Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Haematometabolism rewiring in atherosclerotic cardiovascular disease

Abstract

Atherosclerotic cardiovascular diseases are the most frequent cause of death worldwide. The clinical complications of atherosclerosis are closely linked to the haematopoietic and immune systems, which maintain homeostatic functions and vital processes in the body. The nodes linking metabolism and inflammation are receiving increasing attention because they are inextricably linked to inflammatory manifestations of non-communicable diseases, including atherosclerosis. Although metabolism and inflammation are essential to survival and involve all tissues, we still know little about how these processes influence each other. In an effort to understand these mechanisms, in this Review we explore whether and how potent cardiovascular risk factors and metabolic modifiers of atherosclerosis influence the molecular and cellular machinery of ‘haematometabolism’ (metabolic-dependent haematopoietic stem cell skewing) and ‘efferotabolism’ (metabolic-dependent efferocyte reprogramming). These changes might ultimately propagate a quantitative and qualitative drift of the macrophage supply chain and affect the clinical manifestations of atherosclerosis. Refining our understanding of the different metabolic requirements of these processes could open the possibility of developing therapeutics targeting haematometabolism that, in conjunction with improved dietary habits, help rebalance and promote efficient haematopoiesis and efferocytosis and decrease the risk of atherosclerosis complications.

Key points

  • Haematometabolism dysregulation (the metabolic imbalance of haematopoiesis and efferocytosis) is an integral part of inflammation, which drives residual risk in atherosclerotic cardiovascular disease.

  • Nature-related (for example, ageing and clonal haematopoiesis of indeterminate potential) and nurture-related (such as an unhealthy lifestyle) risk factors for atherosclerosis influence haematometabolism by creating an imbalance between erythropoiesis/megakaryopoiesis and myelopoiesis.

  • The energy imbalance linked to a chronic inflammatory state alters the homeostasis of different blood cell lineages, propagating a quantitative and qualitative drift in the leukocyte supply chain.

  • Improving our understanding of the influence of lifestyle changes on haematometabolism could contribute to the diagnosis, prognosis and treatment of atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Haematometabolic control of stem cell homeostasis, CHIP and atherosclerosis.
Fig. 2: Haematometabolic control of erythropoiesis and megakaryopoiesis: the oxygen–iron–haem triad in atherosclerosis.
Fig. 3: Haematometabolic control of myelopoiesis: the cholesterol–glycolysis interplay in atherosclerosis.

Similar content being viewed by others

References

  1. Sadana, R. WHO launches Baseline report for Decade of Healthy Ageing. World Health Organization https://www.who.int/news/item/17-12-2020-who-launches-baseline-report-for-decade-of-healthy-ageing (2020).

  2. Michos, E. D., McEvoy, J. W. & Blumenthal, R. S. Lipid management for the prevention of atherosclerotic cardiovascular disease. N. Engl. J. Med. 381, 1557–1567 (2019).

    Article  PubMed  CAS  Google Scholar 

  3. Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rahman, M. S., Murphy, A. J. & Woollard, K. J. Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nat. Rev. Cardiol. 14, 387–400 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. Libby, P. & Ebert, B. L. CHIP (clonal hematopoiesis of indeterminate potential): potent and newly recognized contributor to cardiovascular risk. Circulation 138, 666–668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Janssen, H., Koekkoek, L. L. & Swirski, F. K. Effects of lifestyle factors on leukocytes in cardiovascular health and disease. Nat. Rev. Cardiol. 21, 157–169 (2024).

    Article  PubMed  Google Scholar 

  7. Engelen, S. E., Robinson, A. J. B., Zurke, Y.-X. & Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pasterkamp, G., den Ruijter, H. M. & Libby, P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat. Rev. Cardiol. 14, 21–29 (2017).

    Article  PubMed  CAS  Google Scholar 

  9. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Prim. 5, 56 (2019).

    Article  PubMed  Google Scholar 

  10. Seeley, E. H. et al. Spatially resolved metabolites in stable and unstable human atherosclerotic plaques identified by mass spectrometry imaging. Arterioscler. Thromb. Vasc. Biol. 43, 1626–1635 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    Article  PubMed  CAS  Google Scholar 

  12. Koelwyn, G. J., Corr, E. M., Erbay, E. & Moore, K. J. Regulation of macrophage immunometabolism in atherosclerosis. Nat. Immunol. 19, 526–537 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ketelhuth, D. F. J. et al. Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovasc. Res. 115, 1385–1392 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tabas, I. & Bornfeldt, K. E. Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ. Res. 126, 1209–1227 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cooper, B. The origins of bone marrow as the seedbed of our blood: from antiquity to the time of Osler. Proc. Bayl. Univ. Med. Cent. 24, 115–118 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Coller, B. S. Blood at 70: its roots in the history of hematology and its birth. Blood 126, 2548–2560 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mehta, M. M., Weinberg, S. E. & Chandel, N. S. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 17, 608–620 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Dumont, A., Lee, M., Barouillet, T., Murphy, A. & Yvan-Charvet, L. Mitochondria orchestrate macrophage effector functions in atherosclerosis. Mol. Asp. Med. 77, 100922 (2021).

    Article  CAS  Google Scholar 

  19. Seita, J. & Weissman, I. L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 640–653 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Birbrair, A. & Frenette, P. S. Niche heterogeneity in the bone marrow. Ann. N. Y. Acad. Sci. 1370, 82–96 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. Kimmel, M. Stochasticity and determinism in models of hematopoiesis. Adv. Exp. Med. Biol. 844, 119–152 (2014).

    Article  PubMed  Google Scholar 

  23. Agathocleous, M. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549, 476–481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kucinski, I. et al. A time- and single-cell-resolved model of murine bone marrow hematopoiesis. Cell Stem Cell 31, 244–259.e10 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Elliott, M. R. & Ravichandran, K. S. The dynamics of apoptotic cell clearance. Dev. Cell 38, 147–160 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Green, D. R., Oguin, T. H. & Martinez, J. The clearance of dying cells: table for two. Cell Death Differ. 23, 915–926 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Han, C. Z. & Ravichandran, K. S. Metabolic connections during apoptotic cell engulfment. Cell 147, 1442–1445 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Pietrangelo, A. & Ouimet, M. Death eaters rely on metabolic signaling to wield anti-inflammatory responses. Cell Metab. 29, 234–236 (2019).

    Article  PubMed  CAS  Google Scholar 

  29. Nishioka, K., Masuda, Y., Inokuchi, I., Iyoda, K. & Tanaka, T. A case of monostotic fibrous dysplasia of the temporal bone associated with epileptic seizure. Acta Med. Okayama 36, 453–462 (1982).

    PubMed  CAS  Google Scholar 

  30. Stroope, C. et al. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat. Metab. 6, 617–638 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sender, R. & Milo, R. The distribution of cellular turnover in the human body. Nat. Med. 27, 45–48 (2021).

    Article  PubMed  CAS  Google Scholar 

  32. Doran, A. C., Yurdagul, A. & Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 20, 254–267 (2020).

    Article  PubMed  CAS  Google Scholar 

  33. Adkar, S. S. & Leeper, N. J. Efferocytosis in atherosclerosis. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-024-01037-7 (2024).

    Article  PubMed  Google Scholar 

  34. Sergin, I., Evans, T. D. & Razani, B. Degradation and beyond: the macrophage lysosome as a nexus for nutrient sensing and processing in atherosclerosis. Curr. Opin. Lipidol. 26, 394–404 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yurdagul, A. Metabolic consequences of efferocytosis and its impact on atherosclerosis. Immunometabolism 3, e210017 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Witztum, J. L. Murine models for study of lipoprotein metabolism and atherosclerosis. J. Clin. Invest. 92, 536–537 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. Getz, G. S. & Reardon, C. A. Do the Apoe–/– and Ldlr–/– mice yield the same insight on atherogenesis? Arterioscler. Thromb. Vasc. Biol. 36, 1734–1741 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. von Scheidt, M. et al. Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab. 25, 248–261 (2017).

    Article  Google Scholar 

  40. Nagareddy, P. R., Noothi, S. K., Flynn, M. C. & Murphy, A. J. It’s reticulated: the liver at the heart of atherosclerosis. J. Endocrinol. 238, R1–R11 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Soehnlein, O. Decision shaping neutrophil–platelet interplay in inflammation: from physiology to intervention. Eur. J. Clin. Invest. 48, e12871 (2018).

  42. Umbreit, J. Methemoglobin—it’s not just blue: a concise review. Am. J. Hematol. 82, 134–144 (2007).

    Article  PubMed  CAS  Google Scholar 

  43. York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Araldi, E. et al. Lanosterol modulates TLR4-mediated innate immune responses in macrophages. Cell Rep. 19, 2743–2755 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Xiao, J. et al. Targeting 7-dehydrocholesterol reductase integrates cholesterol metabolism and IRF3 activation to eliminate infection. Immunity 52, 109–122.e6 (2020).

    Article  PubMed  CAS  Google Scholar 

  46. Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhang, X. et al. Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proc. Natl Acad. Sci. USA 118, e2107682118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Patterson, M. T. et al. Trem2 promotes foamy macrophage lipid uptake and survival in atherosclerosis. Nat. Cardiovasc. Res. 2, 1015–1031 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Piollet, M. et al. TREM2 protects from atherosclerosis by limiting necrotic core formation. Nat. Cardiovasc. Res. 3, 269–282 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Riksen, N. P. & Ait Oufella, H. Macrophage TREM2 as a new player in atherosclerosis. Nat. Cardiovasc. Res. 2, 1117–1119 (2023).

    Article  PubMed  CAS  Google Scholar 

  51. Dib, L. et al. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis, increasing the risk of cerebrovascular complications. Nat. Cardiovasc. Res. 2, 656–672 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. A-Gonzalez, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Hong, C. et al. Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. J. Clin. Invest. 122, 337–347 (2012).

    Article  PubMed  CAS  Google Scholar 

  54. Yvan-Charvet, L. et al. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ. Res. 106, 1861–1869 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Viaud, M. et al. Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ. Res. 122, 1369–1384 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Westerterp, M. et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11, 195–206 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tyrrell, D. J. & Goldstein, D. R. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat. Rev. Cardiol. 18, 58–68 (2021).

    Article  PubMed  CAS  Google Scholar 

  59. Abdellatif, M., Rainer, P. P., Sedej, S. & Kroemer, G. Hallmarks of cardiovascular ageing. Nat. Rev. Cardiol. 20, 754–777 (2023).

    Article  PubMed  Google Scholar 

  60. Liberale, L. et al. Inflammation, aging and cardiovascular disease: JACC review topic of the week. J. Am. Coll. Cardiol. 79, 837–847 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).

    Article  PubMed  CAS  Google Scholar 

  62. Effros, R. B. Roy Walford and the immunologic theory of aging. Immun. Ageing A 2, 7 (2005).

    Article  Google Scholar 

  63. Harman, D. The free radical theory of aging. Antioxid. Redox Signal. 5, 557–561 (2003).

    Article  PubMed  CAS  Google Scholar 

  64. Amorim, J. A. et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 18, 243–258 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Acosta-Rodríguez, V. A., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Importance of circadian timing for aging and longevity. Nat. Commun. 12, 2862 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sato, S., Solanas, G., Sassone-Corsi, P. & Benitah, S. A. Tuning up an aged clock: circadian clock regulation in metabolism and aging. Transl. Med. Aging 6, 1–13 (2022).

    Article  CAS  Google Scholar 

  67. Mevorach, D. et al. What do we mean when we write ‘senescence,’ ‘apoptosis,’ ‘necrosis,’ or ‘clearance of dying cells’? Ann. N. Y. Acad. Sci. 1209, 1–9 (2010).

    Article  PubMed  CAS  Google Scholar 

  68. Van Avondt, K. et al. Neutrophils in aging and aging-related pathologies. Immunol. Rev. 314, 357–375 (2023).

    Article  PubMed  Google Scholar 

  69. Bonacina, F. et al. Lysosomes at the crossroad of immunometabolic reprogramming during atherosclerosis. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-024-01072-4 (2024).

  70. Samaja, M. & Ottolenghi, S. The oxygen cascade from atmosphere to mitochondria as a tool to understand the (mal)adaptation to hypoxia. Int. J. Mol. Sci. 24, 3670 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Suda, T., Takubo, K. & Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9, 298–310 (2011).

    Article  PubMed  CAS  Google Scholar 

  72. Chandel, N. S., Jasper, H., Ho, T. T. & Passegué, E. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat. Cell Biol. 18, 823–832 (2016).

    Article  PubMed  CAS  Google Scholar 

  73. Arif, T. Lysosomes and their role in regulating the metabolism of hematopoietic stem cells. Biology 11, 1410 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Liang, R. et al. Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency. Cell Stem Cell 26, 359–376.e7 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. García-Prat, L. et al. TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 28, 1838–1850.e10 (2021).

    Article  PubMed  Google Scholar 

  76. Spangrude, G. J. & Johnson, G. R. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc. Natl Acad. Sci. USA 87, 7433–7437 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kim, M., Cooper, D. D., Hayes, S. F. & Spangrude, G. J. Rhodamine-123 staining in hematopoietic stem cells of young mice indicates mitochondrial activation rather than dye efflux. Blood 91, 4106–4117 (1998).

    Article  PubMed  CAS  Google Scholar 

  78. de Almeida, M. J., Luchsinger, L. L., Corrigan, D. J., Williams, L. J. & Snoeck, H.-W. Dye-independent methods reveal elevated mitochondrial mass in hematopoietic stem cells. Cell Stem Cell 21, 725–729.e4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Morganti, C., Bonora, M., Ito, K. & Ito, K. Electron transport chain complex II sustains high mitochondrial membrane potential in hematopoietic stem and progenitor cells. Stem Cell Res. 40, 101573 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Vannini, N. et al. The NAD-booster nicotinamide riboside potently stimulates hematopoiesis through increased mitochondrial clearance. Cell Stem Cell 24, 405–418.e7 (2019).

    Article  PubMed  CAS  Google Scholar 

  81. Sun, X. et al. Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells. Nat. Commun. 12, 2665 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chandel, N. S. Evolution of mitochondria as signaling organelles. Cell Metab. 22, 204–206 (2015).

    Article  PubMed  CAS  Google Scholar 

  83. Morganti, C., Cabezas-Wallscheid, N. & Ito, K. Metabolic regulation of hematopoietic stem cells. HemaSphere 6, e740 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Taya, Y. et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354, 1152–1155 (2016).

    Article  PubMed  CAS  Google Scholar 

  85. Qi, L. et al. Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration. Cell Stem Cell 28, 1982–1999.e8 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Moschoi, R. et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128, 253–264 (2016).

    Article  PubMed  CAS  Google Scholar 

  87. Heyde, A. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184, 1348–1361.e22 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lee, M. K. S. et al. Interplay between clonal hematopoiesis of indeterminate potential and metabolism. Trends Endocrinol. Metab. 31, 525–535 (2020).

    Article  PubMed  CAS  Google Scholar 

  90. Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).

    Article  PubMed  Google Scholar 

  91. Tall, A. R. & Fuster, J. J. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. Nat. Cardiovasc. Res. 1, 116–124 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wang, W. et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2V617F mice. Circ. Res. 123, e35–e47 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592, 296–301 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Yu, Z. et al. Genetic modification of inflammation- and clonal hematopoiesis-associated cardiovascular risk. J. Clin. Invest. 133, e168597 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Yusuf, R. Z. & Scadden, D. T. Fate through fat: lipid metabolism determines stem cell division outcome. Cell Metab. 16, 411–413 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Kohli, L. & Passegué, E. Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol. 24, 479–487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Katajisto, P. et al. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348, 340–343 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Umemoto, T. et al. ATP citrate lyase controls hematopoietic stem cell fate and supports bone marrow regeneration. EMBO J. 41, e109463 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Mansell, E. et al. Mitochondrial potentiation ameliorates age-related heterogeneity in hematopoietic stem cell function. Cell Stem Cell 28, 241–256.e6 (2021).

    Article  PubMed  CAS  Google Scholar 

  101. Sykes, S. M. & Scadden, D. T. Modeling human hematopoietic stem cell biology in the mouse. Semin. Hematol. 50, 92–100 (2013).

    Article  PubMed  CAS  Google Scholar 

  102. Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H. & Moore, K. Hematopoietic stem cells count and remember self-renewal divisions. Cell 167, 1296–1309.e10 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259–263 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Zhou, B. O. et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat. Cell Biol. 19, 891–903 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Mistry, J. J. et al. Free fatty-acid transport via CD36 drives β-oxidation-mediated hematopoietic stem cell response to infection. Nat. Commun. 12, 7130 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Zhang, S. et al. Bone marrow adipocytes fuel emergency hematopoiesis after myocardial infarction. Nat. Cardiovasc. Res. 2, 1277–1290 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Parathath, S., Yang, Y., Mick, S. & Fisher, E. A. Hypoxia in murine atherosclerotic plaques and its adverse effects on macrophages. Trends Cardiovasc. Med. 23, 80–84 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Parma, L., Baganha, F., Quax, P. H. A. & de Vries, M. R. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur. J. Pharmacol. 816, 107–115 (2017).

    Article  PubMed  CAS  Google Scholar 

  109. Heughan, C., Niinikoski, J. & Hunt, T. K. Oxygen tensions in lesions of experimental atherosclerosis of rabbits. Atherosclerosis 17, 361–367 (1973).

    Article  PubMed  CAS  Google Scholar 

  110. Semenza, G. L. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 114, 2015–2019 (2009).

    Article  PubMed  CAS  Google Scholar 

  111. Paulson, R. F., Ruan, B., Hao, S. & Chen, Y. Stress erythropoiesis is a key inflammatory response. Cells 9, 634 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sánchez, Á. et al. Stress erythropoiesis in atherogenic mice. Sci. Rep. 10, 18469 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e14 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Grote Beverborg, N. et al. High serum erythropoietin levels are related to heart failure development in subjects from the general population with albuminuria: data from PREVEND. Eur. J. Heart Fail. 18, 814–821 (2016).

    Article  PubMed  CAS  Google Scholar 

  115. Garimella, P. S. et al. Association of serum erythropoietin with cardiovascular events, kidney function decline, and mortality: the Health Aging and Body Composition Study. Circ. Heart Fail. 9, e002124 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Sun, P. et al. Epidemiologic and genetic associations of erythropoietin with blood pressure, hypertension, and coronary artery disease. Hypertension 78, 1555–1566 (2021).

    Article  PubMed  CAS  Google Scholar 

  117. Peng, B., Kong, G., Yang, C. & Ming, Y. Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell Death Dis. 11, 79 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ma, J. et al. Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. Redox Biol. 40, 101865 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Wang, Y. et al. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature 599, 136–140 (2021).

  120. Oburoglu, L. et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 15, 169–184 (2014).

    Article  PubMed  CAS  Google Scholar 

  121. Pizzato, H. A. et al. Mitochondrial pyruvate metabolism and glutaminolysis toggle steady-state and emergency myelopoiesis. J. Exp. Med. 220, e20221373 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Burch, J. S. et al. Glutamine via α-ketoglutarate dehydrogenase provides succinyl-CoA for heme synthesis during erythropoiesis. Blood 132, 987–998 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kuhn, V. et al. Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia. Antioxid. Redox Signal. 26, 718–742 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Kasai, S., Mimura, J., Ozaki, T. & Itoh, K. Emerging regulatory role of Nrf2 in iron, heme, and hemoglobin metabolism in physiology and disease. Front. Vet. Sci. 5, 242 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Moras, M., Lefevre, S. D. & Ostuni, M. A. From erythroblasts to mature red blood cells: organelle clearance in mammals. Front. Physiol. 8, 1076 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lyu, J. et al. A glutamine metabolic switch supports erythropoiesis. Science 386, eadh9215 (2024).

  127. Le Martret, B., Poage, M., Shiel, K., Nugent, G. D. & Dix, P. J. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant. Biotechnol. J. 9, 661–673 (2011).

    Article  PubMed  Google Scholar 

  128. An, X. et al. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood 123, 3466–3477 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Sankaran, V. G. & Orkin, S. H. Genome-wide association studies of hematologic phenotypes: a window into human hematopoiesis. Curr. Opin. Genet. Dev. 23, 339–344 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Oburoglu, L., Romano, M., Taylor, N. & Kinet, S. Metabolic regulation of hematopoietic stem cell commitment and erythroid differentiation. Curr. Opin. Hematol. 23, 198–205 (2016).

    Article  PubMed  CAS  Google Scholar 

  131. Simon, D. I. & Silverstein, R. L. Atherothrombosis: seeing red? Circulation 132, 1860–1862 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Inzucchi, S. E. et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41, 356–363 (2018).

    Article  PubMed  CAS  Google Scholar 

  133. Yvan-Charvet, L. & Ng, L. G. Granulopoiesis and neutrophil homeostasis: a metabolic, daily balancing act. Trends Immunol. 40, 598–612 (2019).

    Article  PubMed  CAS  Google Scholar 

  134. Hidalgo, A. & Casanova-Acebes, M. Dimensions of neutrophil life and fate. Semin. Immunol. 57, 101506 (2021).

    Article  PubMed  CAS  Google Scholar 

  135. Corrons, J. L. V., Casafont, L. B. & Frasnedo, E. F. Concise review: how do red blood cells born, live, and die? Ann. Hematol. 100, 2425–2433 (2021).

    Article  PubMed  CAS  Google Scholar 

  136. A-Gonzalez, N. & Castrillo, A. Origin and specialization of splenic macrophages. Cell. Immunol. 330, 151–158 (2018).

    Article  PubMed  CAS  Google Scholar 

  137. Kohyama, M. et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457, 318–321 (2009).

    Article  PubMed  CAS  Google Scholar 

  138. Haldar, M. et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156, 1223–1234 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Theurl, I. et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat. Med. 22, 945–951 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tran, S. et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 53, 627–640.e5 (2020).

    Article  PubMed  CAS  Google Scholar 

  141. Blériot, C. et al. A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 54, 2101–2116.e6 (2021).

    Article  PubMed  Google Scholar 

  142. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e38 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. He, W. et al. Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues. Immunity 49, 1175–1190.e7 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Raghuram, S. et al. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBɑ and REV-ERBβ. Nat. Struct. Mol. Biol. 14, 1207–1213 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Samad, M., Agostinelli, F., Sato, T., Shimaji, K. & Baldi, P. CircadiOmics: circadian omic web portal. Nucleic Acids Res. 50, W183–W190 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Noetzli, L. J., French, S. L. & Machlus, K. R. New insights into the differentiation of megakaryocytes from hematopoietic progenitors. Arterioscler. Thromb. Vasc. Biol. 39, 1288–1300 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Nakamura-Ishizu, A. et al. Thrombopoietin metabolically primes hematopoietic stem cells to megakaryocyte-lineage differentiation. Cell Rep. 25, 1772–1785.e6 (2018).

    Article  PubMed  CAS  Google Scholar 

  148. Wolber, E. M. & Jelkmann, W. Interleukin-6 increases thrombopoietin production in human hepatoma cells HepG2 and Hep3B. J. Interferon Cytokine Res. 20, 499–506 (2000).

    Article  PubMed  CAS  Google Scholar 

  149. Libby, P. Targeting inflammatory pathways in cardiovascular disease: the inflammasome, interleukin-1, interleukin-6 and beyond. Cells 10, 951 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Chen, L. et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science 345, 1251033 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Notta, F. et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351, aab2116 (2016).

    Article  PubMed  Google Scholar 

  152. Xavier-Ferrucio, J. et al. Low iron promotes megakaryocytic commitment of megakaryocytic–erythroid progenitors in humans and mice. Blood 134, 1547–1557 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Pantopoulos, K. TfR2 links iron metabolism and erythropoiesis. Blood 125, 1055–1056 (2015).

    Article  PubMed  CAS  Google Scholar 

  154. Russell, M. J. & Martin, W. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 29, 358–363 (2004).

    Article  PubMed  CAS  Google Scholar 

  155. Chen, S., Su, Y. & Wang, J. ROS-mediated platelet generation: a microenvironment-dependent manner for megakaryocyte proliferation, differentiation, and maturation. Cell Death Dis. 4, e722 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Murphy, A. J. et al. Deficiency of ATP-binding cassette transporter B6 in megakaryocyte progenitors accelerates atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 34, 751–758 (2014).

    Article  PubMed  CAS  Google Scholar 

  157. Fukuda, Y. et al. The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6. Nat. Commun. 7, 12353 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Bahou, W. F., Marchenko, N. & Nesbitt, N. M. Metabolic functions of biliverdin IXβ reductase in redox-regulated hematopoietic cell fate. Antioxidants 12, 1058 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Li, Z. et al. Heme degradation enzyme biliverdin IXβ reductase is required for stem cell glutamine metabolism. Biochem. J. 475, 1211–1223 (2018).

    Article  PubMed  CAS  Google Scholar 

  160. Wu, S. et al. BLVRB redox mutation defines heme degradation in a metabolic pathway of enhanced thrombopoiesis in humans. Blood 128, 699–709 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Murphy, A. J. et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat. Med. 19, 586–594 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13, 34–45 (2013).

    Article  PubMed  CAS  Google Scholar 

  163. Guo, L. & Rondina, M. T. The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases. Front. Immunol. 10, 2204 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Ng, A. P. et al. Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation. Proc. Natl Acad. Sci. USA 111, 5884–5889 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Begonja, A. J. et al. Platelet NAD(P)H-oxidase-generated ROS production regulates ɑIIbβ3-integrin activation independent of the NO/cGMP pathway. Blood 106, 2757–2760 (2005).

    Article  PubMed  CAS  Google Scholar 

  166. Fidler, T. P. et al. Deletion of GLUT1 and GLUT3 reveals multiple roles for glucose metabolism in platelet and megakaryocyte function. Cell Rep. 20, 881–894 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Pretorius, E. Platelets as potent signaling entities in type 2 diabetes mellitus. Trends Endocrinol. Metab. 30, 532–545 (2019).

    Article  PubMed  CAS  Google Scholar 

  168. Quach, M. E., Chen, W. & Li, R. Mechanisms of platelet clearance and translation to improve platelet storage. Blood 131, 1512–1521 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. An, O. & Deppermann, C. Platelet lifespan and mechanisms for clearance. Curr. Opin. Hematol. 31, 6–15 (2024).

    Article  PubMed  CAS  Google Scholar 

  170. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Yvan-Charvet, L. & Westerterp, M. LDL-cholesterol drives reversible myelomonocytic skewing in human bone marrow. Eur. Heart J. 42, 4321–4323 (2021).

    Article  PubMed  Google Scholar 

  172. Stiekema, L. C. A. et al. Impact of cholesterol on proinflammatory monocyte production by the bone marrow. Eur. Heart J. 42, 4309–4320 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Jordan, S. et al. Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178, 1102–1114.e17 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Janssen, H. et al. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 56, 783–796.e7 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8, 121–130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  176. van der Valk, F. M. et al. Increased haematopoietic activity in patients with atherosclerosis. Eur. Heart J. 38, 425–432 (2017).

    PubMed  Google Scholar 

  177. Wessendarp, M. et al. Role of GM-CSF in regulating metabolism and mitochondrial functions critical to macrophage proliferation. Mitochondrion 62, 85–101 (2022).

    Article  PubMed  CAS  Google Scholar 

  178. Karmaus, P. W. F. et al. Critical roles of mTORC1 signaling and metabolic reprogramming for M-CSF-mediated myelopoiesis. J. Exp. Med. 214, 2629–2647 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Sarrazy, V. et al. Disruption of Glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE–/– mice. Circ. Res. 118, 1062–1077 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Zhu, Y. P., Thomas, G. D. & Hedrick, C. C. 2014 Jeffrey M. Hoeg Award Lecture: transcriptional control of monocyte development. Arterioscler. Thromb. Vasc. Biol. 36, 1722–1733 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P. & Halbwachs-Mecarelli, L. Neutrophils: molecules, functions and pathophysiological aspects. Lab. Investig. J. Tech. Methods Pathol. 80, 617–653 (2000).

    Article  CAS  Google Scholar 

  182. Savina, A. & Amigorena, S. Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev. 219, 143–156 (2007).

    Article  PubMed  CAS  Google Scholar 

  183. Yvan-Charvet, L., Bonacina, F., Guinamard, R. R. & Norata, G. D. Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc. Res. 115, 1393–1407 (2019).

    Article  PubMed  CAS  Google Scholar 

  184. Marques, A. R. A., Ramos, C., Machado-Oliveira, G. & Vieira, O. V. Lysosome (dys)function in atherosclerosis—a big weight on the shoulders of a small organelle. Front. Cell Dev. Biol. 9, 658995 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Pernes, G., Flynn, M. C., Lancaster, G. I. & Murphy, A. J. Fat for fuel: lipid metabolism in haematopoiesis. Clin. Transl. Immunol. 8, e1098 (2019).

    Article  Google Scholar 

  186. Raza, Y., Salman, H. & Luberto, C. Sphingolipids in hematopoiesis: exploring their role in lineage commitment. Cells 10, 2507 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  188. Brozzi, A., Urbanelli, L., Germain, P. L., Magini, A. & Emiliani, C. hLGDB: a database of human lysosomal genes and their regulation. Database 2013,bat024 (2013).

  189. Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

    Article  PubMed  CAS  Google Scholar 

  190. Deniset, J. F. & Kubes, P. Recent advances in understanding neutrophils. F1000Research 5, 2912 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Zhang, S. et al. Immunometabolism of phagocytes and relationships to cardiac repair. Front. Cardiovasc. Med. 6, 42 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Korbelius, M., Kuentzel, K. B., Bradić, I., Vujić, N. & Kratky, D. Recent insights into lysosomal acid lipase deficiency. Trends Mol. Med. 29, 425–438 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Kim, Y. et al. Time-restricted feeding reduces monocyte production by controlling hematopoietic stem and progenitor cells in the bone marrow during obesity. Front. Immunol. 13, 1054875 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Pan, C. et al. Time-restricted feeding enhances early atherosclerosis in hypercholesterolemic mice. Circulation 147, 774–777 (2023).

    Article  PubMed  Google Scholar 

  197. Adrover, J. M. et al. A neutrophil timer coordinates immune defense and vascular protection. Immunity 50, 390–402.e10 (2019).

    Article  PubMed  CAS  Google Scholar 

  198. Christ, A., Lauterbach, M. & Latz, E. Western diet and the immune system: an inflammatory connection. Immunity 51, 794–811 (2019).

    Article  PubMed  CAS  Google Scholar 

  199. Yvan-Charvet, L. & Cariou, B. Poststatin era in atherosclerosis management: lessons from epidemiologic and genetic studies. Curr. Opin. Lipidol. 29, 246–258 (2018).

    Article  PubMed  CAS  Google Scholar 

  200. Taylor, S. I., Yazdi, Z. S. & Beitelshees, A. L. Pharmacological treatment of hyperglycemia in type 2 diabetes. J. Clin. Invest. 131, e142243 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Schönberger, K. & Cabezas-Wallscheid, N. How nutrition regulates hematopoietic stem cell features. Exp. Hematol. 128, 10–18 (2023).

    Article  PubMed  Google Scholar 

  202. Muse, E. D. & Topol, E. J. Transforming the cardiometabolic disease landscape: multimodal AI-powered approaches in prevention and management. Cell Metab. 36, 670–683 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Ito, K. et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350–1358 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Decker, M., Leslie, J., Liu, Q. & Ding, L. Hepatic thrombopoietin is required for bone marrow hematopoietic stem cell maintenance. Science 360, 106–110 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Tseng, Y.-J. et al. Increased iron uptake by splenic hematopoietic stem cells promotes TET2-dependent erythroid regeneration. Nat. Commun. 15, 538 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Yien, Y. Y. & Perfetto, M. Regulation of heme synthesis by mitochondrial homeostasis proteins. Front. Cell Dev. Biol. 10, 895521 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Ducamp, S. & Fleming, M. D. The molecular genetics of sideroblastic anemia. Blood 133, 59–69 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Shaw, G. C. et al. Mitoferrin is essential for erythroid iron assimilation. Nature 440, 96–100 (2006).

    Article  PubMed  CAS  Google Scholar 

  210. Miller, F. G. Ethics is everybody’s concern. J. Clin. Ethics 1, 326–327 (1990).

    PubMed  CAS  Google Scholar 

  211. Kramer, P. A., Ravi, S., Chacko, B., Johnson, M. S. & Darley-Usmar, V. M. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol. 2, 206–210 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Kulkarni, P. P. et al. Aerobic glycolysis fuels platelet activation: small-molecule modulators of platelet metabolism as anti-thrombotic agents. Haematologica 104, 806–818 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Baldwin, J. E. & Krebs, H. The evolution of metabolic cycles. Nature 291, 381–382 (1981).

    Article  PubMed  CAS  Google Scholar 

  214. Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Houten, S. M., Violante, S., Ventura, F. V. & Wanders, R. J. A. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu. Rev. Physiol. 78, 23–44 (2016).

    Article  PubMed  CAS  Google Scholar 

  216. Ryu, K.W. et al. Cellular ATP demand creates metabolically distinct subpopulations of mitochondria. Nature 635, 746–754 (2024).

  217. DeBerardinis, R. J. & Thompson, C. B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148, 1132–1144 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Quehenberger, O. & Dennis, E. A. The human plasma lipidome. N. Engl. J. Med. 365, 1812–1823 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Westerterp, K. R. Control of energy expenditure in humans. Eur. J. Clin. Nutr. 71, 340–344 (2017).

    Article  PubMed  CAS  Google Scholar 

  220. Lavoisier, A. & Laplace, P. Mémoire sur la chaleur. in Mémoires de l’Académie des Sciences 355–408 (1780).

  221. Heymsfield, S. B., Wang, Z., Baumgartner, R. N. & Ross, R. Human body composition: advances in models and methods. Annu. Rev. Nutr. 17, 527–558 (1997).

    Article  PubMed  CAS  Google Scholar 

  222. Hatton, I. A. et al. The human cell count and size distribution. Proc. Natl Acad. Sci. USA 120, e2303077120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

L.Y.C. received grants from the European Research Council (ERC) consolidator programme (ERC2016COG724838), Agence Nationale de la Recherche (ANR) (Glutadiab19-CE17-0030-DS; CHIC 20-CE14-009; MacBurn 21-CE14-0023; Glutacare 24-CE14-7125), IHU RespirERA (Respiratory Health, Environment and Ageing) and Fondation de France (FDF).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to all aspects of the article.

Corresponding authors

Correspondence to Laurent Yvan-Charvet or Coraline Borowczyk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yvan-Charvet, L., Barouillet, T. & Borowczyk, C. Haematometabolism rewiring in atherosclerotic cardiovascular disease. Nat Rev Cardiol 22, 414–430 (2025). https://doi.org/10.1038/s41569-024-01108-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-024-01108-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing