Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The LDL cumulative exposure hypothesis: evidence and practical applications

Abstract

The trapping of LDL and other apolipoprotein B-containing lipoproteins within the artery wall causes atherosclerosis. As more LDL becomes trapped within the artery wall over time, the atherosclerotic plaque burden gradually increases, raising the risk of an acute cardiovascular event. Therefore, the biological effect of LDL on the risk of atherosclerotic cardiovascular disease (ASCVD) depends on both the magnitude and duration of exposure. Maintaining low levels of LDL-cholesterol (LDL-C) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and, by delaying the age at which mature atherosclerotic plaques develop, substantially reduces the lifetime risk of ASCVD events. Summing LDL-C measurements over time to calculate cumulative exposure to LDL generates a unique biomarker that captures both the magnitude and duration of exposure, which facilitates the estimation of the absolute risk of having an acute cardiovascular event at any point in time. Titrating LDL-C lowering to keep cumulative exposure to LDL below the threshold at which acute cardiovascular events occur can effectively prevent ASCVD. In this Review, we provide the first comprehensive overview of how the LDL cumulative exposure hypothesis can guide the prevention of ASCVD. We also discuss the benefits of maintaining lower LDL-C levels over time and how this knowledge can be used to inform clinical practice guidelines as well as to design novel primary prevention trials and ASCVD prevention programmes.

Key points

  • Atherosclerosis is caused by the trapping of LDL and other apolipoprotein B-containing lipoproteins within the artery wall over time, resulting in the progressive build-up of atherosclerotic plaque.

  • Summing the LDL-cholesterol (LDL-C) levels of an individual measured over time allows for an estimation of their cumulative exposure to LDL.

  • Cumulative exposure to LDL can be used as a biomarker to estimate the size of the accumulated plaque burden, track the rate of plaque progression and estimate the corresponding absolute risk of having an acute atherosclerotic cardiovascular event at any point in time.

  • Reducing the cumulative exposure to LDL reduces the number of atherogenic lipoproteins that become trapped within the artery wall, thus slowing the progression of atherosclerosis and substantially reducing the lifetime risk of atherosclerotic cardiovascular events.

  • The threshold for cumulative exposure to LDL and the corresponding accumulated plaque burden above which atherosclerotic cardiovascular events begin to occur depends on inherited predisposition and exposure to other causes of arterial wall injury, thus introducing the concept of a ‘personal plaque threshold’.

  • Cumulative exposure to LDL can be used as a therapeutic target to personalize prevention by titrating the reduction in LDL-C levels needed by each individual to slow the progression of atherosclerosis enough to keep their accumulated plaque burden below their personal plaque threshold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cumulative effect of LDL-C levels on plaque burden and corresponding absolute risk of atherosclerotic cardiovascular events.
Fig. 2: Trajectories of LDL-C and APOB levels in men and women over time.
Fig. 3: Cumulative lifetime exposure to LDL thresholds and lifetime risk of atherosclerotic cardiovascular events.
Fig. 4: Effect of other causes of arterial wall injury on LDL cumulative exposure thresholds.
Fig. 5: Median CAC score and lifetime risk of cardiovascular events by levels of cumulative exposure to LDL.
Fig. 6: Effect of timing and intensity of LDL-C lowering on cumulative lifetime exposure to LDL and cumulative lifetime risk of major atherosclerotic cardiovascular events.
Fig. 7: Design of a real-world, pragmatic, adaptive cluster-randomized trial to evaluate the benefit of reducing cumulative exposure to LDL to prevent atherosclerotic cardiovascular events.

Similar content being viewed by others

References

  1. Khan, M. A. et al. Global epidemiology of ischemic heart disease: results from the Global Burden of Disease Study. Cureus 12, e9349 (2020).

    PubMed  PubMed Central  Google Scholar 

  2. Marchand, F. Ueber atherosclerosis. Verhandlungen der Kongresse fuer Innere Medizin. 21 Kongresse (1904).

  3. Ignatowski, A. I. Ueber die Wirkung der tierschen Einweisse auf der Aorta. Virchows Arch. Pathol. Anat. 198, 248 (1909).

    Article  Google Scholar 

  4. Windaus, A. Ueber der Gehalt normaler und atheromatoser Aorten an Cholesterol und Cholesterinester. Z. Physiol. Chem. 67, 174 (1910).

    Article  Google Scholar 

  5. Anitschkow, N. & Chalatow, S. Ueber experimentelle Cholester-insteatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Zentrbl Allg. Pathol. Pathol. Anat. 24, 1–9 (1913).

    Google Scholar 

  6. Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ference, B. A., Graham, I., Tokgozoglu, L. & Catapano, A. L. Impact of lipids on cardiovascular health: JACC Health Promotion Series. J. Am. Coll. Cardiol. 72, 1141–1156 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Baigent, C. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Silverman, M. G. et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316, 1289–1297 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Nicholls, S. J. et al. Effect of two intensive statin regimens on progression of coronary disease. N. Engl. J. Med. 365, 2078–2087 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Ference, B. A. et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J. Am. Coll. Cardiol. 60, 2631–2639 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Braunwald, E. How to live to 100 before developing clinical coronary artery disease: a suggestion. Eur. Heart J. 43, 249–250 (2021).

    Article  Google Scholar 

  20. Ference, B. A., Ference, T. B., Catapano, A. L., Nicholls, S. J. & Ray, K. K. A naturally randomized trial evaluating a vaccine-like strategy to lower LDL by inhibiting PCSK9 on the lifetime risk of major cardiovascular events (NATURE-PCSK9). Preprint at Medrxiv https://doi.org/10.1101/2024.06.30.24309740 (2024).

  21. Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).

    Article  CAS  PubMed  Google Scholar 

  22. Sniderman, A. D. et al. Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiol. 4, 1287–1295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ference, B. A., Kastelein, J. J. P. & Catapano, A. L. Lipids and lipoproteins in 2020. JAMA 324, 595–596 (2020).

    Article  PubMed  Google Scholar 

  24. Stender, S. & Zilversmit, D. B. Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx. Arteriosclerosis 1, 38–49 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Zanoni, P., Velagapudi, S., Yalcinkaya, M., Rohrer, L. & von Eckardstein, A. Endocytosis of lipoproteins. Atherosclerosis 275, 273–295 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Camejo, G., Lalaguna, F., Lopez, F. & Starosta, R. Characterization and properties of a lipoprotein-complexing proteoglycan from human aorta. Atherosclerosis 35, 307–320 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Camejo, G., Hurt-Camejo, E., Wiklund, O. & Bondjers, G. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 139, 205–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Boren, J. et al. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J. Clin. Invest. 101, 2658–2664 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Tabas, I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J. Clin. Invest. 110, 905–911 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Ambrose, J. A. et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol. 12, 56–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Herrick, J. B. Thrombosis of the coronary arteries. JAMA 72, 387–390 (1919).

    Article  Google Scholar 

  36. Falk, E., Shah, P. K. & Fuster, V. Coronary plaque disruption. Circulation 92, 657–671 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Alderman, E. L. et al. Five-year angiographic follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). CASS Participating Investigators and Staff. J. Am. Coll. Cardiol. 22, 1141–1154 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Emond, M. et al. Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation 90, 2645–2657 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Williams, M. C. et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART trial (Scottish Computed Tomography of the HEART). Circulation 141, 1452–1462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Newman, W. P. III et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. the Bogalusa Heart Study. N. Engl. J. Med. 314, 138–144 (1986).

    Article  PubMed  Google Scholar 

  42. Berenson, G. S. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 338, 1650–1656 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Strong, J. P. et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 281, 727–735 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Fernandez-Friera, L. et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) study. Circulation 131, 2104–2113 (2015).

    Article  PubMed  Google Scholar 

  45. Tuzcu, E. M. et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation 103, 2705–2710 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Pletcher, M. J. et al. Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Ann. Intern. Med. 153, 137–146 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fernandez-Friera, L. et al. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J. Am. Coll. Cardiol. 70, 2979–2991 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Glaser, R. et al. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation 111, 143–149 (2005).

    Article  PubMed  Google Scholar 

  49. Maddox, T. M. et al. Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA 312, 1754–1763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arbab-Zadeh, A. & Fuster, V. From detecting the vulnerable plaque to managing the vulnerable patient: JACC state-of-the-art review. J. Am. Coll. Cardiol. 74, 1582–1593 (2019).

    Article  PubMed  Google Scholar 

  51. Burke, A. P. et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103, 934–940 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Virmani, R., Burke, A. P., Farb, A. & Kolodgie, F. D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47, C13–C18 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Ference, B. A. & Mahajan, N. The role of early LDL lowering to prevent the onset of atherosclerotic disease. Curr. Atheroscler. Rep. 15, 312 (2013).

    Article  PubMed  Google Scholar 

  54. Robinson, J. G. et al. Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J. Am. Heart Assoc. 7, e009778 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sniderman, A. D., Toth, P. P., Thanassoulis, G., Pencina, M. J. & Furberg, C. D. Taking a longer term view of cardiovascular risk: the causal exposure paradigm. BMJ 348, g3047 (2014).

    Article  PubMed  Google Scholar 

  56. McNamara, J. J., Molot, M. A., Stremple, J. F. & Cutting, R. T. Coronary artery disease in combat casualties in Vietnam. JAMA 216, 1185–1187 (1971).

    Article  CAS  PubMed  Google Scholar 

  57. McClelland, R. L., Chung, H., Detrano, R., Post, W. & Kronmal, R. A. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 113, 30–37 (2006).

    Article  PubMed  Google Scholar 

  58. Javaid, A. et al. Distribution of coronary artery calcium by age, sex, and race among patients 30-45 years old. J. Am. Coll. Cardiol. 79, 1873–1886 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hartiala, O. et al. Life-course risk factor levels and coronary artery calcification. The Cardiovascular Risk in Young Finns Study. Int. J. Cardiol. 225, 23–29 (2016).

    Article  PubMed  Google Scholar 

  60. Bergstrom, G. et al. Prevalence of subclinical coronary artery atherosclerosis in the general population. Circulation 144, 916–929 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gordon, T., Kannel, W. B., Hjortland, M. C. & McNamara, P. M. Menopause and coronary heart disease. The Framingham Study. Ann. Intern. Med. 89, 157–161 (1978).

    Article  CAS  PubMed  Google Scholar 

  62. Müller, C. Xanthomata, hypercholesterolemia, angina pectoris. Acta Med. Scand. 95, 75–84 (1938).

    Article  Google Scholar 

  63. Wilkinson, C. F., Hand, E. A. & Fliegelman, M. T. Essential familial hypercholesterolemia. Ann. Intern. Med. 29, 671–686 (1948).

    Article  CAS  PubMed  Google Scholar 

  64. Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cuchel, M. et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nissen, S. E. et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295, 1556–1565 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Nicholls, S. J. et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316, 2373–2384 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Nicholls, S. J. et al. Effect of evolocumab on coronary plaque composition. J. Am. Coll. Cardiol. 72, 2012–2021 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Ference, B. A. Mendelian randomization studies: using naturally randomized genetic data to fill evidence gaps. Curr. Opin. Lipidol. 26, 566–571 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Hingorani, A. & Humphries, S. Nature’s randomised trials. Lancet 366, 1906–1908 (2005).

    Article  PubMed  Google Scholar 

  71. Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Ference, B. A., Majeed, F., Penumetcha, R., Flack, J. M. & Brook, R. D. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 x 2 factorial Mendelian randomization study. J. Am. Coll. Cardiol. 65, 1552–1561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ference, B. A. et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 321, 364–373 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Whyte, H. M. & Yee, I. L. Serum cholesterol levels of Australians and natives of New Guinea from birth to adulthood. Australas. Ann. Med. 7, 336–339 (1958).

    Article  CAS  PubMed  Google Scholar 

  75. Mendez, J., Tejada, C. & Flores, M. Serum lipid levels among rural Guatemalan Indians. Am. J. Clin. Nutr. 10, 403–409 (1962).

    Article  CAS  PubMed  Google Scholar 

  76. O’Keefe, J. H. Jr, Cordain, L., Harris, W. H., Moe, R. M. & Vogel, R. Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J. Am. Coll. Cardiol. 43, 2142–2146 (2004).

    Article  PubMed  Google Scholar 

  77. Kaplan, H. et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389, 1730–1739 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Luirink, I. K. et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N. Engl. J. Med. 381, 1547–1556 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Wiegman, A. et al. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA 292, 331–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Kusters, D. M. et al. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA 312, 1055–1057 (2014).

    Article  PubMed  Google Scholar 

  81. Wiegman, A. et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur. Heart J. 36, 2425–2437 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. O’Donoghue, M. L. et al. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation 146, 1109–1119 (2022).

    Article  PubMed  Google Scholar 

  84. Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Ference, B. A. et al. Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: an analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. Eur. Heart J. 39, 2540–2545 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Galimberti, F., Sniderman, A. D., Catapano, A. L. & Ference, B. A. Meta-analysis of randomized controlled trials evaluating the association between magnitude and duration of apolipoprotein-B lowering and cardiovascular risk reduction among different lipid-lowering therapies. Atherosclerosis 379 (Suppl. 1), S41 (2023).

  87. Schilling, F. J., Christakis, G. J., Bennett, N. J. & Coyle, J. F. Studies of serum cholesterol in 4,244 men and women: an epidemiological and pathogenetic interpretation. Am. J. Public Health Nations Health 54, 461–476 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hoeg, J. M., Feuerstein, I. M. & Tucker, E. E. Detection and quantitation of calcific atherosclerosis by ultrafast computed tomography in children and young adults with homozygous familial hypercholesterolemia. Arterioscler. Thromb. 14, 1066–1074 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Schmidt, H. H. et al. Relation of cholesterol-year score to severity of calcific atherosclerosis and tissue deposition in homozygous familial hypercholesterolemia. Am. J. Cardiol. 77, 575–580 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Horton, J. D., Cohen, J. C. & Hobbs, H. H. PCSK9: a convertase that coordinates LDL catabolism. J. Lipid Res. 50, S172–S177 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Shapiro, M. D. & Bhatt, D. L. “Cholesterol-years” for ASCVD risk prediction and treatment. J. Am. Coll. Cardiol. 76, 1517–1520 (2020).

    Article  PubMed  Google Scholar 

  92. Packard, C. J., Weintraub, W. S. & Laufs, U. New metrics needed to visualize the long-term impact of early LDL-C lowering on the cardiovascular disease trajectory. Vasc. Pharmacol. 71, 37–39 (2015).

    Article  CAS  Google Scholar 

  93. Davis, C. E., Rifkind, B. M., Brenner, H. & Gordon, D. J. A single cholesterol measurement underestimates the risk of coronary heart disease. An empirical example from the Lipid Research Clinics Mortality Follow-up Study. JAMA 264, 3044–3046 (1990).

    Article  CAS  PubMed  Google Scholar 

  94. Klag, M. J. et al. Serum cholesterol in young men and subsequent cardiovascular disease. N. Engl. J. Med. 328, 313–318 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Gozlan, O., Gross, D. & Gruener, N. Lipoprotein levels in newborns and adolescents. Clin. Biochem. 27, 305–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Descamps, O. S., Bruniaux, M., Guilmot, P. F., Tonglet, R. & Heller, F. R. Lipoprotein concentrations in newborns are associated with allelic variations in their mothers. Atherosclerosis 172, 287–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Kit, B. K. et al. Trends in serum lipids among US youths aged 6 to 19 years, 1988-2010. JAMA 308, 591–600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Skinner, A. C., Steiner, M. J., Chung, A. E. & Perrin, E. M. Cholesterol curves to identify population norms by age and sex in healthy weight children. Clin. Pediatr. 51, 233–237 (2012).

    Article  Google Scholar 

  99. Navar-Boggan, A. M. et al. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation 131, 451–458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pac-Kozuchowska, E., Rakus-Kwiatosz, A. & Krawiec, P. Cord blood lipid profile in healthy newborns: a prospective single-center study. Adv. Clin. Exp. Med. 27, 343–349 (2018).

    Article  PubMed  Google Scholar 

  101. Pencina, K. M. et al. Trajectories of non-HDL cholesterol across midlife: implications for cardiovascular prevention. J. Am. Coll. Cardiol. 74, 70–79 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Duncan, M. S., Vasan, R. S. & Xanthakis, V. Trajectories of blood lipid concentrations over the adult life course and risk of cardiovascular disease and all-cause mortality: observations from the Framingham study over 35 years. J. Am. Heart Assoc. 8, e011433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rhee, E. J. et al. 2018 guidelines for the management of dyslipidemia in Korea. J. Lipid Atheroscler. 8, 78–131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Feng, L. et al. Age-related trends in lipid levels: a large-scale cross-sectional study of the general Chinese population. BMJ Open 10, e034226 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Domanski, M. J. et al. Time course of LDL cholesterol exposure and cardiovascular disease event risk. J. Am. Coll. Cardiol. 76, 1507–1516 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Y. et al. Association between cumulative low-density lipoprotein cholesterol exposure during young adulthood and middle age and risk of cardiovascular events. JAMA Cardiol. 6, 1406–1413 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hughes, D., Crowley, J., O’Shea, P., McEvoy, J. W. & Griffin, D. G. Lipid reference values in an Irish population. Ir. J. Med. Sci. 190, 117–127 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Zhernakova, D. V. et al. Age-dependent sex differences in cardiometabolic risk factors. Nat. Cardiovasc. Res. 1, 844–854 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sessa, W. C. Estrogen reduces LDL (low-density lipoprotein) transcytosis. Arterioscler. Thromb. Vasc. Biol. 38, 2276–2277 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ghaffari, S., Naderi Nabi, F., Sugiyama, M. G. & Lee, W. L. Estrogen inhibits LDL (low-density lipoprotein) transcytosis by human coronary artery endothelial cells via GPER (G-protein-coupled estrogen receptor) and SR-BI (scavenger receptor class B type 1). Arterioscler. Thromb. Vasc. Biol. 38, 2283–2294 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Steffensen, L. B. et al. Disturbed laminar blood flow vastly augments lipoprotein retention in the artery wall: a key mechanism distinguishing susceptible from resistant sites. Arterioscler. Thromb. Vasc. Biol. 35, 1928–1935 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Taskinen, M. R. & Boren, J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 239, 483–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Krauss, R. M. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 27, 1496–1504 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R. & Kolettis, G. J. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316, 1371–1375 (1987).

    Article  CAS  PubMed  Google Scholar 

  115. Greenland, P., Blaha, M. J., Budoff, M. J., Erbel, R. & Watson, K. E. Coronary calcium score and cardiovascular risk. J. Am. Coll. Cardiol. 72, 434–437 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ference, B. A. et al. Association of genetic variants related to combined exposure to lower low-density lipoproteins and lower systolic blood pressure with lifetime risk of cardiovascular disease. JAMA 322, 1381–1391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chhatriwalla, A. K. et al. Low levels of low-density lipoprotein cholesterol and blood pressure and progression of coronary atherosclerosis. J. Am. Coll. Cardiol. 53, 1110–1115 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Vartiainen, E. et al. Thirty-five-year trends in cardiovascular risk factors in Finland. Int. J. Epidemiol. 39, 504–518 (2010).

    Article  PubMed  Google Scholar 

  119. Salomaa, V., Pietila, A., Peltonen, M. & Kuulasmaa, K. Changes in CVD incidence and mortality rates, and life expectancy: North Karelia and National. Glob. Heart 11, 201–205 (2016).

    Article  PubMed  Google Scholar 

  120. Ference, B. A. How to use Mendelian randomization to anticipate the results of randomized trials. Eur. Heart J. 39, 360–362 (2018).

    Article  PubMed  Google Scholar 

  121. Shapiro, M. D. & Fazio, S. Biologic bases of residual risk of cardiovascular events: a flawed concept. Eur. J. Prev. Cardiol. 25, 1831–1835 (2018).

    Article  PubMed  Google Scholar 

  122. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  124. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Bumcrot, D., Manoharan, M., Koteliansky, V. & Sah, D. W. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2, 711–719 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Warden, B. A. & Duell, P. B. Inclisiran: a novel agent for lowering apolipoprotein B-containing Lipoproteins. J. Cardiovasc. Pharmacol. 78, e157–e174 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Ray, K. K. et al. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol. 4, 1067–1075 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Catapano, A. L., Pirillo, A. & Norata, G. D. Insights from ORION studies: focus on inclisiran safety. Cardiovasc. Res. 117, 24–26 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 14, 32–38 (1985).

    Article  CAS  PubMed  Google Scholar 

  130. JBS3 Board Joint British Societies’ consensus recommendations for the prevention of cardiovascular disease (JBS3). Heart 100, ii1–ii67 (2014).

    Article  Google Scholar 

  131. Anderson, T. J. et al. 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can. J. Cardiol. 32, 1263–1282 (2016).

    Article  PubMed  Google Scholar 

  132. Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation 139, e1082–e1143 (2019).

    PubMed  Google Scholar 

  133. Mach, F. et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J. 41, 111–188 (2020).

    Article  PubMed  Google Scholar 

  134. Ray, K. K. et al. World Heart Federation Cholesterol Roadmap 2022. Glob. Heart 17, 75 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ference, B. A., Holmes, M. V. & Smith, G. D. Using Mendelian randomization to improve the design of randomized trials. Cold Spring Harb. Perspect. Med. 11, a040980 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ference, B. A. Using genetic variants in the targets of lipid lowering therapies to inform drug discovery and development: current and future treatment options. Clin. Pharmacol. Ther. 105, 568–581 (2019).

    Article  PubMed  Google Scholar 

  137. Nicholls, S. J. et al. Effect of evolocumab on coronary plaque phenotype and burden in statin-treated patients following myocardial infarction. JACC Cardiovasc. Imaging 15, 1308–1321 (2022).

    Article  PubMed  Google Scholar 

  138. Johannesson, M. et al. Cost effectiveness of simvastatin treatment to lower cholesterol levels in patients with coronary heart disease. Scandinavian Simvastatin Survival Study Group. N. Engl. J. Med. 336, 332–336 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Pandya, A., Sy, S., Cho, S., Weinstein, M. C. & Gaziano, T. A. Cost-effectiveness of 10-year risk thresholds for initiation of statin therapy for primary prevention of cardiovascular disease. JAMA 314, 142–150 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kohli-Lynch, C. N. et al. Beyond 10-year risk: a cost-effectiveness analysis of statins for the primary prevention of cardiovascular disease. Circulation 145, 1312–1323 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ademi, Z. et al. Health economic evaluation of screening and treating children with familial hypercholesterolemia early in life: many happy returns on investment? Atherosclerosis 304, 1–8 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. FitzGerald, C., Hameed, T., Rosenbach, F., Macdonald, J. R. & Dixon, R. Resilience in public service partnerships: evidence from the UK Life Chances Fund. Public Manag. Rev. 25, 787–807 (2023).

    Article  Google Scholar 

  143. Ronicle, J., Stanworth, N. & Wooldridge, R. Commissioning Better Outcomes Evaluation. 3rd Update Report (2022).

  144. Tan, S., Fraser, A., McHugh, N. & Warner, M. E. Widening perspectives on social impact bonds. J. Econ. Policy Reform. 24, 1–10 (2021).

    Article  Google Scholar 

  145. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.L.C. is supported in part by Ministero della Salute Ricerca Corrente.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding authors

Correspondence to Brian A. Ference or Alberico L. Catapano.

Ethics declarations

Competing interests

B.A.F. has received research grants and consulting fees from Amgen, AstraZeneca, Daiichi Sankyo, Eli Lilly, Novartis, Novo Nordisk, Pfizer, Regeneron and Sanofi. E.B. has received research support from AstraZeneca, Daiichi Sankyo, Merck and Novartis, and consulting fees from Amgen, Cardurion, MyoKardia, Novo Nordisk and Verve. A.L.C. has received honoraria, lecture fees or research grants from Aegerion, Amgen, Amryt, AstraZeneca, Bayer, Daiichi Sankyo, Eli Lilly, Genzyme, Ionis Pharmaceutical, Kowa, Mediolanum, Medscape, Menarini, Merck, Mylan, Novartis, PeerVoice, Pfizer, Recordati, Regeneron, Sanofi, Sigma–Tau and The Corpus.

Peer review

Peer review information

Nature Reviews Cardiology thanks Frederick Raal; Raul Santos; Gerald Watts; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ference, B.A., Braunwald, E. & Catapano, A.L. The LDL cumulative exposure hypothesis: evidence and practical applications. Nat Rev Cardiol 21, 701–716 (2024). https://doi.org/10.1038/s41569-024-01039-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-024-01039-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing