Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apolipoprotein B-containing lipoproteins in atherogenesis

Abstract

Apolipoprotein B (apoB) is the main structural protein of LDLs, triglyceride-rich lipoproteins and lipoprotein(a), and is crucial for their formation, metabolism and atherogenic properties. In this Review, we present insights into the role of apoB-containing lipoproteins in atherogenesis, with an emphasis on the mechanisms leading to plaque initiation and growth. LDL, the most abundant cholesterol-rich lipoprotein in plasma, is causally linked to atherosclerosis. LDL enters the artery wall by transcytosis and, in vulnerable regions, is retained in the subendothelial space by binding to proteoglycans via specific sites on apoB. A maladaptive response ensues. This response involves modification of LDL particles, which promotes LDL retention and the release of bioactive lipid products that trigger inflammatory responses in vascular cells, as well as adaptive immune responses. Resident and recruited macrophages take up modified LDL, leading to foam cell formation and ultimately cell death due to inadequate cellular lipid handling. Accumulation of dead cells and cholesterol crystallization are hallmarks of the necrotic core of atherosclerotic plaques. Other apoB-containing lipoproteins, although less abundant, have substantially greater atherogenicity per particle than LDL. These lipoproteins probably contribute to atherogenesis in a similar way to LDL but might also induce additional pathogenic mechanisms. Several targets for intervention to reduce the rate of atherosclerotic lesion initiation and progression have now been identified, including lowering plasma lipoprotein levels and modulating the maladaptive responses in the artery wall.

Key points

  • LDL is the main carrier of cholesterol in the blood and of circulating cholesterol into the artery wall.

  • LDL is a proven causative factor for atherosclerotic cardiovascular disease, and reducing the plasma levels of LDL substantially reduces cardiovascular risk.

  • Subendothelial retention of LDL and other apolipoprotein B-containing lipoproteins is the primary trigger for the development of atherosclerosis.

  • Retained LDL becomes modified in the artery wall, and the focal accumulation of modified lipoproteins triggers the recruitment of monocytes and macrophages.

  • Damage-associated molecular patterns, formed when retained LDL is modified, induce a maladaptive immune response.

  • Different species of apolipoprotein B-containing lipoproteins are not equally atherogenic; triglyceride-rich lipoproteins and their remnants and lipoprotein(a) are markedly more atherogenic than LDL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Early stages of atherogenesis.
Fig. 2: Cellular responses to LDL retention.
Fig. 3: Concepts in atherogenicity of apoB-containing lipoproteins.

Similar content being viewed by others

References

  1. Tsao, C. W. et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

    Article  PubMed  Google Scholar 

  2. Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. Robinson, J. G. et al. Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J. Am. Heart Assoc. 7, e009778 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Camejo, G., Lopez, A., Vegas, H. & Paoli, H. The participation of aortic proteins in the formation of complexes between low density lipoproteins and intima-media extracts. Atherosclerosis 21, 77–91 (1975).

    Article  PubMed  CAS  Google Scholar 

  9. Segrest, J. P., Jones, M. K., De Loof, H. & Dashti, N. Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42, 1346–1367 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. Segrest, J. P. et al. Apolipoprotein B-100: conservation of lipid-associating amphipathic secondary structural motifs in nine species of vertebrates. J. Lipid Res. 39, 85–102 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. Boren, J., Taskinen, M. R., Bjornson, E. & Packard, C. J. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat. Rev. Cardiol. 19, 577–592 (2022).

    Article  PubMed  CAS  Google Scholar 

  12. Frank, P. G. & Lisanti, M. P. Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr. Opin. Lipidol. 15, 523–529 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. Fernandez-Hernando, C. et al. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab. 10, 48–54 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Frank, P. G., Pavlides, S. & Lisanti, M. P. Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res. 335, 41–47 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. Armstrong, S. M. et al. Novel assay for detection of LDL transcytosis across coronary endothelium reveals an unexpected role for SR-B1 [abstract]. Circulation 130 (Suppl. 2), A11607 (2014).

    Google Scholar 

  16. Kraehling, J. R. et al. Genome-wide RNAi screen ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat. Commun. 7, 13516 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Minick, C. R., Stemerman, M. G. & Insull, W. Jr Effect of regenerated endothelium on lipid accumulation in the arterial wall. Proc. Natl Acad. Sci. USA 74, 1724–1728 (1977).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Minick, C. R., Stemerman, M. B. & Insull, W. Jr Role of endothelium and hypercholesterolemia in intimal thickening and lipid accumulation. Am. J. Pathol. 95, 131–158 (1979).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Armstrong, S. M. et al. A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc. Res. 108, 268–277 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Huang, L. et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 569, 565–569 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sessa, W. C. Estrogen reduces LDL (low-density lipoprotein) transcytosis. Arterioscler. Thromb. Vasc. Biol. 38, 2276–2277 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ghaffari, S., Naderi Nabi, F., Sugiyama, M. G. & Lee, W. L. Estrogen inhibits LDL (low-density lipoprotein) transcytosis by human coronary artery endothelial cells via GPER (G-protein-coupled estrogen receptor) and SR-BI (scavenger receptor class B type 1). Arterioscler. Thromb. Vasc. Biol. 38, 2283–2294 (2018).

    Article  PubMed  CAS  Google Scholar 

  23. Mathur, P., Ostadal, B., Romeo, F. & Mehta, J. L. Gender-related differences in atherosclerosis. Cardiovasc. Drugs Ther. 29, 319–327 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. Bian, F., Yang, X. Y., Xu, G., Zheng, T. & Jin, S. CRP-induced NLRP3 inflammasome activation increases LDL transcytosis across endothelial cells. Front. Pharmacol. 10, 40 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jia, X. et al. VCAM-1-binding peptide targeted cationic liposomes containing NLRP3 siRNA to modulate LDL transcytosis as a novel therapy for experimental atherosclerosis. Metabolism 135, 155274 (2022).

    Article  PubMed  CAS  Google Scholar 

  26. Arsenault, B. J., Carpentier, A. C., Poirier, P. & Despres, J. P. Adiposity, type 2 diabetes and atherosclerotic cardiovascular disease risk: use and abuse of the body mass index. Atherosclerosis 394, 117546 (2024).

    Article  PubMed  CAS  Google Scholar 

  27. Bartels, E. D., Christoffersen, C., Lindholm, M. W. & Nielsen, L. B. Altered metabolism of LDL in the arterial wall precedes atherosclerosis regression. Circ. Res. 117, 933–942 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. Mundi, S. et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors – a review. Cardiovasc. Res. 114, 35–52 (2018).

    Article  PubMed  CAS  Google Scholar 

  29. van den Berg, B. M., Spaan, J. A., Rolf, T. M. & Vink, H. Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am. J. Physiol. Heart Circ. Physiol. 290, H915–H920 (2006).

    Article  PubMed  Google Scholar 

  30. Lewis, J. C., Taylor, R. G., Jones, N. D., St Clair, R. W. & Cornhill, J. F. Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge. Lab. Invest. 46, 123–138 (1982).

    PubMed  CAS  Google Scholar 

  31. Cancel, L. M., Ebong, E. E., Mensah, S., Hirschberg, C. & Tarbell, J. M. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis 252, 136–146 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Banerjee, S., Mwangi, J. G., Stanley, T. K., Mitra, R. & Ebong, E. E. Regeneration and assessment of the endothelial glycocalyx to address cardiovascular disease. Ind. Eng. Chem. Res. 60, 17328–17347 (2021).

    Article  CAS  Google Scholar 

  33. Faber, M. The human aorta; sulfate-containing polyuronides and the deposition of cholesterol. Arch. Pathol. 48, 342–350 (1949).

    CAS  Google Scholar 

  34. Camejo, G. et al. Differences in the structure of plasma low-density lipoproteins and their relationship to the extent of interaction with arterial wall-components. Ann. N. Y. Acad. Sci. 275, 153–168 (1976).

    Article  PubMed  CAS  Google Scholar 

  35. Camejo, G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv. Lipid Res. 19, 1–53 (1982).

    Article  PubMed  CAS  Google Scholar 

  36. Camejo, G., Olofsson, S. O., Lopez, F., Carlsson, P. & Bondjers, G. Identification of Apo B-100 segments mediating the interaction of low density lipoproteins with arterial proteoglycans. Arteriosclerosis 8, 368–377 (1988).

    Article  PubMed  CAS  Google Scholar 

  37. Hirose, N., Blankenship, D. T., Krivanek, M. A., Jackson, R. L. & Cardin, A. D. Isolation and characterization of four heparin-binding cyanogen bromide peptides of human plasma apolipoprotein B. Biochemistry 26, 5505–5512 (1987).

    Article  PubMed  CAS  Google Scholar 

  38. Weisgraber, K. H. & Rall, S. C. Jr Human apolipoprotein B-100 heparin-binding sites. J. Biol. Chem. 262, 11097–11103 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. Boren, J. et al. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J. Clin. Invest. 101, 2658–2664 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Boren, J. et al. Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100. J. Clin. Invest. 101, 1084–1093 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chan, L. Apolipoprotein B, the major protein component of triglyceride-rich and low density lipoproteins. J. Biol. Chem. 267, 25621–25624 (1992).

    Article  PubMed  CAS  Google Scholar 

  42. Flood, C. et al. Identification of the proteoglycan binding site in apolipoprotein B48. J. Biol. Chem. 277, 32228–32233 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. Flood, C. et al. Molecular mechanism for changes in proteoglycan binding on compositional changes of the core and the surface of low-density lipoprotein-containing human apolipoprotein B100. Arterioscler. Thromb. Vasc. Biol. 24, 564–570 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. Camejo, G., Olsson, U., Hurt-Camejo, E., Baharamian, N. & Bondjers, G. The extracellular matrix on atherogenesis and diabetes-associated vascular disease. Atheroscler. Suppl. 3, 3–9 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. Sartipy, P., Camejo, G., Svensson, L. & Hurt-Camejo, E. Phospholipase A2 modification of low density lipoproteins forms small high density particles with increased affinity for proteoglycans and glycosaminoglycans. J. Biol. Chem. 274, 25913–25920 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. Kugiyama, K. et al. Circulating levels of secretory type II phospholipase A2 predict coronary events in patients with coronary artery disease. Circulation 100, 1280–1284 (1999).

    Article  PubMed  CAS  Google Scholar 

  47. The Lp-PLA2 Studies Collaboration et al.Lipoprotein-associated phospholipase A2 and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet 375, 1536–1544 (2010).

    Article  PubMed Central  Google Scholar 

  48. Griffin, B. A. et al. Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subfractions: relative contribution of small, dense LDL to coronary heart disease risk. Atherosclerosis 106, 241–253 (1994).

    Article  PubMed  CAS  Google Scholar 

  49. Austin, M. A., King, M. C., Vranizan, K. M. & Krauss, R. M. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 82, 495–506 (1990).

    Article  PubMed  CAS  Google Scholar 

  50. Nicholls, S. J. et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA 311, 252–262 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Gregson, J. M. et al. Genetic invalidation of Lp-PLA2 as a therapeutic target: large-scale study of five functional Lp-PLA2-lowering alleles. Eur. J. Prev. Cardiol. 24, 492–504 (2017).

    Article  PubMed  Google Scholar 

  52. Schwenke, D. C. & Carew, T. E. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9, 908–918 (1989).

    Article  PubMed  CAS  Google Scholar 

  53. Tran-Lundmark, K. et al. Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ. Res. 103, 43–52 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Mahley, R. W. & Huang, Y. Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing. J. Clin. Invest. 117, 94–98 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hiukka, A. et al. ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Diabetes 58, 2018–2026 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Olin-Lewis, K. et al. ApoC-III content of apoB-containing lipoproteins is associated with binding to the vascular proteoglycan biglycan. J. Lipid Res. 43, 1969–1977 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. Jayaraman, S. et al. Effects of triacylglycerol on the structural remodeling of human plasma very low- and low-density lipoproteins. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 1061–1071 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Willner, E. L. et al. Deficiency of acyl CoA:cholesterol acyltransferase 2 prevents atherosclerosis in apolipoprotein E-deficient mice. Proc. Natl Acad. Sci. USA 100, 1262–1267 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Aviram, M., Lund-Katz, S., Phillips, M. C. & Chait, A. The influence of the triglyceride content of low density lipoprotein on the interaction of apolipoprotein B-100 with cells. J. Biol. Chem. 263, 16842–16848 (1988).

    Article  PubMed  CAS  Google Scholar 

  60. Hagensen, M. K. et al. Increased retention of LDL from type 1 diabetic patients in atherosclerosis-prone areas of the murine arterial wall. Atherosclerosis 286, 156–162 (2019).

    Article  PubMed  CAS  Google Scholar 

  61. O’Brien, K. D. et al. Comparison of apolipoprotein and proteoglycan deposits in human coronary atherosclerotic plaques: colocalization of biglycan with apolipoproteins. Circulation 98, 519–527 (1998).

    Article  PubMed  Google Scholar 

  62. Nakashima, Y., Fujii, H., Sumiyoshi, S., Wight, T. N. & Sueishi, K. Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler. Thromb. Vasc. Biol. 27, 1159–1165 (2007).

    Article  PubMed  CAS  Google Scholar 

  63. She, Z. G. et al. NG2 proteoglycan ablation reduces foam cell formation and atherogenesis via decreased low-density lipoprotein retention by synthetic smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 36, 49–59 (2016).

    Article  PubMed  CAS  Google Scholar 

  64. Tsiantoulas, D. et al. APRIL limits atherosclerosis by binding to heparan sulfate proteoglycans. Nature 597, 92–96 (2021).

    Article  PubMed  CAS  Google Scholar 

  65. Brito, V. et al. Atheroregressive potential of the treatment with a chimeric monoclonal antibody against sulfated glycosaminoglycans on pre-existing lesions in apolipoprotein E-deficient mice. Front. Pharmacol. 8, 782 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nakashima, Y., Chen, Y. X., Kinukawa, N. & Sueishi, K. Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch. 441, 279–288 (2002).

    Article  PubMed  Google Scholar 

  67. Stary, H. C. et al. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler. Thromb. 12, 120–134 (1992).

    Article  PubMed  CAS  Google Scholar 

  68. Kaprio, J., Norio, R., Pesonen, E. & Sarna, S. Intimal thickening of the coronary arteries in infants in relation to family history of coronary artery disease. Circulation 87, 1960–1968 (1993).

    Article  PubMed  CAS  Google Scholar 

  69. Allahverdian, S., Ortega, C. & Francis, G. A. Smooth muscle cell-proteoglycan-lipoprotein interactions as drivers of atherosclerosis. Handb. Exp. Pharmacol. 270, 335–358 (2022).

    PubMed  CAS  Google Scholar 

  70. Kolodgie, F. D., Burke, A. P., Nakazawa, G. & Virmani, R. Is pathologic intimal thickening the key to understanding early plaque progression in human atherosclerotic disease? Arterioscler. Thromb. Vasc. Biol. 27, 986–989 (2007).

    Article  PubMed  CAS  Google Scholar 

  71. Kijani, S., Vazquez, A. M., Levin, M., Boren, J. & Fogelstrand, P. Intimal hyperplasia induced by vascular intervention causes lipoprotein retention and accelerated atherosclerosis. Physiol. Rep. 5, e13334 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kalan, J. M. & Roberts, W. C. Morphologic findings in saphenous veins used as coronary arterial bypass conduits for longer than 1 year: necropsy analysis of 53 patients, 123 saphenous veins, and 1865 five-millimeter segments of veins. Am. Heart J. 119, 1164–1184 (1990).

    Article  PubMed  CAS  Google Scholar 

  73. Williams, K. J. Arterial zones that take a pause in early plaque development. Arterioscler. Thromb. Vasc. Biol. 43, 650–653 (2023).

    Article  PubMed  CAS  Google Scholar 

  74. Lewis, E. A. et al. Capacity for LDL (low-density lipoprotein) retention predicts the course of atherogenesis in the murine aortic arch. Arterioscler. Thromb. Vasc. Biol. 43, 637–649 (2023).

    Article  PubMed  CAS  Google Scholar 

  75. Oorni, K. et al. Acidification of the intimal fluid: the perfect storm for atherogenesis. J. Lipid Res. 56, 203–214 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Tomas, L. et al. Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques. Eur. Heart J. 39, 2301–2310 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Glise, L. et al. pH-dependent protonation of histidine residues is critical for electrostatic binding of low-density lipoproteins to human coronary arteries. Arterioscler. Thromb. Vasc. Biol. 42, 1037–1047 (2022).

    Article  PubMed  CAS  Google Scholar 

  78. Lorey, M. B., Oorni, K. & Kovanen, P. T. Modified lipoproteins induce arterial wall inflammation during atherogenesis. Front. Cardiovasc. Med. 9, 841545 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Esterbauer, H., Schaur, R. J. & Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free. Radic. Biol. Med. 11, 81–128 (1991).

    Article  PubMed  CAS  Google Scholar 

  81. Bochkov, V. N. et al. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal. 12, 1009–1059 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Tsimikas, S. & Witztum, J. L. Oxidized phospholipids in cardiovascular disease. Nat. Rev. Cardiol. 21, 170–191 (2024).

    Article  PubMed  CAS  Google Scholar 

  83. Byun, Y. S. et al. Relationship of oxidized phospholipids on apolipoprotein B-100 to cardiovascular outcomes in patients treated with intensive versus moderate atorvastatin therapy: the TNT trial. J. Am. Coll. Cardiol. 65, 1286–1295 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Gilliland, T. C. et al. Lipoprotein(a), oxidized phospholipids, and coronary artery disease severity and outcomes. J. Am. Coll. Cardiol. 81, 1780–1792 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Tsimikas, S. et al. Relationship of oxidized phospholipids on apolipoprotein B-100 particles to race/ethnicity, apolipoprotein(a) isoform size, and cardiovascular risk factors: results from the Dallas Heart Study. Circulation 119, 1711–1719 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Camejo, G., Fager, G., Rosengren, B., Hurt-Camejo, E. & Bondjers, G. Binding of low density lipoproteins by proteoglycans synthesized by proliferating and quiescent human arterial smooth muscle cells. J. Biol. Chem. 268, 14131–14137 (1993).

    Article  PubMed  CAS  Google Scholar 

  87. Chang, M. Y., Potter-Perigo, S., Tsoi, C., Chait, A. & Wight, T. N. Oxidized low density lipoproteins regulate synthesis of monkey aortic smooth muscle cell proteoglycans that have enhanced native low density lipoprotein binding properties. J. Biol. Chem. 275, 4766–4773 (2000).

    Article  PubMed  CAS  Google Scholar 

  88. Gustafsson, M. et al. Retention of low-density lipoprotein in atherosclerotic lesions of the mouse: evidence for a role of lipoprotein lipase. Circ. Res. 101, 777–783 (2007).

    Article  PubMed  CAS  Google Scholar 

  89. Pentikainen, M. O., Oksjoki, R., Oorni, K. & Kovanen, P. T. Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler. Thromb. Vasc. Biol. 22, 211–217 (2002).

    Article  PubMed  CAS  Google Scholar 

  90. Pentikainen, M. O., Oorni, K. & Kovanen, P. T. Lipoprotein lipase (LPL) strongly links native and oxidized low density lipoprotein particles to decorin-coated collagen. Roles for both dimeric and monomeric forms of LPL. J. Biol. Chem. 275, 5694–5701 (2000).

    Article  PubMed  CAS  Google Scholar 

  91. Babaev, V. R. et al. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo. J. Clin. Invest. 103, 1697–1705 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Wilson, K., Fry, G. L., Chappell, D. A., Sigmund, C. D. & Medh, J. D. Macrophage-specific expression of human lipoprotein lipase accelerates atherosclerosis in transgenic apolipoprotein E knockout mice but not in C57BL/6 mice. Arterioscler. Thromb. Vasc. Biol. 21, 1809–1815 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Tabas, I. et al. Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation. J. Biol. Chem. 268, 20419–20432 (1993).

    Article  PubMed  CAS  Google Scholar 

  94. Devlin, C. M. et al. Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler. Thromb. Vasc. Biol. 28, 1723–1730 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Oorni, K., Hakala, J. K., Annila, A., Ala-Korpela, M. & Kovanen, P. T. Sphingomyelinase induces aggregation and fusion, but phospholipase A2 only aggregation, of low density lipoprotein (LDL) particles. Two distinct mechanisms leading to increased binding strength of LDL to human aortic proteoglycans. J. Biol. Chem. 273, 29127–29134 (1998).

    Article  PubMed  CAS  Google Scholar 

  96. Wong, M. L. et al. Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc. Natl Acad. Sci. USA 97, 8681–8686 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Marathe, S., Kuriakose, G., Williams, K. J. & Tabas, I. Sphingomyelinase, an enzyme implicated in atherogenesis, is present in atherosclerotic lesions and binds to specific components of the subendothelial extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 19, 2648–2658 (1999).

    Article  PubMed  CAS  Google Scholar 

  98. Marathe, S., Choi, Y., Leventhal, A. R. & Tabas, I. Sphingomyelinase converts lipoproteins from apolipoprotein E knockout mice into potent inducers of macrophage foam cell formation. Arterioscler. Thromb. Vasc. Biol. 20, 2607–2613 (2000).

    Article  PubMed  CAS  Google Scholar 

  99. Ruuth, M. et al. Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths. Eur. Heart J. 39, 2562–2573 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sanda, G. M. et al. Aggregated LDL turn human macrophages into foam cells and induce mitochondrial dysfunction without triggering oxidative or endoplasmic reticulum stress. PLoS ONE 16, e0245797 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Steinfeld, N., Ma, C. J. & Maxfield, F. R. Signaling pathways regulating the extracellular digestion of lipoprotein aggregates by macrophages. Mol. Biol. Cell 35, ar5 (2024).

    Article  PubMed  CAS  Google Scholar 

  102. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    Article  PubMed  CAS  Google Scholar 

  103. Nissen, S. E. et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356, 1304–1316 (2007).

    Article  PubMed  CAS  Google Scholar 

  104. Sneck, M. et al. Conformational changes of apoB-100 in SMase-modified LDL mediate formation of large aggregates at acidic pH. J. Lipid Res. 53, 1832–1839 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Zernecke, A. et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ. Res. 127, 402–426 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. de Winther, M. P. J. et al. Translational opportunities of single-cell biology in atherosclerosis. Eur. Heart J. 44, 1216–1230 (2023).

    Article  PubMed  Google Scholar 

  108. Williams, J. W. et al. Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nat. Immunol. 21, 1194–1204 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Takaoka, M. et al. Early intermittent hyperlipidaemia alters tissue macrophages to fuel atherosclerosis. Nature 634, 457–465 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Moore, K. J. et al. Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC Macrophage in CVD Series (part 2). J. Am. Coll. Cardiol. 72, 2181–2197 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    Article  PubMed  CAS  Google Scholar 

  113. Piollet, M. et al. TREM2 protects from atherosclerosis by limiting necrotic core formation. Nat. Cardiovasc. Res. 3, 269–282 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Dib, L. et al. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis increasing the risk of cerebrovascular complications. Nat. Cardiovasc. Res. 2, 656–672 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zernecke, A. et al. Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis. Cardiovasc. Res. 119, 1676–1689 (2023).

    Article  PubMed  CAS  Google Scholar 

  116. Adkar, S. S. & Leeper, N. J. Efferocytosis in atherosclerosis. Nat. Rev. Cardiol. 21, 762–779 (2024).

    Article  PubMed  Google Scholar 

  117. Doran, A. C., Yurdagul, A. Jr. & Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 20, 254–267 (2020).

    Article  PubMed  CAS  Google Scholar 

  118. Seimon, T. A. et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 12, 467–482 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. De Meyer, G. R. Y., Zurek, M., Puylaert, P. & Martinet, W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat. Rev. Cardiol. 21, 312–325 (2024).

    Article  PubMed  Google Scholar 

  120. Lehti, S. et al. Extracellular lipids accumulate in human carotid arteries as distinct three-dimensional structures and have proinflammatory properties. Am. J. Pathol. 188, 525–538 (2018).

    Article  PubMed  CAS  Google Scholar 

  121. Oorni, K. & Kovanen, P. T. Enhanced extracellular lipid accumulation in acidic environments. Curr. Opin. Lipidol. 17, 534–540 (2006).

    Article  PubMed  Google Scholar 

  122. Kiss, M. G. & Binder, C. J. The multifaceted impact of complement on atherosclerosis. Atherosclerosis 351, 29–40 (2022).

    Article  PubMed  CAS  Google Scholar 

  123. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Rajamaki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Grebe, A., Hoss, F. & Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 122, 1722–1740 (2018).

    Article  PubMed  CAS  Google Scholar 

  126. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  PubMed  CAS  Google Scholar 

  127. Fiolet, A. T. L. et al. Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials. Eur. Heart J. 42, 2765–2775 (2021).

    Article  PubMed  CAS  Google Scholar 

  128. Ridker, P. M. From RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc. Res. 117, e138–e140 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Stewart, C. R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155–161 (2010).

    Article  PubMed  CAS  Google Scholar 

  130. Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Busch, C. J. et al. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice. Hepatology 65, 1181–1195 (2017).

    Article  PubMed  CAS  Google Scholar 

  133. Mallat, Z. & Binder, C. J. The why and how of adaptive immune responses in ischemic cardiovascular disease. Nat. Cardiovasc. Res. 1, 431–444 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ito, A. et al. Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease. Immunity 45, 1311–1326 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Gil-Pulido, J. & Zernecke, A. Antigen-presenting dendritic cells in atherosclerosis. Eur. J. Pharmacol. 816, 25–31 (2017).

    Article  PubMed  CAS  Google Scholar 

  136. Zhivaki, D. & Kagan, J. C. Innate immune detection of lipid oxidation as a threat assessment strategy. Nat. Rev. Immunol. 22, 322–330 (2022).

    Article  PubMed  CAS  Google Scholar 

  137. Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Saigusa, R. et al. Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. Nat. Cardiovasc. Res. 1, 462–475 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Kimura, T. et al. Regulatory CD4+ T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 138, 1130–1143 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Freuchet, A. et al. Identification of human exTreg cells as CD16+CD56+ cytotoxic CD4+ T cells. Nat. Immunol. 24, 1748–1761 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Calabretta, R. et al. Immune checkpoint inhibitor therapy induces inflammatory activity in large arteries. Circulation 142, 2396–2398 (2020).

    Article  PubMed  CAS  Google Scholar 

  142. Drobni, Z. D. et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 142, 2299–2311 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Suero-Abreu, G. A., Zanni, M. V. & Neilan, T. G. Atherosclerosis with immune checkpoint inhibitor therapy: evidence, diagnosis, and management: JACC: Cardiooncology State-of-the-Art Review. JACC CardioOncol 4, 598–615 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Vuong, J. T. et al. Immune checkpoint therapies and atherosclerosis: mechanisms and clinical implications: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 79, 577–593 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Depuydt, M. A. C. et al. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat. Cardiovasc. Res. 2, 112–125 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Fernandez, D. M. & Giannarelli, C. Immune cell profiling in atherosclerosis: role in research and precision medicine. Nat. Rev. Cardiol. 19, 43–58 (2022).

    Article  PubMed  Google Scholar 

  147. Schafer, S. & Zernecke, A. CD8+ T cells in atherosclerosis. Cells 10, 37 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Dimayuga, P. C. et al. Identification of apoB-100 peptide-specific CD8+ T cells in atherosclerosis. J. Am. Heart Assoc. 6, e005318 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Porsch, F., Mallat, Z. & Binder, C. J. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc. Res. 117, 2544–2562 (2021).

    PubMed  CAS  Google Scholar 

  150. Centa, M. et al. Acute loss of apolipoprotein E triggers an autoimmune response that accelerates atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 38, e145–e158 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Porsch, F. & Binder, C. J. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 21, 780–807 (2024).

    Article  PubMed  Google Scholar 

  152. Mackay, F. & Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 9, 491–502 (2009).

    Article  PubMed  CAS  Google Scholar 

  153. Yla-Herttuala, S. et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler. Thromb. 14, 32–40 (1994).

    Article  PubMed  CAS  Google Scholar 

  154. Taleb, A. et al. High immunoglobulin-M levels to oxidation-specific epitopes are associated with lower risk of acute myocardial infarction. J. Lipid Res. 64, 100391 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Morgan-Hughes, J. A. et al. The molecular pathology of human respiratory chain defects. Rev. Neurol. 147, 450–454 (1991).

    PubMed  CAS  Google Scholar 

  156. Gruber, S. et al. Sialic acid-binding immunoglobulin-like lectin G promotes atherosclerosis and liver inflammation by suppressing the protective functions of B-1 cells. Cell Rep. 14, 2348–2361 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Chou, M. Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 119, 1335–1349 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Deroissart, J. & Binder, C. J. Mapping the functions of IgM antibodies in atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 20, 433–434 (2023).

    Article  PubMed  Google Scholar 

  159. Srikakulapu, P. et al. Perivascular adipose tissue harbors atheroprotective IgM-producing B cells. Front. Physiol. 8, 719 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Bjornson, E. et al. Triglyceride-rich lipoprotein remnants, low-density lipoproteins, and risk of coronary heart disease: a UK Biobank study. Eur. Heart J. 44, 4186–4195 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Bjornson, E. et al. Lipoprotein(a) is markedly more atherogenic than LDL: an apolipoprotein B-based genetic analysis. J. Am. Coll. Cardiol. 83, 385–395 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ginsberg, H. N. et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies – a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 42, 4791–4806 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Kronenberg, F. et al. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: a European Atherosclerosis Society consensus statement. Eur. Heart J. 43, 3925–3946 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Sacks, F. M. & Campos, H. Clinical review 163: cardiovascular endocrinology: low-density lipoprotein size and cardiovascular disease: a reappraisal. J. Clin. Endocrinol. Metab. 88, 4525–4532 (2003).

    Article  PubMed  CAS  Google Scholar 

  165. Chapman, M. J. et al. LDL subclass lipidomics in atherogenic dyslipidemia: effect of statin therapy on bioactive lipids and dense LDL. J. Lipid Res. 61, 911–932 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Krauss, R. M. Small dense low-density lipoprotein particles: clinically relevant? Curr. Opin. Lipidol. 33, 160–166 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Anber, V., Millar, J. S., McConnell, M., Shepherd, J. & Packard, C. J. Interaction of very-low-density, intermediate-density, and low-density lipoproteins with human arterial wall proteoglycans. Arterioscler. Thromb. Vasc. Biol. 17, 2507–2514 (1997).

    Article  PubMed  CAS  Google Scholar 

  168. Varbo, A. et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J. Am. Coll. Cardiol. 61, 427–436 (2013).

    Article  PubMed  CAS  Google Scholar 

  169. Ference, B. A. et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 321, 364–373 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Packard, C. J., Boren, J. & Taskinen, M. R. Causes and consequences of hypertriglyceridemia. Front. Endocrinol. 11, 252 (2020).

    Article  Google Scholar 

  171. Björnson, E. et al. Quantifying triglyceride-rich lipoprotein atherogenicity, associations with inflammation, and implications for risk assessment using non-HDL cholesterol. J. Am. Coll. Cardiol. 84, 1328–1338 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Sacks, F. M. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr. Opin. Lipidol. 26, 56–63 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Brown, W. V., Sacks, F. M. & Sniderman, A. D. JCL roundtable: apolipoproteins as causative elements in vascular disease. J. Clin. Lipidol. 9, 733–740 (2015).

    Article  PubMed  Google Scholar 

  174. Boren, J., Packard, C. J. & Taskinen, M. R. The roles of ApoC-III on the metabolism of triglyceride-rich lipoproteins in humans. Front. Endocrinol. 11, 474 (2020).

    Article  Google Scholar 

  175. Salinas, C. A. A. & Chapman, M. J. Remnant lipoproteins: are they equal to or more atherogenic than LDL? Curr. Opin. Lipidol. 31, 132–139 (2020).

    Article  PubMed  CAS  Google Scholar 

  176. Van Lenten, B. J. et al. Receptor-mediated uptake of remnant lipoproteins by cholesterol-loaded human monocyte-macrophages. J. Biol. Chem. 260, 8783–8788 (1985).

    Article  PubMed  Google Scholar 

  177. Varbo, A. & Nordestgaard, B. G. Remnant lipoproteins. Curr. Opin. Lipidol. 28, 300–307 (2017).

    Article  PubMed  CAS  Google Scholar 

  178. Navarese, E. P. et al. Independent causal effect of remnant cholesterol on atherosclerotic cardiovascular outcomes: a mendelian randomization study. Arterioscler. Thromb. Vasc. Biol. 43, e373–e380 (2023).

    Article  PubMed  CAS  Google Scholar 

  179. Varbo, A., Benn, M., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 128, 1298–1309 (2013).

    Article  PubMed  CAS  Google Scholar 

  180. Wadstrom, B. N., Pedersen, K. M., Wulff, A. B. & Nordestgaard, B. G. Inflammation compared to low-density lipoprotein cholesterol: two different causes of atherosclerotic cardiovascular disease. Curr. Opin. Lipidol. 34, 96–104 (2023).

    Article  PubMed  Google Scholar 

  181. Zewinger, S. et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat. Immunol. 21, 30–41 (2020).

    Article  PubMed  CAS  Google Scholar 

  182. Schwartz, E. A. & Reaven, P. D. Lipolysis of triglyceride-rich lipoproteins, vascular inflammation, and atherosclerosis. Biochim. Biophys. Acta 1821, 858–866 (2012).

    Article  PubMed  CAS  Google Scholar 

  183. Higgins, L. J. & Rutledge, J. C. Inflammation associated with the postprandial lipolysis of triglyceride-rich lipoproteins by lipoprotein lipase. Curr. Atheroscler. Rep. 11, 199–205 (2009).

    Article  PubMed  CAS  Google Scholar 

  184. De Caterina, R., Liao, J. K. & Libby, P. Fatty acid modulation of endothelial activation. Am. J. Clin. Nutr. 71, 213S–223S (2000).

    Article  PubMed  Google Scholar 

  185. Cabodevilla, A. G. et al. Eruptive xanthoma model reveals endothelial cells internalize and metabolize chylomicrons, leading to extravascular triglyceride accumulation. J. Clin. Invest. 131, e145800 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Goldberg, I. J., Cabodevilla, A. G. & Younis, W. In the beginning, lipoproteins cross the endothelial barrier. J. Atheroscler. Thromb. 31, 854–860 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Kontush, A. & Chapman, M. J. Lipidomics as a tool for the study of lipoprotein metabolism. Curr. Atheroscler. Rep. 12, 194–201 (2010).

    Article  PubMed  CAS  Google Scholar 

  188. Mucinski, J. M. et al. Relationships between very low-density lipoproteins-ceramides, -diacylglycerols, and -triacylglycerols in insulin-resistant men. Lipids 55, 387–393 (2020).

    Article  PubMed  CAS  Google Scholar 

  189. Nieddu, G. et al. Molecular characterization of plasma HDL, LDL, and VLDL lipids cargos from atherosclerotic patients with advanced carotid lesions: a preliminary report. Int. J. Mol. Sci. 23, 12449 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Nordestgaard, B. G., & Tybjaerg-Hansen, A. IDL, VLDL, chylomicrons and atherosclerosis. Eur. J. Epidemiol. 8, 92–98 (1992).

    Article  PubMed  Google Scholar 

  191. Boutagy, N. E. et al. Dynamic metabolism of endothelial triglycerides protects against atherosclerosis in mice. J. Clin. Invest. 134, e170453 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Jaffe, I. Z. & Karumanchi, S. A. Lipid droplets in the endothelium: the missing link between metabolic syndrome and cardiovascular disease? J. Clin. Invest. 134, e176347 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kim, B. et al. Endothelial lipid droplets suppress eNOS to link high fat consumption to blood pressure elevation. J. Clin. Invest. 133, e173160 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Doi, H. et al. Remnant lipoproteins induce proatherothrombogenic molecules in endothelial cells through a redox-sensitive mechanism. Circulation 102, 670–676 (2000).

    Article  PubMed  CAS  Google Scholar 

  195. de Sousa, J. C. et al. Association between coagulation factors VII and X with triglyceride rich lipoproteins. J. Clin. Pathol. 41, 940–944 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Tsimikas, S., Moriarty, P. M. & Stroes, E. S. Emerging RNA therapeutics to lower blood levels of Lp(a): JACC Focus Seminar 2/4. J. Am. Coll. Cardiol. 77, 1576–1589 (2021).

    Article  PubMed  CAS  Google Scholar 

  197. Reyes-Soffer, G. et al. Lipoprotein(a): a genetically determined, causal, and prevalent risk factor for atherosclerotic cardiovascular disease: a scientific statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 42, e48–e60 (2022).

    Article  PubMed  CAS  Google Scholar 

  198. Burgess, S. et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a mendelian randomization analysis. JAMA Cardiol. 3, 619–627 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Madsen, C. M., Kamstrup, P. R., Langsted, A., Varbo, A. & Nordestgaard, B. G. Lipoprotein(a)-lowering by 50 mg/dL (105 nmol/L) may be needed to reduce cardiovascular disease 20% in secondary prevention: a population-based study. Arterioscler. Thromb. Vasc. Biol. 40, 255–266 (2020).

    Article  PubMed  CAS  Google Scholar 

  200. Marston, N. A. et al. Per-particle cardiovascular risk of lipoprotein(a) vs Non-Lp(a) apolipoprotein B-containing lipoproteins. J. Am. Coll. Cardiol. 83, 470–472 (2024).

    Article  PubMed  CAS  Google Scholar 

  201. Bjornson, E., Adiels, M., Boren, J. & Packard, C. J. Lipoprotein(a) is a highly atherogenic lipoprotein: pathophysiological basis and clinical implications. Curr. Opin. Cardiol. 39, 503–510 (2024).

    Article  PubMed  Google Scholar 

  202. Boffa, M. B. & Koschinsky, M. L. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat. Rev. Cardiol. 16, 305–318 (2019).

    Article  PubMed  Google Scholar 

  203. Rader, D. J. & Bajaj, A. Lipoprotein(a) and oxidized phospholipids: partners in crime or individual perpetrators in cardiovascular disease? J. Am. Coll. Cardiol. 81, 1793–1796 (2023).

    Article  PubMed  CAS  Google Scholar 

  204. D’Angelo, A. et al. The apolipoprotein(a) component of lipoprotein(a) mediates binding to laminin: contribution to selective retention of lipoprotein(a) in atherosclerotic lesions. Biochim. Biophys. Acta 1687, 1–10 (2005).

    Article  PubMed  Google Scholar 

  205. McLean, J. W. et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330, 132–137 (1987).

    Article  PubMed  CAS  Google Scholar 

  206. Koschinsky, M. L., Stroes, E. S. G. & Kronenberg, F. Daring to dream: targeting lipoprotein(a) as a causal and risk-enhancing factor. Pharmacol. Res. 194, 106843 (2023).

    Article  PubMed  Google Scholar 

  207. Boffa, M. B. & Koschinsky, M. L. Lipoprotein (a): truly a direct prothrombotic factor in cardiovascular disease? J. Lipid Res. 57, 745–757 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Boffa, M. B. et al. Potent reduction of plasma lipoprotein (a) with an antisense oligonucleotide in human subjects does not affect ex vivo fibrinolysis. J. Lipid Res. 60, 2082–2089 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  209. von Depka, M. et al. Increased lipoprotein (a) levels as an independent risk factor for venous thromboembolism. Blood 96, 3364–3368 (2000).

    Article  Google Scholar 

  210. Nowak-Gottl, U. et al. Increased lipoprotein(a) is an important risk factor for venous thromboembolism in childhood. Circulation 100, 743–748 (1999).

    Article  PubMed  CAS  Google Scholar 

  211. Marcucci, R. et al. Increased plasma levels of lipoprotein(a) and the risk of idiopathic and recurrent venous thromboembolism. Am. J. Med. 115, 601–605 (2003).

    Article  PubMed  CAS  Google Scholar 

  212. Vormittag, R. et al. Lipoprotein (a) in patients with spontaneous venous thromboembolism. Thromb. Res. 120, 15–20 (2007).

    Article  PubMed  CAS  Google Scholar 

  213. Kronenberg, F. et al. Frequent questions and responses on the 2022 lipoprotein(a) consensus statement of the European Atherosclerosis Society. Atherosclerosis 374, 107–120 (2023).

    Article  PubMed  CAS  Google Scholar 

  214. Bergmark, C. et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J. Lipid Res. 49, 2230–2239 (2008).

    Article  PubMed  CAS  Google Scholar 

  215. Leibundgut, G. et al. Determinants of binding of oxidized phospholipids on apolipoprotein (a) and lipoprotein (a). J. Lipid Res. 54, 2815–2830 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Nie, J., Yang, J., Wei, Y. & Wei, X. The role of oxidized phospholipids in the development of disease. Mol. Asp. Med. 76, 100909 (2020).

    Article  CAS  Google Scholar 

  217. Assini, J. M. et al. High levels of lipoprotein(a) in transgenic mice exacerbate atherosclerosis and promote vulnerable plaque features in a sex-specific manner. Atherosclerosis 384, 117150 (2023).

    Article  PubMed  CAS  Google Scholar 

  218. Dzobo, K. E. et al. Diacylglycerols and lysophosphatidic acid, enriched on lipoprotein(a), contribute to monocyte inflammation. Arterioscler. Thromb. Vasc. Biol. 44, 720–740 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Mach, F. et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J. 41, 111–188 (2020).

    Article  PubMed  Google Scholar 

  220. Cholesterol Treatment Trialists' (CTT) Collaboration Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 385, 1397–1405 (2015).

    Article  Google Scholar 

  221. Tsimikas, S. Lipoprotein(a) in the year 2024: a look back and a look ahead. Arterioscler. Thromb. Vasc. Biol. 44, 1485–1490 (2024).

    Article  PubMed  CAS  Google Scholar 

  222. Kim, N. H. & Kim, S. G. Fibrates revisited: potential role in cardiovascular risk reduction. Diabetes Metab. J. 44, 213–221 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Das Pradhan, A. et al. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N. Engl. J. Med. 387, 1923–1934 (2022).

    Article  PubMed  CAS  Google Scholar 

  224. Doi, T., Langsted, A. & Nordestgaard, B. G. Remnant cholesterol, LDL cholesterol, and apoB absolute mass changes explain results of the PROMINENT trial. Atherosclerosis 393, 117556 (2024).

    Article  PubMed  CAS  Google Scholar 

  225. Tokgozoglu, L., Pirillo, A. & Catapano, A. L. Disconnect between triglyceride reduction and cardiovascular outcomes: lessons from the PROMINENT and CLEAR Outcomes trials. Eur. Heart J. 45, 2377–2379 (2024).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Jan Borén.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Katariina Öörni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borén, J., Packard, C.J. & Binder, C.J. Apolipoprotein B-containing lipoproteins in atherogenesis. Nat Rev Cardiol 22, 399–413 (2025). https://doi.org/10.1038/s41569-024-01111-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-024-01111-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing