Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathophysiology of dilated cardiomyopathy: from mechanisms to precision medicine

Abstract

Dilated cardiomyopathy (DCM) is a complex disease with multiple causes and various pathogenic mechanisms. Despite improvements in the prognosis of patients with DCM in the past decade, this condition remains a leading cause of heart failure and premature death. Conventional treatment for DCM is based on the foundational therapies for heart failure with reduced ejection fraction. However, increasingly, attention is being directed towards individualized treatments and precision medicine. The ability to confirm genetic causality is gradually being complemented by an increased understanding of genotype–phenotype correlations. Non-genetic factors also influence the onset of DCM, and growing evidence links genetic background with concomitant non-genetic triggers or precipitating factors, increasing the extreme complexity of the pathophysiology of DCM. This Review covers the spectrum of pathophysiological mechanisms in DCM, from monogenic causes to the coexistence of genetic abnormalities and triggering environmental factors (the ‘two-hit’ hypothesis). The roles of common genetic variants in the general population and of gene modifiers in disease onset and progression are also discussed. Finally, areas for future research are highlighted, particularly novel therapies, such as small molecules, RNA and gene therapy, and measures for the prevention of arrhythmic death.

Key points

  • Dilated cardiomyopathy (DCM) is a heterogeneous disease with multiple causes and high variability in phenotype presentation and outcomes.

  • Genetic testing has been recommended in guidelines as a fundamental step in the clinical decision-making process; the results can guide not only family screening but also aetiological characterization and risk stratification.

  • Genotype–phenotype correlations can aid clinicians in prioritizing genetic testing in patients with a higher likelihood of identifying a disease-causing variant, particularly for genes associated with major arrhythmic events.

  • A strong interaction exists between the genetic background and environmental exposures, which can lead to different phenotypic manifestations of the disease (that is, the two-hit hypothesis).

  • Advances in the management of DCM are moving towards a precision medicine approach to the diagnostic work-up and treatment.

  • Future research and resource allocation will focus on the identification of disease-modifying treatments for DCM, which include molecular targeted and gene therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Complex interactions in the pathophysiology of dilated cardiomyopathy.
Fig. 2: Genotype–phenotype correlations in dilated cardiomyopathy.
Fig. 3: Life-threatening ventricular arrhythmias and HF-related events in DCM.
Fig. 4: Cascade screening in DCM.
Fig. 5: Simplified mechanisms of inflammation in dilated cardiomyopathy.

Similar content being viewed by others

References

  1. McKenna, W. J., Maron, B. J. & Thiene, G. Classification, epidemiology, and global burden of cardiomyopathies. Circ. Res. 121, 722–730 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Hershberger, R. E., Hedges, D. J. & Morales, A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 10, 531–547 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Tayal, U. et al. Precision phenotyping of dilated cardiomyopathy using multidimensional data. J. Am. Coll. Cardiol. 79, 2219–2232 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Helms, A. S., Thompson, A. D. & Day, S. M. Translation of new and emerging therapies for genetic cardiomyopathies. JACC Basic. Transl. Sci. 7, 70–83 (2022).

    Article  PubMed  Google Scholar 

  5. Arbelo, E. et al. 2023 ESC Guidelines for the management of cardiomyopathies: developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC). Eur. Heart J. 44, 3503–3626 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Rosenbaum, A. N., Agre, K. E. & Pereira, N. L. Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat. Rev. Cardiol. 17, 286–297 (2020).

    Article  PubMed  Google Scholar 

  7. McNally, E. M. & Mestroni, L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ. Res. 121, 731–748 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366, 619–628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dellefave-Castillo, L. M. et al. Assessment of the diagnostic yield of combined cardiomyopathy and arrhythmia genetic testing. JAMA Cardiol. 7, 966–974 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gigli, M. et al. Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 74, 1480–1490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eldemire, R., Mestroni, L. & Taylor, M. R. G. Genetics of dilated cardiomyopathy. Annu. Rev. Med. 75, 417–426 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Escobar-Lopez, L. et al. Association of genetic variants with outcomes in patients with nonischemic dilated cardiomyopathy. J. Am. Coll. Cardiol. 78, 1682–1699 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Verdonschot, J. A. J. et al. Implications of genetic testing in dilated cardiomyopathy. Circ. Genom. Precis. Med. 13, 476–487 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Asatryan, B. et al. Predicted deleterious variants in cardiomyopathy genes prognosticate mortality and composite outcomes in the UK biobank. JACC Heart Fail. 12, 918–932 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Amendola, L. M. et al. Performance of ACMG-AMP variant-interpretation guidelines among nine laboratories in the Clinical Sequencing Exploratory Research Consortium. Am. J. Hum. Genet. 98, 1067–1076 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bland, A. et al. Clinically impactful differences in variant interpretation between clinicians and testing laboratories: a single-center experience. Genet. Med. 20, 369–373 (2018).

    Article  PubMed  Google Scholar 

  18. Jordan, E. et al. Evidence-based assessment of genes in dilated cardiomyopathy. Circulation 144, 7–19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahmad, F. et al. Establishment of specialized clinical cardiovascular genetics programs: recognizing the need and meeting standards: a scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 12, e000054 (2019).

    Article  PubMed  Google Scholar 

  20. Owens, A. T. & Day, S. M. Reappraising genes for dilated cardiomyopathy: stepping back to move forward. Circulation 144, 20–22 (2021).

    Article  PubMed  Google Scholar 

  21. Mazzarotto, F. et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation 141, 387–398 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Escobar-Lopez, L. et al. Clinical risk score to predict pathogenic genotypes in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 80, 1115–1126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tadros, R. et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat. Genet. 53, 128–134 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garnier, S. et al. Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23. Eur. Heart J. 42, 2000–2011 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumuthini, J. et al. The clinical utility of polygenic risk scores in genomic medicine practices: a systematic review. Hum. Genet. 141, 1697–1704 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dominguez, F. et al. Dilated cardiomyopathy due to BLC2-associated athanogene 3 (BAG3) mutations. J. Am. Coll. Cardiol. 72, 2471–2481 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akhtar, M. M. et al. Clinical phenotypes and prognosis of dilated cardiomyopathy caused by truncating variants in the TTN gene. Circ. Heart Fail. 13, e006832 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Wahbi, K. et al. Development and validation of a new risk prediction score for life-threatening ventricular tachyarrhythmias in laminopathies. Circulation 140, 293–302 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Towbin, J. A. et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. 16, e301–e372 (2019).

    Article  PubMed  Google Scholar 

  30. Ortiz-Genga, M. F. et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J. Am. Coll. Cardiol. 68, 2440–2451 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Owen, R. et al. Sex differences in the clinical presentation and natural history of dilated cardiomyopathy. JACC Heart Fail. 12, 352–363 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cannatà, A. et al. Association of titin variations with late-onset dilated cardiomyopathy. JAMA Cardiol. 7, 371–377 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hershberger, R. E. et al. Genetic evaluation of cardiomyopathy – a Heart Failure Society of America Practice Guideline. J. Card. Fail. 24, 281–302 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bozkurt, B. et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation 134, e579–e646 (2016).

    Article  PubMed  Google Scholar 

  35. Vissing, C. R. et al. Family screening in dilated cardiomyopathy: prevalence, incidence, and potential for limiting follow-up. JACC Heart Fail. 10, 792–803 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Paldino, A. et al. High prevalence of subtle systolic and diastolic dysfunction in genotype-positive phenotype-negative relatives of dilated cardiomyopathy patients. Int. J. Cardiol. 324, 108–114 (2021).

    Article  PubMed  Google Scholar 

  37. Fontana, M. et al. CMR-verified interstitial myocardial fibrosis as a marker of subclinical cardiac involvement in LMNA mutation carriers. JACC Cardiovasc. Imaging 6, 124–126 (2013).

    Article  PubMed  Google Scholar 

  38. US National Library of Medicine. ClinicalTrials.gov classic.clinicaltrials.gov/ct2/show/NCT05321875 (2022).

  39. Colucci, W. S. et al. Metoprolol reverses left ventricular remodeling in patients with asymptomatic systolic dysfunction: the REversal of VEntricular Remodeling with Toprol-XL (REVERT) trial. Circulation 116, 49–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. SOLVD Investigators et al.Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N. Engl. J. Med. 327, 685–691 (1992).

    Article  Google Scholar 

  41. Taha, K. et al. Echocardiographic deformation imaging for early detection of genetic cardiomyopathies: JACC review topic of the week. J. Am. Coll. Cardiol. 79, 594–608 (2022).

    Article  PubMed  Google Scholar 

  42. Merlo, M. et al. Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J. Am. Coll. Cardiol. 57, 1468–1476 (2011).

    Article  PubMed  Google Scholar 

  43. Manca, P. et al. Transient versus persistent improved ejection fraction in non-ischaemic dilated cardiomyopathy. Eur. J. Heart Fail. 24, 1171–1179 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Verdonschot, J. A. J. et al. Clinical phenotype and genotype associations with improvement in left ventricular function in dilated cardiomyopathy. Circ. Heart Fail. 11, e005220 (2018).

    Article  PubMed  Google Scholar 

  45. Dal Ferro, M. et al. Association between mutation status and left ventricular reverse remodelling in dilated cardiomyopathy. Heart 103, 1704–1710 (2017).

    Article  PubMed  Google Scholar 

  46. Halliday, B. P. et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 393, 61–73 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marian, A. J., van Rooij, E. & Roberts, R. Genetics and genomics of single-gene cardiovascular diseases: common hereditary cardiomyopathies as prototypes of single-gene disorders. J. Am. Coll. Cardiol. 68, 2831–2849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hofmeyer, M. et al. Rare variant genetics and dilated cardiomyopathy severity: the DCM precision medicine study. Circulation 148, 872–881 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Paldino, A. et al. Prognostic prediction of genotype vs phenotype in genetic cardiomyopathies. J. Am. Coll. Cardiol. 80, 1981–1994 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).

    Article  PubMed  Google Scholar 

  51. Caforio, A. L. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 34, 2636–2648 (2013).

    Article  PubMed  Google Scholar 

  52. Caforio, A. L. et al. Novel organ-specific circulating cardiac autoantibodies in dilated cardiomyopathy. J. Am. Coll. Cardiol. 15, 1527–1534 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Landsberger, M. et al. Potential role of antibodies against cardiac Kv channel-interacting protein 2 in dilated cardiomyopathy. Am. Heart J. 156, 92–99.e2 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Neumann, F. J. et al. Effect of glycoprotein IIb/IIIa receptor blockade on platelet-leukocyte interaction and surface expression of the leukocyte integrin Mac-1 in acute myocardial infarction. J. Am. Coll. Cardiol. 34, 1420–1426 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Schulze, K., Becker, B. F. & Schultheiss, H. P. Antibodies to the ADP/ATP carrier, an autoantigen in myocarditis and dilated cardiomyopathy, penetrate into myocardial cells and disturb energy metabolism in vivo. Circ. Res. 64, 179–192 (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Caforio, A. L. et al. Passive transfer of affinity-purified anti-heart autoantibodies (AHA) from sera of patients with myocarditis induces experimental myocarditis in mice. Int. J. Cardiol. 179, 166–177 (2015).

    Article  PubMed  Google Scholar 

  57. Chiale, P. A. et al. High prevalence of antibodies against beta1- and beta2-adrenoceptors in patients with primary electrical cardiac abnormalities. J. Am. Coll. Cardiol. 26, 864–869 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Baba, A., Yoshikawa, T. & Ogawa, S. Autoantibodies produced against sarcolemmal Na-K-ATPase: possible upstream targets of arrhythmias and sudden death in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 40, 1153–1159 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Kaya, Z., Leib, C. & Katus, H. A. Autoantibodies in heart failure and cardiac dysfunction. Circ. Res. 110, 145–158 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Caforio, A. L. et al. Prospective familial assessment in dilated cardiomyopathy: cardiac autoantibodies predict disease development in asymptomatic relatives. Circulation 115, 76–83 (2007).

    Article  PubMed  Google Scholar 

  61. Neu, N. et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J. Immunol. 139, 3630–3636 (1987).

    Article  CAS  PubMed  Google Scholar 

  62. Elliott, J. F. et al. Autoimmune cardiomyopathy and heart block develop spontaneously in HLA-DQ8 transgenic IAβ knockout NOD mice. Proc. Natl Acad. Sci. USA 100, 13447–13452 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bowles, N. E., Richardson, P. J., Olsen, E. G. & Archard, L. C. Detection of Coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1, 1120–1123 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Tschöpe, C. et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat. Rev. Cardiol. 18, 169–193 (2021).

    Article  PubMed  Google Scholar 

  65. Moimas, S. et al. Idiopathic dilated cardiomyopathy and persistent viral infection: lack of association in a controlled study using a quantitative assay. Heart Lung Circ. 21, 787–793 (2012).

    Article  PubMed  Google Scholar 

  66. Stewart, G. C. et al. Myocardial parvovirus B19 persistence: lack of association with clinicopathologic phenotype in adults with heart failure. Circ. Heart Fail. 4, 71–78 (2011).

    Article  PubMed  Google Scholar 

  67. Bock, C. T., Klingel, K. & Kandolf, R. Human parvovirus B19-associated myocarditis. N. Engl. J. Med. 362, 1248–1249 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Verdonschot, J. et al. Relevance of cardiac parvovirus B19 in myocarditis and dilated cardiomyopathy: review of the literature. Eur. J. Heart Fail. 18, 1430–1441 (2016).

    Article  PubMed  Google Scholar 

  69. Kühl, U. et al. Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 112, 1965–1970 (2005).

    Article  PubMed  Google Scholar 

  70. Frustaci, A. et al. Immunosuppressive therapy for active lymphocytic myocarditis: virological and immunologic profile of responders versus nonresponders. Circulation 107, 857–863 (2003).

    Article  PubMed  Google Scholar 

  71. Kindermann, I. et al. Predictors of outcome in patients with suspected myocarditis. Circulation 118, 639–648 (2008).

    Article  PubMed  Google Scholar 

  72. Sinagra, G. et al. Viral presence-guided immunomodulation in lymphocytic myocarditis: an update. Eur. J. Heart Fail. 23, 211–216 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Sinagra, G. et al. Myocarditis in clinical practice. Mayo Clin. Proc. 91, 1256–1266 (2016).

    Article  PubMed  Google Scholar 

  74. Pollack, A., Kontorovich, A. R., Fuster, V. & Dec, G. W. Viral myocarditis-diagnosis, treatment options, and current controversies. Nat. Rev. Cardiol. 12, 670–680 (2015).

    Article  PubMed  Google Scholar 

  75. Heymans, S., Eriksson, U., Lehtonen, J. & Cooper, L. T. Jr. The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J. Am. Coll. Cardiol. 68, 2348–2364 (2016).

    Article  PubMed  Google Scholar 

  76. Martens, P., Cooper, L. T. & Tang, W. H. W. Diagnostic approach for suspected acute myocarditis: considerations for standardization and broadening clinical spectrum. J. Am. Heart Assoc. 12, e031454 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Frustaci, A., Russo, M. A. & Chimenti, C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur. Heart J. 30, 1995–2002 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Chimenti, C., Russo, M. A. & Frustaci, A. Immunosuppressive therapy in virus-negative inflammatory cardiomyopathy: 20-year follow-up of the TIMIC trial. Eur. Heart J. 43, 3463–3473 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Parrillo, J. E. et al. A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. N. Engl. J. Med. 321, 1061–1068 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Mason, J. W. et al. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N. Engl. J. Med. 333, 269–275 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Merken, J. et al. Immunosuppressive therapy improves both short- and long-term prognosis in patients with virus-negative nonfulminant inflammatory cardiomyopathy. Circ. Heart Fail. 11, e004228 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Seferovic, P. M. et al. Heart Failure Association of the ESC, Heart Failure Society of America and Japanese Heart Failure Society position statement on endomyocardial biopsy. Eur. J. Heart Fail. 23, 854–871 (2021).

    Article  PubMed  Google Scholar 

  83. Piano, M. R. Alcoholic cardiomyopathy: incidence, clinical characteristics, and pathophysiology. Chest 121, 1638–1650 (2002).

    Article  PubMed  Google Scholar 

  84. Piano, M. R. Alcohol’s effects on the cardiovascular system. Alcohol. Res. 38, 219–241 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Matyas, C. et al. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis. Am. J. Physiol. Heart Circ. Physiol. 310, H1658–H1670 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lazarevic, A. M. et al. Early changes in left ventricular function in chronic asymptomatic alcoholics: relation to the duration of heavy drinking. J. Am. Coll. Cardiol. 35, 1599–1606 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Yousaf, H. et al. Association between alcohol consumption and systolic ventricular function: a population-based study. Am. Heart J. 167, 861–868 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Rodrigues, P. et al. Association between alcohol intake and cardiac remodeling. J. Am. Coll. Cardiol. 72, 1452–1462 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Dundung, A. et al. Clinical profile and prognostic factors of alcoholic cardiomyopathy in tribal and non-tribal population. Open Heart 7, e001335 (2020).

    Article  PubMed  Google Scholar 

  90. Artico, J. et al. The alcohol-induced cardiomyopathy: a cardiovascular magnetic resonance characterization. Int. J. Cardiol. 331, 131–137 (2021).

    Article  PubMed  Google Scholar 

  91. Om, A., Warner, M., Sabri, N., Cecich, L. & Vetrovec, G. Frequency of coronary artery disease and left ventricle dysfunction in cocaine users. Am. J. Cardiol. 69, 1549–1552 (1992).

    Article  CAS  PubMed  Google Scholar 

  92. Vongpatanasin, W., Mansour, Y., Chavoshan, B., Arbique, D. & Victor, R. G. Cocaine stimulates the human cardiovascular system via a central mechanism of action. Circulation 100, 497–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Hollander, J. E. & Hoffman, R. S. Cocaine-induced myocardial infarction: an analysis and review of the literature. J. Emerg. Med. 10, 169–177 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Pitts, W. R., Vongpatanasin, W., Cigarroa, J. E., Hillis, L. D. & Lange, R. A. Effects of the intracoronary infusion of cocaine on left ventricular systolic and diastolic function in humans. Circulation 97, 1270–1273 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Arenas, D. J., Beltran, S., Zhou, S. & Goldberg, L. R. Cocaine, cardiomyopathy, and heart failure: a systematic review and meta-analysis. Sci. Rep. 10, 19795 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Armenian, S. H. et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 35, 893–911 (2017).

    Article  PubMed  Google Scholar 

  97. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Hanna, A. D., Lam, A., Tham, S., Dulhunty, A. F. & Beard, N. A. Adverse effects of doxorubicin and its metabolic product on cardiac RyR2 and SERCA2A. Mol. Pharmacol. 86, 438–449 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Olson, R. D. et al. Doxorubicin cardiac dysfunction: effects on calcium regulatory proteins, sarcoplasmic reticulum, and triiodothyronine. Cardiovasc. Toxicol. 5, 269–283 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Pereira, G. C. et al. Early cardiac mitochondrial molecular and functional responses to acute anthracycline treatment in Wistar rats. Toxicol. Sci. 169, 137–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Lyon, A. R. et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): developed by the task force on cardio-oncology of the European Society of Cardiology (ESC). Eur. Heart J. 43, 4229–4361 (2022).

    Article  PubMed  Google Scholar 

  103. Lalario, A. et al. Clinical characterization and natural history of chemotherapy-induced dilated cardiomyopathy. ESC Heart Fail. 9, 3052–3059 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gulati, G. et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur. Heart J. 37, 1671–1680 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Avila, M. S. et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J. Am. Coll. Cardiol. 71, 2281–2290 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mahmood, S. S. et al. Myocarditis in patients treated with immune checkpoint inhibitors. J. Am. Coll. Cardiol. 71, 1755–1764 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Codd, M. B., Sugrue, D. D., Gersh, B. J. & Melton, L. J. 3rd Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975-1984. Circulation 80, 564–572 (1989).

    Article  CAS  PubMed  Google Scholar 

  109. Cannatà, A. et al. Sex differences in the long-term prognosis of dilated cardiomyopathy. Can. J. Cardiol. 36, 37–44 (2020).

    Article  PubMed  Google Scholar 

  110. Halliday, B. P. et al. Sex- and age-based differences in the natural history and outcome of dilated cardiomyopathy. Eur. J. Heart Fail. 20, 1392–1400 (2018).

    Article  PubMed  Google Scholar 

  111. Vitale, C., Mendelsohn, M. E. & Rosano, G. M. Gender differences in the cardiovascular effect of sex hormones. Nat. Rev. Cardiol. 6, 532–542 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Fett, J. D., Ansari, A. A., Sundstrom, J. B. & Combs, G. F. Peripartum cardiomyopathy: a selenium disconnection and an autoimmune connection. Int. J. Cardiol. 86, 311–316 (2002).

    Article  PubMed  Google Scholar 

  113. Bültmann, B. D., Klingel, K., Näbauer, M., Wallwiener, D. & Kandolf, R. High prevalence of viral genomes and inflammation in peripartum cardiomyopathy. Am. J. Obstet. Gynecol. 193, 363–365 (2005).

    Article  PubMed  Google Scholar 

  114. Ansari, A. A. et al. Autoimmune mechanisms as the basis for human peripartum cardiomyopathy. Clin. Rev. Allergy Immunol. 23, 301–324 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Elkayam, U. et al. Pregnancy-associated cardiomyopathy: clinical characteristics and a comparison between early and late presentation. Circulation 111, 2050–2055 (2005).

    Article  PubMed  Google Scholar 

  116. McNamara, D. M. et al. Clinical outcomes for peripartum cardiomyopathy in North America: results of the IPAC study (Investigations of Pregnancy-Associated Cardiomyopathy). J. Am. Coll. Cardiol. 66, 905–914 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chugh, S. S. et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129, 837–847 (2014).

    Article  PubMed  Google Scholar 

  118. Gentlesk, P. J. et al. Reversal of left ventricular dysfunction following ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 18, 9–14 (2007).

    Article  PubMed  Google Scholar 

  119. Duffee, D. F., Shen, W. K. & Smith, H. C. Suppression of frequent premature ventricular contractions and improvement of left ventricular function in patients with presumed idiopathic dilated cardiomyopathy. Mayo Clin. Proc. 73, 430–433 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Huizar, J. F., Ellenbogen, K. A., Tan, A. Y. & Kaszala, K. Arrhythmia-induced cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 2328–2344 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Coleman, H. N. et al. Congestive heart failure following chronic tachycardia. Am. Heart J. 81, 790–798 (1971).

    Article  PubMed  Google Scholar 

  122. Marrouche, N. F. et al. Catheter ablation for atrial fibrillation with heart failure. N. Engl. J. Med. 378, 417–427 (2018).

    Article  PubMed  Google Scholar 

  123. Prabhu, S. et al. Catheter ablation versus medical rate control in atrial fibrillation and systolic dysfunction: the CAMERA-MRI study. J. Am. Coll. Cardiol. 70, 1949–1961 (2017).

    Article  PubMed  Google Scholar 

  124. Zaffalon, D. et al. Supraventricular tachycardia causing left ventricular dysfunction. Am. J. Cardiol. 159, 72–78 (2021).

    Article  PubMed  Google Scholar 

  125. Nedios, S. et al. Long-term follow-up after atrial fibrillation ablation in patients with impaired left ventricular systolic function: the importance of rhythm and rate control. Heart Rhythm. 11, 344–351 (2014).

    Article  PubMed  Google Scholar 

  126. Kumar, S. et al. Long-term arrhythmic and nonarrhythmic outcomes of lamin a/c mutation carriers. J. Am. Coll. Cardiol. 68, 2299–2307 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Sinagra, G., Porcari, A., Fabris, E. & Merlo, M. Standardizing the role of endomyocardial biopsy in current clinical practice worldwide. Eur. J. Heart Fail. 23, 1995–1998 (2021).

    Article  PubMed  Google Scholar 

  128. Noutsias, M. et al. Expression of functional T-cell markers and T-cell receptor Vbeta repertoire in endomyocardial biopsies from patients presenting with acute myocarditis and dilated cardiomyopathy. Eur. J. Heart Fail. 13, 611–618 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Sikking, M. A. et al. Cardiac inflammation in adult-onset genetic dilated cardiomyopathy. J. Clin. Med. 12, 3937 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Frantz, S. et al. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. Eur. J. Heart Fail. 20, 445–459 (2018).

    Article  PubMed  Google Scholar 

  131. Epelman, S., Liu, P. P. & Mann, D. L. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat. Rev. Immunol. 15, 117–129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Dobaczewski, M., Chen, W. & Frangogiannis, N. G. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J. Mol. Cell Cardiol. 51, 600–606 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Tschöpe, C. et al. NOD2 (nucleotide-gbinding oligomerization domain 2) is a major pathogenic mediator of coxsackievirus B3-induced myocarditis. Circ. Heart Fail. 10, e003870 (2017).

    Article  PubMed  Google Scholar 

  135. Toldo, S. et al. Interleukin-18 mediates interleukin-1-induced cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 306, H1025–H1031 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Basso, C. et al. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation 94, 983–991 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Bariani, R. et al. ‘Hot phase’ clinical presentation in arrhythmogenic cardiomyopathy. Europace 23, 907–917 (2021).

    Article  PubMed  Google Scholar 

  138. Lota, A. S. et al. Genetic architecture of acute myocarditis and the overlap with inherited cardiomyopathy. Circulation 146, 1123–1134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Imazio, M. et al. New developments in the management of recurrent pericarditis. Can. J. Cardiol. 39, 1103–1110 (2023).

    Article  PubMed  Google Scholar 

  140. Marstrand, P., Picard, K. & Lakdawala, N. K. Second hits in dilated cardiomyopathy. Curr. Cardiol. Rep. 22, 8 (2020).

    Article  PubMed  Google Scholar 

  141. Heymans, S., Lakdawala, N. K., Tschöpe, C. & Klingel, K. Dilated cardiomyopathy: causes, mechanisms, and current and future treatment approaches. Lancet 402, 998–1011 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Ware, J. S. et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N. Engl. J. Med. 374, 233–241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pearl, W. Familial occurrence of peripartum cardiomyopathy. Am. Heart J. 129, 421–422 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. van Spaendonck-Zwarts, K. Y. et al. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation 121, 2169–2175 (2010).

    Article  PubMed  Google Scholar 

  145. Ware, J. S. et al. Genetic etiology for alcohol-induced cardiac toxicity. J. Am. Coll. Cardiol. 71, 2293–2302 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Garcia-Pavia, P. et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation 140, 31–41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cattin, M. E. et al. Mutation in lamin A/C sensitizes the myocardium to exercise-induced mechanical stress but has no effect on skeletal muscles in mouse. Neuromuscul. Disord. 26, 490–499 (2016).

    Article  PubMed  Google Scholar 

  148. Skjølsvik, E. T. et al. Exercise is associated with impaired left ventricular systolic function in patients with lamin A/C genotype. J. Am. Heart Assoc. 9, e012937 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bobbo, M. et al. Comparison of patient characteristics and course of hypertensive hypokinetic cardiomyopathy versus idiopathic dilated cardiomyopathy. Am. J. Cardiol. 119, 483–489 (2017).

    Article  PubMed  Google Scholar 

  150. Giudicessi, J. R., Shrivastava, S., Ackerman, M. J. & Pereira, N. L. Clinical impact of secondary risk factors in TTN-mediated dilated cardiomyopathy. Circ. Genom. Precis. Med. 14, e003240 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Schafer, S. et al. Titin-truncating variants affect heart function in disease cohorts and the general population. Nat. Genet. 49, 46–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Akinrinade, O., Koskenvuo, J. W. & Alastalo, T. P. Prevalence of titin truncating variants in general population. PLoS ONE 10, e0145284 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Haggerty, C. M. et al. Genomics-first evaluation of heart disease associated with titin-truncating variants. Circulation 140, 42–54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Merlo, M., Setti, M. & Sinagra, G. Coronary artery disease and dilated cardiomyopathy: where parallel universes merge. Eur. J. Heart Fail. 26, 56–58 (2024).

    Article  PubMed  Google Scholar 

  155. Pirruccello, J. P. et al. Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nat. Commun. 11, 2254 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145, e895–e1032 (2022).

    PubMed  Google Scholar 

  157. McDonagh, T. A. et al. 2023 focused update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 44, 3627–3639 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Verstraelen, T. E. et al. Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers-reaching the frontiers of individual risk prediction. Eur. Heart J. 42, 2842–2850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gasperetti, A. et al. Arrhythmic risk stratification in arrhythmogenic right ventricular cardiomyopathy. Europace 25, euad312 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Protonotarios, A. et al. Importance of genotype for risk stratification in arrhythmogenic right ventricular cardiomyopathy using the 2019 ARVC risk calculator. Eur. Heart J. 43, 3053–3067 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jordà, P. et al. Arrhythmic risk prediction in arrhythmogenic right ventricular cardiomyopathy: external validation of the arrhythmogenic right ventricular cardiomyopathy risk calculator. Eur. Heart J. 43, 3041–3052 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Gigli, M. et al. Phenotypic expression, natural history, and risk stratification of cardiomyopathy caused by filamin C truncating variants. Circulation 144, 1600–1611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sidhu, K. et al. The response to cardiac resynchronization therapy in LMNA cardiomyopathy. Eur. J. Heart Fail. 24, 685–693 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Olivotto, I. et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396, 759–769 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Ho, C. Y. et al. Evaluation of mavacamten in symptomatic patients with nonobstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 75, 2649–2660 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Teerlink, J. R. et al. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N. Engl. J. Med. 384, 105–116 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. MacRae, C. A. et al. Efficacy and safety of ARRY-371797 in LMNA-related dilated cardiomyopathy: a phase 2 study. Circ. Genom. Precis. Med. 16, e003730 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Judge, D. P. et al. Long-term efficacy and safety of arry-371797 (PF-07265803) in patients with lamin A/C-related dilated cardiomyopathy. Am. J. Cardiol. 183, 93–98 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Garcia-Pavia, P. et al. REALM-DCM: a phase 3, multinational, randomized, placebo-controlled trial of ARRY-371797 in patients with symptomatic LMNA-related dilated cardiomyopathy. Circ. Heart Fail. 17, e011548 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chen, S. N. et al. Activation of PDGFRA signaling contributes to filamin C-related arrhythmogenic cardiomyopathy. Sci. Adv. 8, eabk0052 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Argiro, A. et al. Applications of gene therapy in cardiomyopathies. JACC Heart Fail. 12, 248–260 (2023).

    Article  PubMed  Google Scholar 

  172. Santoso, M. R. et al. Exosomes from induced pluripotent stem cell-derived cardiomyocytes promote autophagy for myocardial repair. J. Am. Heart Assoc. 9, e014345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sultana, N., Sharkar, M. T. K., Hadas, Y., Chepurko, E. & Zangi, L. In vitro synthesis of modified RNA for cardiac gene therapy. Methods Mol. Biol. 2158, 281–294 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Hunkler, H. J., Groß, S., Thum, T. & Bär, C. Non-coding RNAs: key regulators of reprogramming, pluripotency, and cardiac cell specification with therapeutic perspective for heart regeneration. Cardiovasc. Res. 118, 3071–3084 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Hong, K. N. et al. International consensus on differential diagnosis and management of patients with Danon disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 82, 1628–1647 (2023).

    Article  PubMed  Google Scholar 

  176. Chai, A. C. et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 29, 401–411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Reichart, D. et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat. Med. 29, 412–421 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nishiyama, T. et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci. Transl. Med. 14, eade1633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kyriakopoulou, E., Monnikhof, T. & van Rooij, E. Gene editing innovations and their applications in cardiomyopathy research. Dis. Model. Mech. 16, dmm050088 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Verdonschot, J. A. J. et al. Phenotypic clustering of dilated cardiomyopathy patients highlights important pathophysiological differences. Eur. Heart J. 42, 162–174 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Taylor, M. R. et al. Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 115, 1244–1251 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Smith, E. D. et al. Desmoplakin cardiomyopathy, a fibrotic and inflammatory form of cardiomyopathy distinct from typical dilated or arrhythmogenic right ventricular cardiomyopathy. Circulation 141, 1872–1884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hasselberg, N. E. et al. Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation. Eur. Heart J. 39, 853–860 (2018).

    Article  PubMed  Google Scholar 

  184. van Rijsingen, I. A. et al. Risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers a European cohort study. J. Am. Coll. Cardiol. 59, 493–500 (2012).

    Article  PubMed  Google Scholar 

  185. Paller, M. S., Martin, C. M. & Pierpont, M. E. Restrictive cardiomyopathy: an unusual phenotype of a lamin A variant. ESC Heart Fail. 5, 724–726 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. de Frutos, F. et al. Natural history of MYH7-related dilated cardiomyopathy. J. Am. Coll. Cardiol. 80, 1447–1461 (2022).

    Article  PubMed  Google Scholar 

  187. Murray, B. et al. Identification of sarcomeric variants in probands with a clinical diagnosis of arrhythmogenic right ventricular cardiomyopathy (ARVC). J. Cardiovasc. Electrophysiol. 29, 1004–1009 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Parikh, V. N. et al. Regional variation in RBM20 causes a highly penetrant arrhythmogenic cardiomyopathy. Circ. Heart Fail. 12, e005371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cannie, D. E. et al. Risks of ventricular arrhythmia and heart failure in carriers of RBM20 variants. Circ. Genom. Precis. Med. 16, 434–441 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Brauch, K. M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. McNair, W. P. et al. SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J. Am. Coll. Cardiol. 57, 2160–2168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Te Riele, A. S. et al. Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc. Res. 113, 102–111 (2017).

    Article  Google Scholar 

  193. Tayal, U. et al. Phenotype and clinical outcomes of titin cardiomyopathy. J. Am. Coll. Cardiol. 70, 2264–2274 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mazzarotto, F. et al. Systematic large-scale assessment of the genetic architecture of left ventricular noncompaction reveals diverse etiologies. Genet. Med. 23, 856–864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kontorovich, A. R. et al. Myopathic cardiac genotypes increase risk for myocarditis. JACC: Basic. Transl. Sci. 6, 584–592 (2021).

    PubMed  Google Scholar 

  196. Corden, B. et al. Association of titin-truncating genetic variants with life-threatening cardiac arrhythmias in patients with dilated cardiomyopathy and implanted defibrillators. JAMA Netw. Open. 2, e196520 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.R.G.T. and L.M. receive grant support from the National Institutes of Health (X01 HL139403, UL1 RR025870, R01HL164634 and R01HL147064).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Luisa Mestroni.

Ethics declarations

Competing interests

D.S. has received honoraria for lectures and fees for expert advice from AstraZeneca, Janssen, Merck, Novartis and Novo Nordisk. M.R.G.T. and L.M. receive grant support from Bristol Meyers Squibb, Greenstone Bioscience, Owkin, Pfizer and Tenaya Therapeutics. M.R.G.T also receives grant support from Rocket Pharmaceuticals and Spark Therapeutics. L.M. is member of the Scientific Advisory Board of Tenaya Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Heinz-Peter Schultheiss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ARVC Risk Calculator: https://arvcrisk.com/

ClinGen database: https://www.clinicalgenome.org/

DCM SHaRe registry: https://www.theshareregistry.org/

LMNA risk VTA Calculator: https://lmna-risk-vta.fr/

PLN 5-year VA Risk Calculator: https://plnriskcalculator.shinyapps.io/final_shiny/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gigli, M., Stolfo, D., Merlo, M. et al. Pathophysiology of dilated cardiomyopathy: from mechanisms to precision medicine. Nat Rev Cardiol 22, 183–198 (2025). https://doi.org/10.1038/s41569-024-01074-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-024-01074-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing