Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cholesterol crystals in the pathogenesis of atherosclerosis

Subjects

Abstract

The presence of cholesterol crystals (CCs) in tissues was first described more than 100 years ago. CCs have a pathogenic role in various cardiovascular diseases, including myocardial infarction, aortic aneurysm and, most prominently, atherosclerosis. Although the underlying mechanisms and signalling pathways involved in CC formation are incompletely understood, numerous studies have highlighted the existence of CCs at various stages of atheroma progression. In this Review, we summarize the mechanisms underlying CC formation and the role of CCs in cardiovascular disease. In particular, we explore the established links between lipid metabolism across various cell types and the formation of CCs, with a focus on CC occurrence in the vasculature. We also discuss CC-induced inflammation as one of the pathogenic features of CCs in the atheroma. Finally, we summarize the therapeutic strategies aimed at reducing CC-mediated atherosclerotic burden, including approaches to inhibit CC formation in the vasculature or to mitigate the inflammatory response triggered by CCs. Addressing CC formation might emerge as a crucial component in our broader efforts to combat cardiovascular disease.

Key points

  • The presence of cholesterol crystals (CCs) in advanced atherosclerotic plaques was documented over a century ago and is associated with the accumulation of cholesterol from lipid-laden macrophages that die in the core of the atheroma.

  • CCs are produced by endothelial cells after only a short exposure to hyperlipidaemic conditions and are secreted to the basolateral side of the endothelium, resulting in the formation of a subendothelial space.

  • Although incompletely understood, the formation of CCs probably involves pathways that regulate lipid uptake, intracellular lysosome-mediated lipid metabolism, reverse cholesterol transport and autophagy.

  • CCs can be taken up by pattern recognition receptors on various cell types, including macrophages, smooth muscle cells and endothelial cells, and cause various inflammatory responses, including NLRP3 inflammasome activation.

  • The in vivo imaging and detection of CCs need to be improved to identify vulnerable atherosclerotic plaques that are associated with an increased risk of future cardiovascular events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways activated by cholesterol crystals in various cell types.
Fig. 2: Pathways involved in cholesterol crystal formation.
Fig. 3: Fundamental processes implicated in atherogenesis.
Fig. 4: Cholesterol crystal uptake and formation.
Fig. 5: Detection of cholesterol crystals across various stages of atherogenesis in a murine model of atherosclerosis.

Similar content being viewed by others

References

  1. Aschoff, L. Zur Morphologie der lipoiden Substanzen. Beitr. Pathol. Anat. Allg. Pathol. 47, 1–50 (1910).

    Google Scholar 

  2. Levene, C. I. The early lesions of atheroma in the coronary arteries. J. Pathol. Bacteriol. 72, 79–82 (1956).

    Article  CAS  PubMed  Google Scholar 

  3. Luo, Y. et al. Modeling of mechanical stress exerted by cholesterol crystallization on atherosclerotic plaques. PLoS ONE 11, e0155117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kiyak, J. H. Cholesterol crystals, smooth muscle cells and new data on the genesis of atherosclerosis. Pol. J. Pathol. 48, 49–55 (1997).

    CAS  PubMed  Google Scholar 

  5. Varsano, N. et al. Two polymorphic cholesterol monohydrate crystal structures form in macrophage culture models of atherosclerosis. Proc. Natl Acad. Sci. USA 115, 7662–7669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vedre, A. et al. Physical factors that trigger cholesterol crystallization leading to plaque rupture. Atherosclerosis 203, 89–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Katz, S. S., Shipley, G. G. & Small, D. M. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J. Clin. Invest. 58, 200–211 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bogren, H. & Larsson, K. An X-ray-diffraction study of crystalline cholesterol in some pathological deposits in man. Biochim. Biophys. Acta 75, 65–69 (1963).

    Article  CAS  PubMed  Google Scholar 

  9. Park, M. H. et al. Non-linear optical imaging of atherosclerotic plaques in the context of SIV and HIV infection prominently detects crystalline cholesterol esters. PLoS ONE 16, e0251599 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baumer, Y., McCurdy, S. G. & Boisvert, W. A. Formation and cellular impact of cholesterol crystals in health and disease. Adv. Biol. 5, e2100638 (2021).

    Article  Google Scholar 

  11. Abela, G. S. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J. Clin. Lipidol. 4, 156–164 (2010).

    Article  PubMed  Google Scholar 

  12. Baumer, Y. et al. Hyperlipidemia-induced cholesterol crystal production by endothelial cells promotes atherogenesis. Nat. Commun. 8, 1129 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Venturelli, C., Jeannin, G., Sottini, L., Dallera, N. & Scolari, F. Cholesterol crystal embolism (atheroembolism). Heart Int. 2, 155 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ioannou, G. N. et al. Cholesterol crystals in hepatocyte lipid droplets are strongly associated with human nonalcoholic steatohepatitis. Hepatol. Commun. 3, 776–791 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koka, S. et al. Endothelial NLRP3 inflammasome activation and arterial neointima formation associated with acid sphingomyelinase during hypercholesterolemia. Redox Biol. 13, 336–344 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rajamäki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang, R. et al. Activation of NLRP3 inflammasome promotes foam cell formation in vascular smooth muscle cells and atherogenesis via HMGB1. J. Am. Heart Assoc. 7, e008596 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jones, G. T. in Diagnosis, Screening and Treatment of Abdominal, Thoracoabdominal and Thoracic Aortic Aneurysms Ch. 3 (ed. Grundmann, R. T.) (IntechOpen, 2011).

  20. Abela, G. S. & Aziz, K. Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events – a novel insight into plaque rupture by scanning electron microscopy. Scanning 28, 1–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Furukawa, E. et al. The impact of chronic kidney disease on cholesterol crystal embolism in autopsy cases [abstract]. Nephrol. Dial. Transplant. 34 (Suppl. 1), gfz106.FP072 (2019).

    Article  Google Scholar 

  22. Haas, M., Spargo, B. H., Wit, E. J. & Meehan, S. M. Etiologies and outcome of acute renal insufficiency in older adults: a renal biopsy study of 259 cases. Am. J. Kidney Dis. 35, 433–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Li, X., Bayliss, G. & Zhuang, S. Cholesterol crystal embolism and chronic kidney disease. Int. J. Mol. Sci. 18, 1120 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shroff, H. & VanWagner, L. B. Cardiovascular disease in nonalcoholic steatohepatitis: screening and management. Curr. Hepatol. Rep. 19, 315–326 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hammer, S. S. et al. Cholesterol crystal formation is a unifying pathogenic mechanism in the development of diabetic retinopathy. Diabetologia 66, 1705–1718 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walton, K. W. & Dunkerley, D. J. Studies on the pathogenesis of corneal arcus formation II. Immunofluorescent studies on lipid deposition in the eye of the lipid-fed rabbit. J. Pathol. 114, 217–229 (1974).

    Article  CAS  PubMed  Google Scholar 

  27. Silva, G. B. et al. Cholesterol crystals and NLRP3 mediated inflammation in the uterine wall decidua in normal and preeclamptic pregnancies. Front. Immunol. 11, 564712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Virchow, R. L. K. Cellular Pathology (John Churchill, 1860).

  29. Marchand, F. Ueber atherosclerosis. Verhandlungen der Kongresse fuer Innere Medizin Vol. 21 (1904).

  30. Ridker, P. M. How common is residual inflammatory risk? Circ. Res. 120, 617–619 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Aday, A. W. & Ridker, P. M. Targeting residual inflammatory risk: a shifting paradigm for atherosclerotic disease. Front. Cardiovasc. Med. 6, 16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Nidorf, S. M., Eikelboom, J. W., Budgeon, C. A. & Thompson, P. L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 61, 404–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Baumer, Y. et al. Hyperlipidaemia and IFNγ/TNFα synergism are associated with cholesterol crystal formation in endothelial cells partly through modulation of lysosomal pH and cholesterol homeostasis. eBioMedicine 59, 102876 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baumer, Y. et al. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis. JCI Insight 3, e97179 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ho-Tin-Noé, B. et al. Cholesterol crystallization in human atherosclerosis is triggered in smooth muscle cells during the transition from fatty streak to fibroatheroma. J. Pathol. 241, 671–682 (2017).

    Article  PubMed  Google Scholar 

  39. Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tangirala, R. K. et al. Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J. Lipid Res. 35, 93–104 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Capua-Shenkar, J., Varsano, N., Kruth, H. S. & Addadi, L. in Cholesterol Crystals in Atherosclerosis and Other Related Diseases (eds Abela, G. S. & Nidorf, S. M.) 49–71 (Humana, 2023).

  42. Nidorf, S. M. & Abela, G. S. in Cholesterol Crystals in Atherosclerosis and Other Related Diseases (eds Abela, G. S. & Nidorf, S. M.) 15–26 (Humana, 2023).

  43. Konikoff, F. M., Chung, D. S., Donovan, J. M., Small, D. M. & Carey, M. C. Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile. Evidence that cholesterol does not nucleate classic monohydrate plates. J. Clin. Invest. 90, 1155–1160 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khaykovich, B. et al. Structure of cholesterol helical ribbons and self-assembling biological springs. Proc. Natl Acad. Sci. USA 104, 9656–9660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilkens, J. A. & Krut, L. H. The effect of glucose on the crystallization of cholesterol. J. Atheroscler. Res. 5, 516–523 (1965).

    Article  CAS  PubMed  Google Scholar 

  46. Self-Medlin, Y., Byun, J., Jacob, R. F., Mizuno, Y. & Mason, R. P. Glucose promotes membrane cholesterol crystalline domain formation by lipid peroxidation. Biochim. Biophys. Acta 1788, 1398–1403 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Park, S., Sut, T. N., Ma, G. J., Parikh, A. N. & Cho, N. J. Crystallization of cholesterol in phospholipid membranes follows Ostwald’s rule of stages. J. Am. Chem. Soc. 142, 21872–21882 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Varsano, N., Fargion, I., Wolf, S. G., Leiserowitz, L. & Addadi, L. Formation of 3D cholesterol crystals from 2D nucleation sites in lipid bilayer membranes: implications for atherosclerosis. J. Am. Chem. Soc. 137, 1601–1607 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Tziakas, D. et al. Red blood cell distribution width: a strong prognostic marker in cardiovascular disease: is associated with cholesterol content of erythrocyte membrane. Clin. Hemorheol. Microcirc. 51, 243–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Tziakas, D. N. et al. Total cholesterol content of erythrocyte membranes is increased in patients with acute coronary syndrome: a new marker of clinical instability? J. Am. Coll. Cardiol. 49, 2081–2089 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Cantuti-Castelvetri, L. et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359, 684–688 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, X. et al. Endothelial cell-derived cholesterol crystals promote endothelial inflammation in early atherogenesis. Antioxid. Redox Signal. 41, 201–215 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Bainton, D. F. The discovery of lysosomes. J. Cell Biol. 91, 66s–76s (1981).

    Article  CAS  PubMed  Google Scholar 

  54. Capua-Shenkar, J. et al. Examining atherosclerotic lesions in three dimensions at the nanometer scale with cryo-FIB-SEM. Proc. Natl Acad. Sci. USA 119, e2205475119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shio, H., Haley, N. J. & Fowler, S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. III. Intracellular localization of cholesterol and cholesteryl ester. Lab. Invest. 41, 160–167 (1979).

    CAS  PubMed  Google Scholar 

  56. Thelen, A. M. & Zoncu, R. Emerging roles for the lysosome in lipid metabolism. Trends Cell Biol. 27, 833–850 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trinh, M. N. et al. Last step in the path of LDL cholesterol from lysosome to plasma membrane to ER is governed by phosphatidylserine. Proc. Natl Acad. Sci. USA 117, 18521–18529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heybrock, S. et al. Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nat. Commun. 10, 3521 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chu, B. B. et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161, 291–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Höglinger, D. et al. NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat. Commun. 10, 4276 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage diseases. Nat. Rev. Dis. Prim. 4, 27 (2018).

    Article  PubMed  Google Scholar 

  62. Tylki-Szymańska, A. & Jurecka, A. Lysosomal acid lipase deficiency: wolman disease and cholesteryl ester storage disease. Pril 35, 99–106 (2014).

    Google Scholar 

  63. Wilson, D. P. et al. Lysosomal Acid Lipase Deficiency (MDText.com, 2000).

  64. Baronio, F. et al. Diagnosis, treatment, and follow-up of a case of Wolman disease with hemophagocytic lymphohistiocytosis. Mol. Genet. Metab. Rep. 30, 100833 (2022).

    CAS  PubMed  Google Scholar 

  65. Cox, B. E., Griffin, E. E., Ullery, J. C. & W. Gray, J. Effects of cellular cholesterol loading on macrophage foam cell lysosome acidifications. J. Lipid Res. 48, 1012–1021 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Jerome, W. G., Cox, B. E., Griffin, E. E. & Ullery, J. C. Lysosomal cholesterol accumulation inhibits subsequent hydrolysis of lipoprotein cholesteryl ester. Microsc. Microanal. 14, 138–149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Munkacsi, A. B., Porto, A. F. & Sturley, S. L. Niemann–Pick type C disease proteins: orphan transporters or membrane rheostats? Fut. Lipidol. 2, 357–367 (2007).

    Article  CAS  Google Scholar 

  68. Acuña, M. et al. Transgenic overexpression of Niemann–Pick C2 protein promotes cholesterol gallstone formation in mice. J. Hepatol. 64, 361–369 (2016).

    Article  PubMed  Google Scholar 

  69. van der Lienden, M. J. C. et al. GCase and LIMP2 abnormalities in the liver of Niemann Pick type C mice. Int. J. Mol. Sci. 22, 2532 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cabrera-Reyes, F., Parra-Ruiz, C., Yuseff, M. I. & Zanlungo, S. Alterations in lysosome homeostasis in lipid-related disorders: impact on metabolic tissues and immune cells. Front. Cell Dev. Biol. 9, 790568 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hasegawa, J., Maejima, I., Iwamoto, R. & Yoshimori, T. Selective autophagy: lysophagy. Methods 75, 128–132 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Papadopoulos, C., Kravic, B. & Meyer, H. Repair or lysophagy: dealing with damaged lysosomes. J. Mol. Biol. 432, 231–239 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Jia, J. et al. Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev. Cell 52, 69–87.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Thazhathveettil, J., Kumawat, A. K., Demirel, I., Sirsjö, A. & Paramel, G. V. Vascular smooth muscle cells in response to cholesterol crystals modulates inflammatory cytokines release and promotes neutrophil extracellular trap formation. Mol. Med. 30, 42 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baumer, Y. et al. Social determinants modulate NK cell activity via obesity, LDL, and DUSP1 signaling. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.556825 (2023).

  76. Heckmann, B. L., Yang, X., Zhang, X. & Liu, J. The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes. Br. J. Pharmacol. 168, 163–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baumer, Y., Mehta, N. N., Dey, A. K., Powell-Wiley, T. M. & Boisvert, W. A. Cholesterol crystals and atherosclerosis. Eur. Heart J. 41, 2236–2239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mullen, L. M., Chamberlain, G. & Sacre, S. Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease. Arthritis Res. Ther. 17, 122 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Freigang, S. et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur. J. Immunol. 41, 2040–2051 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. van der Heijden, T. et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice – brief report. Arterioscler. Thromb. Vasc. Biol. 37, 1457–1461 (2017).

    Article  PubMed  Google Scholar 

  81. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nițulescu, I. M., Ciulei, G., Cozma, A., Procopciuc, L. M. & Orășan, O. H. From innate immunity to metabolic disorder: a review of the NLRP3 inflammasome in diabetes mellitus. J. Clin. Med. 12, 6022 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shi, J., Guo, J., Li, Z., Xu, B. & Miyata, M. Importance of NLRP3 inflammasome in abdominal aortic aneurysms. J. Atheroscler. Thromb. 28, 454–466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Toldo, S. & Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol. 15, 203–214 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Blevins, H. M., Xu, Y., Biby, S. & Zhang, S. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front. Aging Neurosci. 14, 879021 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grebe, A., Hoss, F. & Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 122, 1722–1740 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Socha, M. W., Malinowski, B., Puk, O., Dubiel, M. & Wiciński, M. The NLRP3 inflammasome role in the pathogenesis of pregnancy induced hypertension and preeclampsia. Cells 9, 1642 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ioannou, G. N. et al. Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH. J. Lipid Res. 58, 1067–1079 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abela, G. S. et al. Cholesterol crystals induce mechanical trauma, inflammation, and neo-vascularization in solid cancers as in atherosclerosis. Am. Heart J. 35, 100317 (2023).

    Google Scholar 

  90. Khair, M., Khair, M., Vangaveti, V. N. & Malabu, U. H. The role of the NLRP3 inflammasome in atherosclerotic disease: systematic review and meta-analysis. J. Cardiol. 84, 14–21 (2024).

    Article  PubMed  Google Scholar 

  91. Que, X., Zheng, S., Song, Q., Pei, H. & Zhang, P. Fantastic voyage: the journey of NLRP3 inflammasome activation. Genes. Dis. 11, 819–829 (2024).

    Article  CAS  PubMed  Google Scholar 

  92. Ren, G.-M. et al. Pharmacological targeting of NLRP3 deubiquitination for treatment of NLRP3-associated inflammatory diseases. Sci. Immunol. 6, eabe2933 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Yalcinkaya, M. et al. Cholesterol trafficking to the ER leads to activation of CaMKII/JNK/NLRP3 and promotes atherosclerosis. J. Lipid Res. 65, 100534 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Niyonzima, N. et al. Mitochondrial C5aR1 activity in macrophages controls IL-1β production underlying sterile inflammation. Sci. Immunol. 6, eabf2489 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. West, E. E. & Kemper, C. Complosome – the intracellular complement system. Nat. Rev. Nephrol. 19, 426–439 (2023).

    Article  PubMed  Google Scholar 

  96. Samstad, E. O. et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J. Immunol. 192, 2837–2845 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Kiyotake, R. et al. Human Mincle binds to cholesterol crystals and triggers innate immune responses. J. Biol. Chem. 290, 25322–25332 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tan, R.-Z. et al. Macrophages mediate psoriasis via Mincle-dependent mechanism in mice. Cell Death Discov. 9, 140 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jin, Z. et al. SIRT6 inhibits cholesterol crystal-induced vascular endothelial dysfunction via Nrf2 activation. Exp. Cell Res. 387, 111744 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Mani, A. M., Chattopadhyay, R., Singh, N. K. & Rao, G. N. Cholesterol crystals increase vascular permeability by inactivating SHP2 and disrupting adherens junctions. Free. Radic. Biol. Med. 123, 72–84 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McConathy, W. J., Koren, E. & Stiers, D. L. Cholesterol crystal uptake and metabolism by P388D1 macrophages. Atherosclerosis 77, 221–225 (1989).

    Article  CAS  PubMed  Google Scholar 

  102. Warnatsch, A., Ioannou, M., Wang, Q. & Papayannopoulos, V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349, 316–320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zheng, Z. et al. Protective effect of SIRT6 on cholesterol crystal-induced endothelial dysfunction via regulating ACE2 expression. Exp. Cell Res. 402, 112526 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Nymo, S., Niyonzima, N., Espevik, T. & Mollnes, T. E. Cholesterol crystal-induced endothelial cell activation is complement-dependent and mediated by TNF. Immunobiology 219, 786–792 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grootaert, M. O. J. & Bennett, M. R. Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovasc. Res. 117, 2326–2339 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Döring, Y., Libby, P. & Soehnlein, O. Neutrophil extracellular traps participate in cardiovascular diseases. Circ. Res. 126, 1228–1241 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Botts, S. R., Fish, J. E. & Howe, K. L. Dysfunctional vascular endothelium as a driver of atherosclerosis: emerging insights into pathogenesis and treatment. Front. Pharmacol. 12, 787541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, Y. et al. Coronary endothelial dysfunction induced by nucleotide oligomerization domain-like receptor protein with pyrin domain containing 3 inflammasome activation during hypercholesterolemia: beyond inflammation. Antioxid. Redox Signal. 22, 1084–1096 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yalcinkaya, M. et al. Cholesterol accumulation in macrophages drives NETosis in atherosclerotic plaques via IL-1β secretion. Cardiovasc. Res. 119, 969–981 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Waldiceu, A. et al. IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann. Rheum. Dis. 69, 1697–1703 (2010).

    Article  Google Scholar 

  112. Baumer, Y. et al. Ultramorphological analysis of plaque advancement and cholesterol crystal formation in Ldlr knockout mouse atherosclerosis. Atherosclerosis 287, 100–111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Guyton, J. R. & Klemp, K. F. The lipid-rich core region of human atherosclerotic fibrous plaques. Prevalence of small lipid droplets and vesicles by electron microscopy. Am. J. Pathol. 134, 705–717 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Guyton, J. R. & Klemp, K. F. Development of the atherosclerotic core region. Chemical and ultrastructural analysis of microdissected atherosclerotic lesions from human aorta. Arterioscler. Thromb. 14, 1305–1314 (1994).

    Article  CAS  PubMed  Google Scholar 

  115. Parker, F. An electron microscopic study of experimental atherosclerosis. Am. J. Pathol. 36, 19–53 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cahill, P. A. & Redmond, E. M. Vascular endothelium – gatekeeper of vessel health. Atherosclerosis 248, 97–109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gimbrone, M. A. Jr. & Garcia-Cardena, G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc. Pathol. 22, 9–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Gimbrone, M. A. Jr. & Garcia-Cardena, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118, 620–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guyton, J. R. & Klemp, K. F. Transitional features in human atherosclerosis. Intimal thickening, cholesterol clefts, and cell loss in human aortic fatty streaks. Am. J. Pathol. 143, 1444–1457 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gerrity, R. G. The role of the monocyte in atherogenesis: II. Migration of foam cells from atherosclerotic lesions. Am. J. Pathol. 103, 191–200 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kruth, H. S. Macrophage foam cells and atherosclerosis. Front. Biosci. 6, D429–D455 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Baumer, Y., Ortiz-Whittingham, L. R., Baez, A. S., Powell-Wiley, T. M. & Boisvert, W. A. in Cholesterol Crystals in Atherosclerosis and Other Related Diseases (eds Abela, G. S. & Nidorf, S. M.) 127–142 (Humana, 2023).

  124. Ross, R. Atherosclerosis – an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Gelfand, J. M. et al. Risk of myocardial infarction in patients with psoriasis. JAMA 296, 1735–1741 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Duan, Y. et al. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal. Transduct. Target. Ther. 7, 265 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bodzioch, M. et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat. Genet. 22, 347–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Brooks-Wilson, A. et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat. Genet. 22, 336–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Rust, S. et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat. Genet. 22, 352–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Goodman, Z., Terracciano, L. & Wee, A. in MacSween’s Pathology of the Liver 6th edn Ch. 14 (eds Burt, A. D., Portmann, B. C. & Ferrell, L. D.) 761–851 (Churchill Livingstone, 2011).

  131. Amiri, M. et al. Circulating lipoprotein(a) and all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis. Eur. J. Epidemiol. 38, 485–499 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kamstrup, P. R., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Lipoprotein(a) and risk of myocardial infarction – genetic epidemiologic evidence of causality. Scand. J. Clin. Lab. Invest. 71, 87–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Seed, M. et al. Relation of serum lipoprotein(a) concentration and apolipoprotein(a) phenotype to coronary heart disease in patients with familial hypercholesterolemia. N. Engl. J. Med. 322, 1494–1499 (1990).

    Article  CAS  PubMed  Google Scholar 

  134. Bennet, A. et al. Lipoprotein(a) levels and risk of future coronary heart disease: large-scale prospective data. Arch. Intern. Med. 168, 598–608 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. The Emerging Risk Factors Collaboration Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 302, 412–423 (2009).

    Article  PubMed Central  Google Scholar 

  137. Saleheen, D. et al. Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: a mendelian randomisation analysis. Lancet Diabetes Endocrinol. 5, 524–533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kaiser, Y. et al. Association of lipoprotein(a) with atherosclerotic plaque progression. J. Am. Coll. Cardiol. 79, 223–233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Langsted, A. & Nordestgaard, B. G. Lipoprotein(a): is it more, less or equal to LDL as a causal factor for cardiovascular disease and mortality? Curr. Opin. Lipidol. 31, 125–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Xue, C. et al. The relationships between cholesterol crystals, NLRP3 inflammasome, and coronary atherosclerotic plaque vulnerability in acute coronary syndrome: an optical coherence tomography study. Front. Cardiovasc. Med. 9, 905363 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Abela, G. S. et al. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am. J. Cardiol. 103, 959–968 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Al-Handawi, M. B. et al. Mechanical and crystallographic analysis of cholesterol crystals puncturing biological membranes. Chemistry 24, 11493–11497 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Frink, R. J. Parallel cholesterol crystals: a sign of impending plaque rupture? J. Invasive Cardiol. 22, 406–411 (2010).

    PubMed  Google Scholar 

  144. Nidorf, S. M., Fiolet, A. & Abela, G. S. Viewing atherosclerosis through a crystal lens: how the evolving structure of cholesterol crystals in atherosclerotic plaque alters its stability. J. Clin. Lipidol. 14, 619–630 (2020).

    Article  PubMed  Google Scholar 

  145. El-Khatib, L. A. et al. Cholesterol induced heart valve inflammation and injury: efficacy of cholesterol lowering treatment. Open. Heart 7, e001274 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Niepmann, S. T. et al. Dissolving cholesterol crystals reduces aortic valve stenosis development in mice [abstract ehaa946]. Eur. Heart J. 41 (Suppl. 2), 3719 (2020).

    Google Scholar 

  147. Boumegouas, M. et al. Cholesterol crystal induced inflammation and mechanical cardiac valve injury: implications for transcatheter aortic-valve replacement. Interv. Cardiol. 13, 53–57 (2021).

    Google Scholar 

  148. Al‐Kassou, B. et al. Cholesterol crystal dissolution rate of serum predicts outcomes in patients with aortic stenosis undergoing transcatheter aortic valve replacement. J. Am. Heart Assoc. 13, e031997 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Filipovic, M. G. & Luedi, M. M. Cardiovascular biomarkers: current status and future directions. Cells 12, 2647 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Rempakos, A., Prescott, B., Mitchell, G. F., Vasan, R. S. & Xanthakis, V. Association of life’s essential 8 with cardiovascular disease and mortality: the Framingham Heart Study. J. Am. Heart Assoc. 12, e030764 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lieberg, J. et al. Mortality after elective and ruptured abdominal aortic aneurysm surgical repair: 12-year single-center experience of Estonia. Scand. J. Surg. 107, 152–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Meyrier, A. Cholesterol crystal embolism: diagnosis and treatment. Kidney Int. 69, 1308–1312 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Shi, C., Mammadova-Bach, E., Li, C., Liu, D. & Anders, H.-J. Pathophysiology and targeted treatment of cholesterol crystal embolism and the related thrombotic angiopathy. FASEB J. 37, e23179 (2023).

    Article  CAS  PubMed  Google Scholar 

  154. Lazareth, H. & Karras, A. Cholesterol crystal embolization after transcatheter aortic-valve replacement. N. Engl. J. Med. 381, 655 (2019).

    Article  PubMed  Google Scholar 

  155. Duell, P. B. et al. Nonalcoholic fatty liver disease and cardiovascular risk: a scientific statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 42, e168–e185 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Ioannou, G. N., Haigh, W. G., Thorning, D. & Savard, C. Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J. Lipid Res. 54, 1326–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wu, P. et al. Preeclampsia and future cardiovascular health. Circ. Cardiovasc. Qual. Outcomes 10, e003497 (2017).

    Article  PubMed  Google Scholar 

  158. Hod, T., Cerdeira, A. S. & Karumanchi, S. A. Molecular mechanisms of preeclampsia. Cold Spring Harb. Perspect. Med. 5, a023473 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Salafia, C. et al. Pregnancy-induced hypertension: the potential role of cholesterol crystals in the maternal decidua. J. Clin. Lipidol. 16, e75 (2022).

    Article  Google Scholar 

  160. Matyori, A., Brown, C. P., Ali, A. & Sherbeny, F. Statins utilization trends and expenditures in the U.S. before and after the implementation of the 2013 ACC/AHA guidelines. Saudi Pharm. J. 31, 795–800 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ioannou, G. N. et al. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH. J. Lipid Res. 56, 277–285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Inia, J. A. et al. Atorvastatin attenuates diet-induced non-alcoholic steatohepatitis in APOE*3-Leiden mice by reducing hepatic inflammation. Int. J. Mol. Sci. 24, 7818 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Boland, A. J. et al. Simvastatin suppresses interleukin Iβ release in human peripheral blood mononuclear cells stimulated with cholesterol crystals. J. Cardiovasc. Pharmacol. Ther. 23, 509–517 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Abela, G. S. et al. Effect of statins on cholesterol crystallization and atherosclerotic plaque stabilization. Am. J. Cardiol. 107, 1710–1717 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127–135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Matsuo, M. ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis. J. Pharmacol. Sci. 148, 197–203 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Ballantyne, C. M. & Nambi, V. HDL therapeutics – time for a curtain call or time to reconceptualize? N. Engl. J. Med. 390, 1622–1623 (2024).

    Article  PubMed  Google Scholar 

  168. Niyonzima, N. et al. Reconstituted high-density lipoprotein attenuates cholesterol crystal-induced inflammatory responses by reducing complement activation. J. Immunol. 195, 257–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Thacker, S. G. et al. High-density lipoprotein reduces inflammation from cholesterol crystals by inhibiting inflammasome activation. Immunology 149, 306–319 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Luo, Y. et al. Phospholipid nanoparticles: therapeutic potentials against atherosclerosis via reducing cholesterol crystals and inhibiting inflammation. eBioMedicine 74, 103725 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang, L. Cyclodextrin related drug delivery system to promote atherosclerosis regression. Pharmazie 75, 619–625 (2020).

    CAS  PubMed  Google Scholar 

  172. Mahjoubin-Tehran, M., Kovanen, P. T., Xu, S., Jamialahmadi, T. & Sahebkar, A. Cyclodextrins: potential therapeutics against atherosclerosis. Pharmacol. Ther. 214, 107620 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Pilely, K. et al. Alpha-cyclodextrin inhibits cholesterol crystal-induced complement-mediated inflammation: a potential new compound for treatment of atherosclerosis. Atherosclerosis 283, 35–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Zimmer, S. et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci. Transl. Med. 8, 333ra350 (2016).

    Article  Google Scholar 

  175. Bakke, S. S. et al. Cyclodextrin reduces cholesterol crystal-induced inflammation by modulating complement activation. J. Immunol. 199, 2910–2920 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Lopez, A. M. et al. Systemic administration of 2-hydroxypropyl-β-cyclodextrin to symptomatic Npc1-deficient mice slows cholesterol sequestration in the major organs and improves liver function. Clin. Exp. Pharmacol. Physiol. 41, 780–787 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wagner, E. M., Jen, K. L., Artiss, J. D. & Remaley, A. T. Dietary alpha-cyclodextrin lowers low-density lipoprotein cholesterol and alters plasma fatty acid profile in low-density lipoprotein receptor knockout mice on a high-fat diet. Metabolism 57, 1046–1051 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sakurai, T. et al. Dietary α-cyclodextrin reduces atherosclerosis and modifies gut flora in apolipoprotein E-deficient mice. Mol. Nutr. Food Res. 61, https://doi.org/10.1002/mnfr.201600804 (2017).

  179. Zhu, T. et al. Beneficial effects of three dietary cyclodextrins on preventing fat accumulation and remodeling gut microbiota in mice fed a high-fat diet. Foods 11, 1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Amar, M. J. A. et al. Randomized double blind clinical trial on the effect of oral α-cyclodextrin on serum lipids. Lipids Health Dis. 15, 115 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Tiwari, G., Tiwari, R. & Rai, A. K. Cyclodextrins in delivery systems: applications. J. Pharm. Bioallied Sci. 2, 72–79 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Houben, T. et al. Pro-inflammatory implications of 2-hydroxypropyl-β-cyclodextrin treatment. Front. Immunol. 12, 716357 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhu, L. et al. Biomimetic nanoparticles to enhance the reverse cholesterol transport for selectively inhibiting development into foam cell in atherosclerosis. J. Nanobiotechnol 21, 307 (2023).

    Article  CAS  Google Scholar 

  184. Itoh, M. et al. Lysosomal cholesterol overload in macrophages promotes liver fibrosis in a mouse model of NASH. J. Exp. Med. 220, e20220681 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Appelqvist, H. et al. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PLoS ONE 7, e50262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cao, M., Luo, X., Wu, K. & He, X. Targeting lysosomes in human disease: from basic research to clinical applications. Signal. Transduct. Target. Ther. 6, 379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Geisslinger, F., Müller, M., Vollmar, A. M. & Bartel, K. Targeting lysosomes in cancer as promising strategy to overcome chemoresistance – a mini review. Front. Oncol. 10, 1156 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Marques, A. R. A., Ramos, C., Machado-Oliveira, G. & Vieira, O. V. Lysosome (dys)function in atherosclerosis– a big weight on the shoulders of a small organelle. Front. Cell Dev. Biol. 9, 658995 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Razani, B. et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 15, 534–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sergin, I. et al. Exploiting macrophage autophagy–lysosomal biogenesis as a therapy for atherosclerosis. Nat. Commun. 8, 15750 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schott, M. B., Rozeveld, C. N., Weller, S. G. & McNiven, M. A. Lipophagy at a glance. J. Cell Sci. 135, jcs259402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lu, H., Sun, J., Hamblin, M. H., Chen, Y. E. & Fan, Y. Transcription factor EB regulates cardiovascular homeostasis. eBioMedicine 63, 103207 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Li, X. et al. Hypericin-mediated sonodynamic therapy induces autophagy and decreases lipids in THP-1 macrophage by promoting ROS-dependent nuclear translocation of TFEB. Cell Death Dis. 7, e2527 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Theofani, E. et al. TFEB signaling attenuates NLRP3-driven inflammatory responses in severe asthma. Allergy 77, 2131–2146 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Wang, K. et al. TFEB SUMOylation in macrophages accelerates atherosclerosis by promoting the formation of foam cells through inhibiting lysosomal activity. Cell Mol. Life Sci. 80, 358 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kruth, H. S., Skarlatos, S. I., Lilly, K., Chang, J. & Ifrim, I. Sequestration of acetylated LDL and cholesterol crystals by human monocyte-derived macrophages. J. Cell Biol. 129, 133–145 (1995).

    Article  CAS  PubMed  Google Scholar 

  197. Juhl, A. D. et al. Direct observation of uptake and dissolution of cholesterol crystals by macrophages using combined fluorescence and x-ray microscopy. Microsc. Microanal. 29, 1158–1159 (2023).

    Article  Google Scholar 

  198. He, J. et al. Anchoring β-CD on simvastatin-loaded rHDL for selective cholesterol crystals dissolution and enhanced anti-inflammatory effects in macrophage/foam cells. Eur. J. Pharm. Biopharm. 174, 144–154 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Olsen, M. B. et al. Targeting the inflammasome in cardiovascular disease. JACC Basic. Transl. Sci. 7, 84–98 (2022).

    Article  PubMed  Google Scholar 

  200. Libby, P. Targeting inflammatory pathways in cardiovascular disease: the inflammasome, interleukin-1, interleukin-6 and beyond. Cells 10, 951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Toldo, S. et al. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol. Ther. 236, 108053 (2022).

    Article  CAS  PubMed  Google Scholar 

  202. Potere, N. et al. Inflammasome signaling, thromboinflammation, and venous thromboembolism. JACC Basic. Transl. Sci. 8, 1245–1261 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Ren, P. et al. Targeting the NLRP3 inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice. J. Am. Heart Assoc. 9, e014044 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Ramos-Tovar, E. & Muriel, P. NLRP3 inflammasome in hepatic diseases: a pharmacological target. Biochem. Pharmacol. 217, 115861 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. Huang, G., Zhang, Y., Zhang, Y. & Ma, Y. Chronic kidney disease and NLRP3 inflammasome: pathogenesis, development and targeted therapeutic strategies. Biochem. Biophys. Rep. 33, 101417 (2023).

    CAS  PubMed  Google Scholar 

  206. Hu, Y. et al. Cholesterol crystals induce inflammatory cytokines expression in a human retinal pigment epithelium cell line by activating the NF-κB pathway. Discov. Med. 18, 7–14 (2014).

    PubMed  PubMed Central  Google Scholar 

  207. Lillo, S. & Saleh, M. Inflammasomes in cancer progression and anti-tumor immunity. Front. Cell Dev. Biol. 10, 839041 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Missiroli, S. et al. Targeting the NLRP3 inflammasome as a new therapeutic option for overcoming cancer. Cancers 13, 2297 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chen, S. et al. Sex-specific effects of the Nlrp3 inflammasome on atherogenesis in LDL receptor-deficient mice. JACC Basic. Transl. Sci. 5, 582–598 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Nelson, K., Fuster, V. & Ridker, P. M. Low-dose colchicine for secondary prevention of coronary artery disease: JACC review topic of the week. J. Am. Coll. Cardiol. 82, 648–660 (2023).

    Article  CAS  PubMed  Google Scholar 

  211. Nidorf, S. M., Ben-Chetrit, E. & Ridker, P. M. Low-dose colchicine for atherosclerosis: long-term safety. Eur. Heart J. 45, 1596–1601 (2024).

    Article  CAS  PubMed  Google Scholar 

  212. Akrami, M. et al. Effects of colchicine on major adverse cardiac events in next 6-month period after acute coronary syndrome occurrence; a randomized placebo-control trial. BMC Cardiovasc. Disord. 21, 583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Al Wssawi, A. F. A. et al. Colchicine reduces major adverse cardiovascular events in patients undergoing percutaneous coronary intervention: a meta-analysis of randomized controlled trials [abstract]. J. Am. Coll. Cardiol. 83, 919 (2024).

    Article  Google Scholar 

  214. Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Papatriantafyllou, M. Inflammasomes: microtubules pull mitochondria to NLRP3. Nat. Rev. Immunol. 13, 306 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. Schwarz, N. et al. Colchicine exerts anti-atherosclerotic and -plaque-stabilizing effects targeting foam cell formation. FASEB J. 37, e22846 (2023).

    Article  CAS  PubMed  Google Scholar 

  217. Abideen, Z. U., Pathak, D. R., Sabanci, R., Manu, M. & Abela, G. S. The effect of colchicine on cholesterol crystal formation, expansion and morphology: a potential mechanism in atherosclerosis. Front. Cardiovasc. Med. 11, 1345521 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Fry, L. et al. Effect of aspirin on cholesterol crystallization: a potential mechanism for plaque stabilization. Am. Heart J. 13, 100083 (2022).

    Google Scholar 

  219. Powell-Wiley, T. M. et al. Social determinants of cardiovascular disease. Circ. Res. 130, 782–799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Farmer, N. et al. Neighborhood environment associates with trimethylamine-N-oxide (TMAO) as a cardiovascular risk marker. Int. J. Env. Res. Public. Health 18, 4296 (2021).

    Article  CAS  Google Scholar 

  221. Ortiz-Whittingham, L. R. et al. Associations between neighborhood socioeconomic deprivation, IFNγ, and high-density lipoprotein particle size: data from the Washington, D.C. Cardiovascular Health and Nneeds Assessment. Psychoneuroendocrinology 157, 106346 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Malkowska, P. & Sawczuk, M. Cytokines as biomarkers for evaluating physical exercise in trained and non-trained individuals: a narrative review. Int. J. Mol. Sci. 24, 11156 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Albarrati, A. M. et al. Effectiveness of low to moderate physical exercise training on the level of low-density lipoproteins: a systematic review. Biomed. Res. Int. 2018, 5982980 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Nikara, S., Ahmadi, E. & Nia, A. A. Effects of different preparation techniques on the microstructural features of biological materials for scanning electron microscopy. J. Agric. Food Res. 2, 100036 (2020).

    Google Scholar 

  225. Hsu, L.-Y. & Nordman, C. Phase transition and crystal structure of the 37 C form of cholesterol. Science 220, 604–606 (1983).

    Article  CAS  PubMed  Google Scholar 

  226. Kumar, S. & Burns, S. Cracking cholesterol from a phase transition at body temperatures. Mater. Sci. Eng. C. 3, 153–158 (1995).

    Article  Google Scholar 

  227. Addadi, L., Geva, M. & Kruth, H. S. Structural information about organized cholesterol domains from specific antibody recognition. Biochim. Biophys. Acta 1610, 208–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  228. Perl-Treves, D., Kessler, N., Izhaky, D. & Addadi, L. Monoclonal antibody recognition of cholesterol monohydrate crystal faces. Chem. Biol. 3, 567–577 (1996).

    Article  CAS  PubMed  Google Scholar 

  229. Li, C., Deng, C., Shi, B. & Zhao, R. Thin-cap fibroatheroma in acute coronary syndrome: implication for intravascular imaging assessment. Int. J. Cardiol. 405, 131965 (2024).

    Article  PubMed  Google Scholar 

  230. Fabris, E. et al. Thin-cap fibroatheroma rather than any lipid plaques increases the risk of cardiovascular events in diabetic patients: insights from the COMBINE OCT-FFR trial. Circ. Cardiovasc. Interv. 15, e011728 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Kubo, T. Optical coherence tomography in vulnerable plaque and acute coronary syndrome. Interv. Cardiol. Clin. 12, 203–214 (2023).

    PubMed  Google Scholar 

  232. Fujiyoshi, K. et al. Incidence, factors, and clinical significance of cholesterol crystals in coronary plaque: an optical coherence tomography study. Atherosclerosis 283, 79–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  233. Nelles, G. et al. Cholesterol crystals at the culprit lesion in patients with acute coronary syndrome are associated with worse cardiovascular outcomes at two years follow up – results from the translational OPTICO-ACS study program (R2). Int. J. Cardiol. 399, 131665 (2023).

    Article  PubMed  Google Scholar 

  234. Tian, J. et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study. J. Am. Coll. Cardiol. 63, 2209–2216 (2014).

    Article  PubMed  Google Scholar 

  235. Saiin, K. et al. Association of coronary plaque morphology with inflammatory biomarkers and target lesion revascularization in patients with chronic coronary syndrome: an optical coherence tomography study. Am. J. Cardiovasc. Dis. 13, 309–319 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Kinoshita, D. et al. High-risk plaques on coronary computed tomography angiography: correlation with optical coherence tomography. JACC Cardiovasc. Imaging 17, 382–391 (2024).

    Article  PubMed  Google Scholar 

  237. Seegers, L. M. et al. Sex differences in coronary atherosclerotic phenotype and healing pattern on optical coherence tomography imaging. Circ. Cardiovasc. Imaging 16, e015227 (2023).

    Article  PubMed  Google Scholar 

  238. Wang, C. et al. Pancoronary plaque characteristics and clinical outcomes in acute coronary syndrome patients with cancer history. Atherosclerosis 378, 117118 (2023).

    Article  CAS  PubMed  Google Scholar 

  239. Yamaguchi, M. et al. Clinical significance of the presence of puff-chandelier ruptures detected by nonobstructive aortic angioscopy. Catheter. Cardiovasc. Interv. 96, 784–792 (2020).

    Article  PubMed  Google Scholar 

  240. Komatsu, S. et al. Different characteristics and interleukin-6 ratios of scattering-type aortic plaques. Cureus 16, e52949 (2024).

    PubMed  PubMed Central  Google Scholar 

  241. Nishimiya, K., Poduval, R. K. & Tearney, G. J. OCT emerging technologies: coronary micro-optical coherence tomography. Interv. Cardiol. Clin. 12, 237–244 (2023).

    PubMed  Google Scholar 

  242. Baumer, Y. et al. CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis. Atherosclerosis 256, 105–114 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to William A. Boisvert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks George S. Abela, Eicke Latz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumer, Y., Irei, J. & Boisvert, W.A. Cholesterol crystals in the pathogenesis of atherosclerosis. Nat Rev Cardiol 22, 315–332 (2025). https://doi.org/10.1038/s41569-024-01100-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-024-01100-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing