Abstract
Atherosclerotic cardiovascular diseases are the most frequent cause of death worldwide. The clinical complications of atherosclerosis are closely linked to the haematopoietic and immune systems, which maintain homeostatic functions and vital processes in the body. The nodes linking metabolism and inflammation are receiving increasing attention because they are inextricably linked to inflammatory manifestations of non-communicable diseases, including atherosclerosis. Although metabolism and inflammation are essential to survival and involve all tissues, we still know little about how these processes influence each other. In an effort to understand these mechanisms, in this Review we explore whether and how potent cardiovascular risk factors and metabolic modifiers of atherosclerosis influence the molecular and cellular machinery of ‘haematometabolism’ (metabolic-dependent haematopoietic stem cell skewing) and ‘efferotabolism’ (metabolic-dependent efferocyte reprogramming). These changes might ultimately propagate a quantitative and qualitative drift of the macrophage supply chain and affect the clinical manifestations of atherosclerosis. Refining our understanding of the different metabolic requirements of these processes could open the possibility of developing therapeutics targeting haematometabolism that, in conjunction with improved dietary habits, help rebalance and promote efficient haematopoiesis and efferocytosis and decrease the risk of atherosclerosis complications.
Key points
-
Haematometabolism dysregulation (the metabolic imbalance of haematopoiesis and efferocytosis) is an integral part of inflammation, which drives residual risk in atherosclerotic cardiovascular disease.
-
Nature-related (for example, ageing and clonal haematopoiesis of indeterminate potential) and nurture-related (such as an unhealthy lifestyle) risk factors for atherosclerosis influence haematometabolism by creating an imbalance between erythropoiesis/megakaryopoiesis and myelopoiesis.
-
The energy imbalance linked to a chronic inflammatory state alters the homeostasis of different blood cell lineages, propagating a quantitative and qualitative drift in the leukocyte supply chain.
-
Improving our understanding of the influence of lifestyle changes on haematometabolism could contribute to the diagnosis, prognosis and treatment of atherosclerosis.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Sadana, R. WHO launches Baseline report for Decade of Healthy Ageing. World Health Organization https://www.who.int/news/item/17-12-2020-who-launches-baseline-report-for-decade-of-healthy-ageing (2020).
Michos, E. D., McEvoy, J. W. & Blumenthal, R. S. Lipid management for the prevention of atherosclerotic cardiovascular disease. N. Engl. J. Med. 381, 1557–1567 (2019).
Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).
Rahman, M. S., Murphy, A. J. & Woollard, K. J. Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nat. Rev. Cardiol. 14, 387–400 (2017).
Libby, P. & Ebert, B. L. CHIP (clonal hematopoiesis of indeterminate potential): potent and newly recognized contributor to cardiovascular risk. Circulation 138, 666–668 (2018).
Janssen, H., Koekkoek, L. L. & Swirski, F. K. Effects of lifestyle factors on leukocytes in cardiovascular health and disease. Nat. Rev. Cardiol. 21, 157–169 (2024).
Engelen, S. E., Robinson, A. J. B., Zurke, Y.-X. & Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).
Pasterkamp, G., den Ruijter, H. M. & Libby, P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat. Rev. Cardiol. 14, 21–29 (2017).
Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Prim. 5, 56 (2019).
Seeley, E. H. et al. Spatially resolved metabolites in stable and unstable human atherosclerotic plaques identified by mass spectrometry imaging. Arterioscler. Thromb. Vasc. Biol. 43, 1626–1635 (2023).
Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).
Koelwyn, G. J., Corr, E. M., Erbay, E. & Moore, K. J. Regulation of macrophage immunometabolism in atherosclerosis. Nat. Immunol. 19, 526–537 (2018).
Ketelhuth, D. F. J. et al. Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovasc. Res. 115, 1385–1392 (2019).
Tabas, I. & Bornfeldt, K. E. Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ. Res. 126, 1209–1227 (2020).
Cooper, B. The origins of bone marrow as the seedbed of our blood: from antiquity to the time of Osler. Proc. Bayl. Univ. Med. Cent. 24, 115–118 (2011).
Coller, B. S. Blood at 70: its roots in the history of hematology and its birth. Blood 126, 2548–2560 (2015).
Mehta, M. M., Weinberg, S. E. & Chandel, N. S. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 17, 608–620 (2017).
Dumont, A., Lee, M., Barouillet, T., Murphy, A. & Yvan-Charvet, L. Mitochondria orchestrate macrophage effector functions in atherosclerosis. Mol. Asp. Med. 77, 100922 (2021).
Seita, J. & Weissman, I. L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 640–653 (2010).
Birbrair, A. & Frenette, P. S. Niche heterogeneity in the bone marrow. Ann. N. Y. Acad. Sci. 1370, 82–96 (2016).
Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).
Kimmel, M. Stochasticity and determinism in models of hematopoiesis. Adv. Exp. Med. Biol. 844, 119–152 (2014).
Agathocleous, M. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549, 476–481 (2017).
Kucinski, I. et al. A time- and single-cell-resolved model of murine bone marrow hematopoiesis. Cell Stem Cell 31, 244–259.e10 (2024).
Elliott, M. R. & Ravichandran, K. S. The dynamics of apoptotic cell clearance. Dev. Cell 38, 147–160 (2016).
Green, D. R., Oguin, T. H. & Martinez, J. The clearance of dying cells: table for two. Cell Death Differ. 23, 915–926 (2016).
Han, C. Z. & Ravichandran, K. S. Metabolic connections during apoptotic cell engulfment. Cell 147, 1442–1445 (2011).
Pietrangelo, A. & Ouimet, M. Death eaters rely on metabolic signaling to wield anti-inflammatory responses. Cell Metab. 29, 234–236 (2019).
Nishioka, K., Masuda, Y., Inokuchi, I., Iyoda, K. & Tanaka, T. A case of monostotic fibrous dysplasia of the temporal bone associated with epileptic seizure. Acta Med. Okayama 36, 453–462 (1982).
Stroope, C. et al. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat. Metab. 6, 617–638 (2024).
Sender, R. & Milo, R. The distribution of cellular turnover in the human body. Nat. Med. 27, 45–48 (2021).
Doran, A. C., Yurdagul, A. & Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 20, 254–267 (2020).
Adkar, S. S. & Leeper, N. J. Efferocytosis in atherosclerosis. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-024-01037-7 (2024).
Sergin, I., Evans, T. D. & Razani, B. Degradation and beyond: the macrophage lysosome as a nexus for nutrient sensing and processing in atherosclerosis. Curr. Opin. Lipidol. 26, 394–404 (2015).
Yurdagul, A. Metabolic consequences of efferocytosis and its impact on atherosclerosis. Immunometabolism 3, e210017 (2021).
Witztum, J. L. Murine models for study of lipoprotein metabolism and atherosclerosis. J. Clin. Invest. 92, 536–537 (1993).
Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).
Getz, G. S. & Reardon, C. A. Do the Apoe–/– and Ldlr–/– mice yield the same insight on atherogenesis? Arterioscler. Thromb. Vasc. Biol. 36, 1734–1741 (2016).
von Scheidt, M. et al. Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab. 25, 248–261 (2017).
Nagareddy, P. R., Noothi, S. K., Flynn, M. C. & Murphy, A. J. It’s reticulated: the liver at the heart of atherosclerosis. J. Endocrinol. 238, R1–R11 (2018).
Soehnlein, O. Decision shaping neutrophil–platelet interplay in inflammation: from physiology to intervention. Eur. J. Clin. Invest. 48, e12871 (2018).
Umbreit, J. Methemoglobin—it’s not just blue: a concise review. Am. J. Hematol. 82, 134–144 (2007).
York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015).
Araldi, E. et al. Lanosterol modulates TLR4-mediated innate immune responses in macrophages. Cell Rep. 19, 2743–2755 (2017).
Xiao, J. et al. Targeting 7-dehydrocholesterol reductase integrates cholesterol metabolism and IRF3 activation to eliminate infection. Immunity 52, 109–122.e6 (2020).
Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012).
Zhang, X. et al. Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proc. Natl Acad. Sci. USA 118, e2107682118 (2021).
Patterson, M. T. et al. Trem2 promotes foamy macrophage lipid uptake and survival in atherosclerosis. Nat. Cardiovasc. Res. 2, 1015–1031 (2023).
Piollet, M. et al. TREM2 protects from atherosclerosis by limiting necrotic core formation. Nat. Cardiovasc. Res. 3, 269–282 (2024).
Riksen, N. P. & Ait Oufella, H. Macrophage TREM2 as a new player in atherosclerosis. Nat. Cardiovasc. Res. 2, 1117–1119 (2023).
Dib, L. et al. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis, increasing the risk of cerebrovascular complications. Nat. Cardiovasc. Res. 2, 656–672 (2023).
A-Gonzalez, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).
Hong, C. et al. Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. J. Clin. Invest. 122, 337–347 (2012).
Yvan-Charvet, L. et al. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ. Res. 106, 1861–1869 (2010).
Viaud, M. et al. Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ. Res. 122, 1369–1384 (2018).
Westerterp, M. et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11, 195–206 (2012).
Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).
Tyrrell, D. J. & Goldstein, D. R. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat. Rev. Cardiol. 18, 58–68 (2021).
Abdellatif, M., Rainer, P. P., Sedej, S. & Kroemer, G. Hallmarks of cardiovascular ageing. Nat. Rev. Cardiol. 20, 754–777 (2023).
Liberale, L. et al. Inflammation, aging and cardiovascular disease: JACC review topic of the week. J. Am. Coll. Cardiol. 79, 837–847 (2022).
Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).
Effros, R. B. Roy Walford and the immunologic theory of aging. Immun. Ageing A 2, 7 (2005).
Harman, D. The free radical theory of aging. Antioxid. Redox Signal. 5, 557–561 (2003).
Amorim, J. A. et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 18, 243–258 (2022).
Acosta-Rodríguez, V. A., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Importance of circadian timing for aging and longevity. Nat. Commun. 12, 2862 (2021).
Sato, S., Solanas, G., Sassone-Corsi, P. & Benitah, S. A. Tuning up an aged clock: circadian clock regulation in metabolism and aging. Transl. Med. Aging 6, 1–13 (2022).
Mevorach, D. et al. What do we mean when we write ‘senescence,’ ‘apoptosis,’ ‘necrosis,’ or ‘clearance of dying cells’? Ann. N. Y. Acad. Sci. 1209, 1–9 (2010).
Van Avondt, K. et al. Neutrophils in aging and aging-related pathologies. Immunol. Rev. 314, 357–375 (2023).
Bonacina, F. et al. Lysosomes at the crossroad of immunometabolic reprogramming during atherosclerosis. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-024-01072-4 (2024).
Samaja, M. & Ottolenghi, S. The oxygen cascade from atmosphere to mitochondria as a tool to understand the (mal)adaptation to hypoxia. Int. J. Mol. Sci. 24, 3670 (2023).
Suda, T., Takubo, K. & Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9, 298–310 (2011).
Chandel, N. S., Jasper, H., Ho, T. T. & Passegué, E. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat. Cell Biol. 18, 823–832 (2016).
Arif, T. Lysosomes and their role in regulating the metabolism of hematopoietic stem cells. Biology 11, 1410 (2022).
Liang, R. et al. Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency. Cell Stem Cell 26, 359–376.e7 (2020).
García-Prat, L. et al. TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 28, 1838–1850.e10 (2021).
Spangrude, G. J. & Johnson, G. R. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc. Natl Acad. Sci. USA 87, 7433–7437 (1990).
Kim, M., Cooper, D. D., Hayes, S. F. & Spangrude, G. J. Rhodamine-123 staining in hematopoietic stem cells of young mice indicates mitochondrial activation rather than dye efflux. Blood 91, 4106–4117 (1998).
de Almeida, M. J., Luchsinger, L. L., Corrigan, D. J., Williams, L. J. & Snoeck, H.-W. Dye-independent methods reveal elevated mitochondrial mass in hematopoietic stem cells. Cell Stem Cell 21, 725–729.e4 (2017).
Morganti, C., Bonora, M., Ito, K. & Ito, K. Electron transport chain complex II sustains high mitochondrial membrane potential in hematopoietic stem and progenitor cells. Stem Cell Res. 40, 101573 (2019).
Vannini, N. et al. The NAD-booster nicotinamide riboside potently stimulates hematopoiesis through increased mitochondrial clearance. Cell Stem Cell 24, 405–418.e7 (2019).
Sun, X. et al. Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells. Nat. Commun. 12, 2665 (2021).
Chandel, N. S. Evolution of mitochondria as signaling organelles. Cell Metab. 22, 204–206 (2015).
Morganti, C., Cabezas-Wallscheid, N. & Ito, K. Metabolic regulation of hematopoietic stem cells. HemaSphere 6, e740 (2022).
Taya, Y. et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354, 1152–1155 (2016).
Qi, L. et al. Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration. Cell Stem Cell 28, 1982–1999.e8 (2021).
Moschoi, R. et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128, 253–264 (2016).
Heyde, A. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184, 1348–1361.e22 (2021).
Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).
Lee, M. K. S. et al. Interplay between clonal hematopoiesis of indeterminate potential and metabolism. Trends Endocrinol. Metab. 31, 525–535 (2020).
Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).
Tall, A. R. & Fuster, J. J. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. Nat. Cardiovasc. Res. 1, 116–124 (2022).
Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).
Wang, W. et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2V617F mice. Circ. Res. 123, e35–e47 (2018).
Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592, 296–301 (2021).
Yu, Z. et al. Genetic modification of inflammation- and clonal hematopoiesis-associated cardiovascular risk. J. Clin. Invest. 133, e168597 (2023).
Yusuf, R. Z. & Scadden, D. T. Fate through fat: lipid metabolism determines stem cell division outcome. Cell Metab. 16, 411–413 (2012).
Kohli, L. & Passegué, E. Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol. 24, 479–487 (2014).
Katajisto, P. et al. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348, 340–343 (2015).
Umemoto, T. et al. ATP citrate lyase controls hematopoietic stem cell fate and supports bone marrow regeneration. EMBO J. 41, e109463 (2022).
Mansell, E. et al. Mitochondrial potentiation ameliorates age-related heterogeneity in hematopoietic stem cell function. Cell Stem Cell 28, 241–256.e6 (2021).
Sykes, S. M. & Scadden, D. T. Modeling human hematopoietic stem cell biology in the mouse. Semin. Hematol. 50, 92–100 (2013).
Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H. & Moore, K. Hematopoietic stem cells count and remember self-renewal divisions. Cell 167, 1296–1309.e10 (2016).
Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259–263 (2009).
Zhou, B. O. et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat. Cell Biol. 19, 891–903 (2017).
Mistry, J. J. et al. Free fatty-acid transport via CD36 drives β-oxidation-mediated hematopoietic stem cell response to infection. Nat. Commun. 12, 7130 (2021).
Zhang, S. et al. Bone marrow adipocytes fuel emergency hematopoiesis after myocardial infarction. Nat. Cardiovasc. Res. 2, 1277–1290 (2023).
Parathath, S., Yang, Y., Mick, S. & Fisher, E. A. Hypoxia in murine atherosclerotic plaques and its adverse effects on macrophages. Trends Cardiovasc. Med. 23, 80–84 (2013).
Parma, L., Baganha, F., Quax, P. H. A. & de Vries, M. R. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur. J. Pharmacol. 816, 107–115 (2017).
Heughan, C., Niinikoski, J. & Hunt, T. K. Oxygen tensions in lesions of experimental atherosclerosis of rabbits. Atherosclerosis 17, 361–367 (1973).
Semenza, G. L. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 114, 2015–2019 (2009).
Paulson, R. F., Ruan, B., Hao, S. & Chen, Y. Stress erythropoiesis is a key inflammatory response. Cells 9, 634 (2020).
Sánchez, Á. et al. Stress erythropoiesis in atherogenic mice. Sci. Rep. 10, 18469 (2020).
Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e14 (2018).
Grote Beverborg, N. et al. High serum erythropoietin levels are related to heart failure development in subjects from the general population with albuminuria: data from PREVEND. Eur. J. Heart Fail. 18, 814–821 (2016).
Garimella, P. S. et al. Association of serum erythropoietin with cardiovascular events, kidney function decline, and mortality: the Health Aging and Body Composition Study. Circ. Heart Fail. 9, e002124 (2016).
Sun, P. et al. Epidemiologic and genetic associations of erythropoietin with blood pressure, hypertension, and coronary artery disease. Hypertension 78, 1555–1566 (2021).
Peng, B., Kong, G., Yang, C. & Ming, Y. Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell Death Dis. 11, 79 (2020).
Ma, J. et al. Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. Redox Biol. 40, 101865 (2021).
Wang, Y. et al. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature 599, 136–140 (2021).
Oburoglu, L. et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 15, 169–184 (2014).
Pizzato, H. A. et al. Mitochondrial pyruvate metabolism and glutaminolysis toggle steady-state and emergency myelopoiesis. J. Exp. Med. 220, e20221373 (2023).
Burch, J. S. et al. Glutamine via α-ketoglutarate dehydrogenase provides succinyl-CoA for heme synthesis during erythropoiesis. Blood 132, 987–998 (2018).
Kuhn, V. et al. Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia. Antioxid. Redox Signal. 26, 718–742 (2017).
Kasai, S., Mimura, J., Ozaki, T. & Itoh, K. Emerging regulatory role of Nrf2 in iron, heme, and hemoglobin metabolism in physiology and disease. Front. Vet. Sci. 5, 242 (2018).
Moras, M., Lefevre, S. D. & Ostuni, M. A. From erythroblasts to mature red blood cells: organelle clearance in mammals. Front. Physiol. 8, 1076 (2017).
Lyu, J. et al. A glutamine metabolic switch supports erythropoiesis. Science 386, eadh9215 (2024).
Le Martret, B., Poage, M., Shiel, K., Nugent, G. D. & Dix, P. J. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant. Biotechnol. J. 9, 661–673 (2011).
An, X. et al. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood 123, 3466–3477 (2014).
Sankaran, V. G. & Orkin, S. H. Genome-wide association studies of hematologic phenotypes: a window into human hematopoiesis. Curr. Opin. Genet. Dev. 23, 339–344 (2013).
Oburoglu, L., Romano, M., Taylor, N. & Kinet, S. Metabolic regulation of hematopoietic stem cell commitment and erythroid differentiation. Curr. Opin. Hematol. 23, 198–205 (2016).
Simon, D. I. & Silverstein, R. L. Atherothrombosis: seeing red? Circulation 132, 1860–1862 (2015).
Inzucchi, S. E. et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41, 356–363 (2018).
Yvan-Charvet, L. & Ng, L. G. Granulopoiesis and neutrophil homeostasis: a metabolic, daily balancing act. Trends Immunol. 40, 598–612 (2019).
Hidalgo, A. & Casanova-Acebes, M. Dimensions of neutrophil life and fate. Semin. Immunol. 57, 101506 (2021).
Corrons, J. L. V., Casafont, L. B. & Frasnedo, E. F. Concise review: how do red blood cells born, live, and die? Ann. Hematol. 100, 2425–2433 (2021).
A-Gonzalez, N. & Castrillo, A. Origin and specialization of splenic macrophages. Cell. Immunol. 330, 151–158 (2018).
Kohyama, M. et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457, 318–321 (2009).
Haldar, M. et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156, 1223–1234 (2014).
Theurl, I. et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat. Med. 22, 945–951 (2016).
Tran, S. et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 53, 627–640.e5 (2020).
Blériot, C. et al. A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 54, 2101–2116.e6 (2021).
Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e38 (2022).
He, W. et al. Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues. Immunity 49, 1175–1190.e7 (2018).
Raghuram, S. et al. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBɑ and REV-ERBβ. Nat. Struct. Mol. Biol. 14, 1207–1213 (2007).
Samad, M., Agostinelli, F., Sato, T., Shimaji, K. & Baldi, P. CircadiOmics: circadian omic web portal. Nucleic Acids Res. 50, W183–W190 (2022).
Noetzli, L. J., French, S. L. & Machlus, K. R. New insights into the differentiation of megakaryocytes from hematopoietic progenitors. Arterioscler. Thromb. Vasc. Biol. 39, 1288–1300 (2019).
Nakamura-Ishizu, A. et al. Thrombopoietin metabolically primes hematopoietic stem cells to megakaryocyte-lineage differentiation. Cell Rep. 25, 1772–1785.e6 (2018).
Wolber, E. M. & Jelkmann, W. Interleukin-6 increases thrombopoietin production in human hepatoma cells HepG2 and Hep3B. J. Interferon Cytokine Res. 20, 499–506 (2000).
Libby, P. Targeting inflammatory pathways in cardiovascular disease: the inflammasome, interleukin-1, interleukin-6 and beyond. Cells 10, 951 (2021).
Chen, L. et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science 345, 1251033 (2014).
Notta, F. et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351, aab2116 (2016).
Xavier-Ferrucio, J. et al. Low iron promotes megakaryocytic commitment of megakaryocytic–erythroid progenitors in humans and mice. Blood 134, 1547–1557 (2019).
Pantopoulos, K. TfR2 links iron metabolism and erythropoiesis. Blood 125, 1055–1056 (2015).
Russell, M. J. & Martin, W. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 29, 358–363 (2004).
Chen, S., Su, Y. & Wang, J. ROS-mediated platelet generation: a microenvironment-dependent manner for megakaryocyte proliferation, differentiation, and maturation. Cell Death Dis. 4, e722 (2013).
Murphy, A. J. et al. Deficiency of ATP-binding cassette transporter B6 in megakaryocyte progenitors accelerates atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 34, 751–758 (2014).
Fukuda, Y. et al. The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6. Nat. Commun. 7, 12353 (2016).
Bahou, W. F., Marchenko, N. & Nesbitt, N. M. Metabolic functions of biliverdin IXβ reductase in redox-regulated hematopoietic cell fate. Antioxidants 12, 1058 (2023).
Li, Z. et al. Heme degradation enzyme biliverdin IXβ reductase is required for stem cell glutamine metabolism. Biochem. J. 475, 1211–1223 (2018).
Wu, S. et al. BLVRB redox mutation defines heme degradation in a metabolic pathway of enhanced thrombopoiesis in humans. Blood 128, 699–709 (2016).
Murphy, A. J. et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat. Med. 19, 586–594 (2013).
Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13, 34–45 (2013).
Guo, L. & Rondina, M. T. The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases. Front. Immunol. 10, 2204 (2019).
Ng, A. P. et al. Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation. Proc. Natl Acad. Sci. USA 111, 5884–5889 (2014).
Begonja, A. J. et al. Platelet NAD(P)H-oxidase-generated ROS production regulates ɑIIbβ3-integrin activation independent of the NO/cGMP pathway. Blood 106, 2757–2760 (2005).
Fidler, T. P. et al. Deletion of GLUT1 and GLUT3 reveals multiple roles for glucose metabolism in platelet and megakaryocyte function. Cell Rep. 20, 881–894 (2017).
Pretorius, E. Platelets as potent signaling entities in type 2 diabetes mellitus. Trends Endocrinol. Metab. 30, 532–545 (2019).
Quach, M. E., Chen, W. & Li, R. Mechanisms of platelet clearance and translation to improve platelet storage. Blood 131, 1512–1521 (2018).
An, O. & Deppermann, C. Platelet lifespan and mechanisms for clearance. Curr. Opin. Hematol. 31, 6–15 (2024).
Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).
Yvan-Charvet, L. & Westerterp, M. LDL-cholesterol drives reversible myelomonocytic skewing in human bone marrow. Eur. Heart J. 42, 4321–4323 (2021).
Stiekema, L. C. A. et al. Impact of cholesterol on proinflammatory monocyte production by the bone marrow. Eur. Heart J. 42, 4309–4320 (2021).
Jordan, S. et al. Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178, 1102–1114.e17 (2019).
Janssen, H. et al. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 56, 783–796.e7 (2023).
Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8, 121–130 (2015).
van der Valk, F. M. et al. Increased haematopoietic activity in patients with atherosclerosis. Eur. Heart J. 38, 425–432 (2017).
Wessendarp, M. et al. Role of GM-CSF in regulating metabolism and mitochondrial functions critical to macrophage proliferation. Mitochondrion 62, 85–101 (2022).
Karmaus, P. W. F. et al. Critical roles of mTORC1 signaling and metabolic reprogramming for M-CSF-mediated myelopoiesis. J. Exp. Med. 214, 2629–2647 (2017).
Sarrazy, V. et al. Disruption of Glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE–/– mice. Circ. Res. 118, 1062–1077 (2016).
Zhu, Y. P., Thomas, G. D. & Hedrick, C. C. 2014 Jeffrey M. Hoeg Award Lecture: transcriptional control of monocyte development. Arterioscler. Thromb. Vasc. Biol. 36, 1722–1733 (2016).
Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P. & Halbwachs-Mecarelli, L. Neutrophils: molecules, functions and pathophysiological aspects. Lab. Investig. J. Tech. Methods Pathol. 80, 617–653 (2000).
Savina, A. & Amigorena, S. Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev. 219, 143–156 (2007).
Yvan-Charvet, L., Bonacina, F., Guinamard, R. R. & Norata, G. D. Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc. Res. 115, 1393–1407 (2019).
Marques, A. R. A., Ramos, C., Machado-Oliveira, G. & Vieira, O. V. Lysosome (dys)function in atherosclerosis—a big weight on the shoulders of a small organelle. Front. Cell Dev. Biol. 9, 658995 (2021).
Pernes, G., Flynn, M. C., Lancaster, G. I. & Murphy, A. J. Fat for fuel: lipid metabolism in haematopoiesis. Clin. Transl. Immunol. 8, e1098 (2019).
Raza, Y., Salman, H. & Luberto, C. Sphingolipids in hematopoiesis: exploring their role in lineage commitment. Cells 10, 2507 (2021).
Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
Brozzi, A., Urbanelli, L., Germain, P. L., Magini, A. & Emiliani, C. hLGDB: a database of human lysosomal genes and their regulation. Database 2013,bat024 (2013).
Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).
Deniset, J. F. & Kubes, P. Recent advances in understanding neutrophils. F1000Research 5, 2912 (2016).
Zhang, S. et al. Immunometabolism of phagocytes and relationships to cardiac repair. Front. Cardiovasc. Med. 6, 42 (2019).
Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).
McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).
Korbelius, M., Kuentzel, K. B., Bradić, I., Vujić, N. & Kratky, D. Recent insights into lysosomal acid lipase deficiency. Trends Mol. Med. 29, 425–438 (2023).
Kim, Y. et al. Time-restricted feeding reduces monocyte production by controlling hematopoietic stem and progenitor cells in the bone marrow during obesity. Front. Immunol. 13, 1054875 (2022).
Pan, C. et al. Time-restricted feeding enhances early atherosclerosis in hypercholesterolemic mice. Circulation 147, 774–777 (2023).
Adrover, J. M. et al. A neutrophil timer coordinates immune defense and vascular protection. Immunity 50, 390–402.e10 (2019).
Christ, A., Lauterbach, M. & Latz, E. Western diet and the immune system: an inflammatory connection. Immunity 51, 794–811 (2019).
Yvan-Charvet, L. & Cariou, B. Poststatin era in atherosclerosis management: lessons from epidemiologic and genetic studies. Curr. Opin. Lipidol. 29, 246–258 (2018).
Taylor, S. I., Yazdi, Z. S. & Beitelshees, A. L. Pharmacological treatment of hyperglycemia in type 2 diabetes. J. Clin. Invest. 131, e142243 (2021).
Schönberger, K. & Cabezas-Wallscheid, N. How nutrition regulates hematopoietic stem cell features. Exp. Hematol. 128, 10–18 (2023).
Muse, E. D. & Topol, E. J. Transforming the cardiometabolic disease landscape: multimodal AI-powered approaches in prevention and management. Cell Metab. 36, 670–683 (2024).
Ito, K. et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350–1358 (2012).
Decker, M., Leslie, J., Liu, Q. & Ding, L. Hepatic thrombopoietin is required for bone marrow hematopoietic stem cell maintenance. Science 360, 106–110 (2018).
Tseng, Y.-J. et al. Increased iron uptake by splenic hematopoietic stem cells promotes TET2-dependent erythroid regeneration. Nat. Commun. 15, 538 (2024).
Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).
Yien, Y. Y. & Perfetto, M. Regulation of heme synthesis by mitochondrial homeostasis proteins. Front. Cell Dev. Biol. 10, 895521 (2022).
Ducamp, S. & Fleming, M. D. The molecular genetics of sideroblastic anemia. Blood 133, 59–69 (2019).
Shaw, G. C. et al. Mitoferrin is essential for erythroid iron assimilation. Nature 440, 96–100 (2006).
Miller, F. G. Ethics is everybody’s concern. J. Clin. Ethics 1, 326–327 (1990).
Kramer, P. A., Ravi, S., Chacko, B., Johnson, M. S. & Darley-Usmar, V. M. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol. 2, 206–210 (2014).
Kulkarni, P. P. et al. Aerobic glycolysis fuels platelet activation: small-molecule modulators of platelet metabolism as anti-thrombotic agents. Haematologica 104, 806–818 (2019).
Baldwin, J. E. & Krebs, H. The evolution of metabolic cycles. Nature 291, 381–382 (1981).
Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).
Houten, S. M., Violante, S., Ventura, F. V. & Wanders, R. J. A. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu. Rev. Physiol. 78, 23–44 (2016).
Ryu, K.W. et al. Cellular ATP demand creates metabolically distinct subpopulations of mitochondria. Nature 635, 746–754 (2024).
DeBerardinis, R. J. & Thompson, C. B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148, 1132–1144 (2012).
Quehenberger, O. & Dennis, E. A. The human plasma lipidome. N. Engl. J. Med. 365, 1812–1823 (2011).
Westerterp, K. R. Control of energy expenditure in humans. Eur. J. Clin. Nutr. 71, 340–344 (2017).
Lavoisier, A. & Laplace, P. Mémoire sur la chaleur. in Mémoires de l’Académie des Sciences 355–408 (1780).
Heymsfield, S. B., Wang, Z., Baumgartner, R. N. & Ross, R. Human body composition: advances in models and methods. Annu. Rev. Nutr. 17, 527–558 (1997).
Hatton, I. A. et al. The human cell count and size distribution. Proc. Natl Acad. Sci. USA 120, e2303077120 (2023).
Acknowledgements
L.Y.C. received grants from the European Research Council (ERC) consolidator programme (ERC2016COG724838), Agence Nationale de la Recherche (ANR) (Glutadiab19-CE17-0030-DS; CHIC 20-CE14-009; MacBurn 21-CE14-0023; Glutacare 24-CE14-7125), IHU RespirERA (Respiratory Health, Environment and Ageing) and Fondation de France (FDF).
Author information
Authors and Affiliations
Contributions
All authors contributed substantially to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Cardiology thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yvan-Charvet, L., Barouillet, T. & Borowczyk, C. Haematometabolism rewiring in atherosclerotic cardiovascular disease. Nat Rev Cardiol 22, 414–430 (2025). https://doi.org/10.1038/s41569-024-01108-9
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41569-024-01108-9
This article is cited by
-
Slc7a7 licenses macrophage glutaminolysis for restorative functions in atherosclerosis
Nature Metabolism (2025)


