cardiovascular magnetic resonance imaging. Am. Heart J. 150, 737–742 (2005).

    Article  PubMed  Google Scholar 

  175. Blondheim, D. S. et al. Reliability of visual assessment of global and segmental left ventricular function: a multicenter study by the Israeli Echocardiography Research Group. J. Am. Soc. Echocardiogr. 23, 258–264 (2010).

    Article  PubMed  Google Scholar 

  176. Lam, C. S. & Solomon, S. D. Fussing over the middle child: heart failure with mid-range ejection fraction. Circulation 135, 1279–1280 (2017).

    Article  PubMed  Google Scholar 

  177. Pellikka, P. A. et al. Variability in ejection fraction measured by echocardiography, gated single-photon emission computed tomography, and cardiac magnetic resonance in patients with coronary artery disease and left ventricular dysfunction. JAMA Netw. Open 1, e181456 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.H.L. is supported by the Karolinska Institutet, the Swedish Research Council (grant 523-2014-2336), the Swedish Heart Lung Foundation (grants 20150557, 20190310) and Stockholm County Council (grants 20170112, 20190525).

Author information

Authors and Affiliations

Authors

Contributions

G. Savarese, D.S. and L.H.L. researched data for the article, contributed substantially to discussion of the content and wrote the manuscript. All the authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Lars H. Lund.

Ethics declarations

Competing interests

G. Savarese reports grants and personal fees from AstraZeneca and Vifor; grants and non-financial support from Boehringer Ingelheim; personal fees from Cytokinetics, GENESIS, Medtronic, Radcliffe, Roche, Servier and Società Prodotti Antibiotici; and grants from Boston Scientific, Novartis and Pharmacosmos, unrelated to this Review. D.S. reports personal fees from GlaxoSmithKline, MSD and Novartis. L.H.L. reports personal fees from Abbott, Bayer, Lexicon, Medscape, Merck, Myokardia, Pharmacosmos, Radcliffe Cardiology and Sanofi; grants and personal fees from AstraZeneca, Boehringer Ingelheim, Novartis and Vifor–Fresenius; and grants from Boston Scientific, unrelated to this Review. G. Sinagra declares no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks B. A. Borlaug, W. J. Paulus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savarese, G., Stolfo, D., Sinagra, G. et al. Heart failure with mid-range or mildly reduced ejection fraction. Nat Rev Cardiol 19, 100–116 (2022). https://doi.org/10.1038/s41569-021-00605-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-021-00605-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing