Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decongestion in heart failure: medical and device therapies

Abstract

Heart failure is a leading cause of hospitalization worldwide, and congestion is the predominant cause of heart failure symptoms and hospitalization. The primary therapy used to treat and prevent congestion has historically been loop diuretics. However, many patients are discharged from hospital with residual congestion, which is associated with persistent heart failure symptoms, adverse outcomes and hospital readmission. Multiple medical strategies and devices have been and are being investigated with the aim of improving decongestion and subsequent heart failure outcomes. Numerous questions exist about the design of clinical trials to test emerging medical and device therapies, including the magnitude of benefit on congestive, kidney and post-discharge outcomes relative to conventional decongestion practices, and how best to implement novel therapies. In this Review, we discuss emerging medical and device strategies targeting congestion in patients with heart failure.

Key points

  • Various medical and device strategies are under investigation to overcome barriers that limit decongestion in patients with acute decompensated heart failure.

  • Medical strategies that optimize the use of existing diuretic therapies could have immediate, systemic effects on heart failure treatment, with limited risk or cost.

  • Most devices under investigation are designed to improve the diuretic response indirectly by targeting a hypothesized haemodynamic mechanism; however, mechanistic data and clinical trials of drugs indicate that improving haemodynamics might have limited benefit.

  • Barriers to the implementation of invasive devices include increased rates of adverse events from invasive procedures, cost, resource utilization and the requirement for provider expertise, limiting the pool of candidate patients.

  • Randomized, controlled trials are needed to determine whether invasive devices can sufficiently improve decongestion and post-discharge outcomes compared with optimized medical therapy to offset their inherent risks and numerous barriers to widespread implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natriuretic therapies and the nephron.
Fig. 2: Diuretic therapy escalation algorithm.
Fig. 3: Indirect and direct decongestion devices.
Fig. 4: Practical considerations for decongestion devices in acute decompensated heart failure.

Similar content being viewed by others

References

  1. Bozkurt, B. et al. Heart failure epidemiology and outcomes statistics: a report of the Heart Failure Society of America. J. Card. Fail. 29, 1412–1451 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clark, K. A. A. et al. Trends in heart failure hospitalizations in the US from 2008 to 2018. J. Card. Fail. 28, 171–180 (2022).

    Article  PubMed  Google Scholar 

  3. Chioncel, O. et al. Acute heart failure congestion and perfusion status — impact of the clinical classification on in-hospital and long-term outcomes; insights from the ESC-EORP-HFA Heart Failure Long-Term Registry. Eur. J. Heart Fail. 21, 1338–1352 (2019).

    Article  PubMed  Google Scholar 

  4. Hollenberg, S. M. et al. 2019 ACC Expert Consensus Decision Pathway on risk assessment, management, and clinical trajectory of patients hospitalized with heart failure: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 74, 1966–2011 (2019).

    Article  PubMed  Google Scholar 

  5. Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 79, e263–e421 (2022).

    Article  PubMed  Google Scholar 

  6. Boorsma, E. M. et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment. Nat. Rev. Cardiol. 17, 641–655 (2020).

    Article  PubMed  Google Scholar 

  7. McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 24, 4–131 (2022).

    Google Scholar 

  8. Ambrosy, A. P. et al. Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial. Eur. Heart J. 34, 835–843 (2013).

    Article  PubMed  Google Scholar 

  9. Testani, J. M., Chen, J., McCauley, B. D., Kimmel, S. E. & Shannon, R. P. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122, 265–272 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Girerd, N. et al. Integrative assessment of congestion in heart failure throughout the patient journey. JACC Heart Fail. 6, 273–285 (2018).

    Article  PubMed  Google Scholar 

  11. Testani, J. M. et al. Substantial discrepancy between fluid and weight loss during acute decompensated heart failure treatment. Am. J. Med. 128, 776–783.e4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cox, Z. L. & Testani, J. M. Loop diuretic resistance complicating acute heart failure. Heart Fail. Rev. 25, 133–145 (2020).

    Article  PubMed  Google Scholar 

  13. Felker, G. M., Ellison, D. H., Mullens, W., Cox, Z. L. & Testani, J. M. Diuretic therapy for patients with heart failure: JACC state-of-the-art review. J. Am. Coll. Cardiol. 75, 1178–1195 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Cox, Z. L. & Lenihan, D. J. Loop diuretic resistance in heart failure: resistance etiology-based strategies to restoring diuretic efficacy. J. Card. Fail. 20, 611–622 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Greene, S. J. et al. In-hospital therapy for heart failure with reduced ejection fraction in the United States. JACC Heart Fail. 8, 943–953 (2020).

    Article  PubMed  Google Scholar 

  16. Metra, M. et al. Prognostic significance of creatinine increases during an acute heart failure admission in patients with and without residual congestion: a post hoc analysis of the PROTECT Data. Circ. Heart Fail. 11, e004644 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Damman, K. et al. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur. Heart J. 35, 455–469 (2014).

    Article  PubMed  Google Scholar 

  18. Zheng, J. et al. Contemporary decongestion strategies in patients hospitalized for heart failure: a National Community-Based Cohort Study. JACC Heart Fail. 12, 1381–1392 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Zheng, J. et al. Inpatient use of guideline-directed medical therapy during heart failure hospitalizations among community-based health systems. JACC Heart Fail. 13, 43–54 (2025).

    Article  CAS  PubMed  Google Scholar 

  20. Publication Committee for the VMAC Investigators (Vasodilatation in the Management of Acute CHF). Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA 287, 1531–1540 (2002).

    Google Scholar 

  21. Mebazaa, A. et al. The impact of early standard therapy on dyspnoea in patients with acute heart failure: the URGENT-dyspnoea study. Eur. Heart J. 31, 832–841 (2010).

    Article  PubMed  Google Scholar 

  22. Mullens, W. et al. The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 21, 137–155 (2019).

    Article  PubMed  Google Scholar 

  23. Gheorghiade, M. et al. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur. J. Heart Fail. 12, 423–433 (2010).

    Article  PubMed  Google Scholar 

  24. Stevenson, L. W. & Perloff, J. K. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA 261, 884–888 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Drazner, M. H. et al. Value of clinician assessment of hemodynamics in advanced heart failure: the ESCAPE trial. Circ. Heart Fail. 1, 170–177 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Elder, A., Japp, A. & Verghese, A. How valuable is physical examination of the cardiovascular system? BMJ 354, i3309 (2016).

    Article  PubMed  Google Scholar 

  27. Chakko, S. et al. Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care. Am. J. Med. 90, 353–359 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Binanay, C. et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 294, 1625–1633 (2005).

    Article  PubMed  Google Scholar 

  29. Stienen, S. et al. NT-proBNP (N-Terminal pro-B-Type Natriuretic Peptide)-guided therapy in acute decompensated heart failure: PRIMA II randomized controlled trial (can NT-ProBNP-guided therapy during hospital admission for acute decompensated heart failure reduce mortality and readmissions?). Circulation 137, 1671–1683 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Lala, A. et al. Standardized definitions for evaluation of acute decompensated heart failure therapies: HF-ARC expert panel paper. JACC Heart Fail. 12, 1–15 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Georges, G., Fudim, M., Burkhoff, D., Leon, M. & Genereux, P. Patient selection and end point definitions for decongestion studies in acute decompensated heart failure: part 2. J. Soc. Cardiovasc. Angiogr. Interv. 2, 101059 (2023).

    PubMed  PubMed Central  Google Scholar 

  32. Felker, G. M. et al. Diuretic strategies in patients with acute decompensated heart failure. N. Engl. J. Med. 364, 797–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bart, B. A. et al. Cardiorenal rescue study in acute decompensated heart failure: rationale and design of CARRESS-HF, for the Heart Failure Clinical Research Network. J. Card. Fail. 18, 176–182 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mullens, W. et al. Acetazolamide in acute decompensated heart failure with volume overload. N. Engl. J. Med. 387, 1185–1195 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Bart, B. A. et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N. Engl. J. Med. 367, 2296–2304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ter Maaten, J. M. et al. Natriuresis-guided diuretic therapy in acute heart failure: a pragmatic randomized trial. Nat. Med. 29, 2625–2632 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Trulls, J. C. et al. Combining loop with thiazide diuretics for decompensated heart failure: the CLOROTIC trial. Eur. Heart J. 44, 411–421 (2023).

    Article  Google Scholar 

  38. Kapur, N. K. et al. Intermittent occlusion of the superior vena cava to improve hemodynamics in patients with acutely decompensated heart failure: the VENUS-HF Early Feasibility Study. Circ. Heart Fail. 15, e008934 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Zymlinski, R. et al. Safety, feasibility of controllable decrease of vena cava pressure by Doraya catheter in heart failure. JACC Basic Transl. Sci. 8, 394–402 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cowger, J. A. et al. Safety and performance of the aortix device in acute decompensated heart failure and cardiorenal syndrome. JACC Heart Fail. 11, 1565–1575 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Georges, G. et al. First-in-human experience with the ModulHeart device for mechanical circulatory support and renal perfusion. J. Soc. Cardiovasc. Angiogr. Interv. 1, 100449 (2022).

    PubMed  PubMed Central  Google Scholar 

  42. Keeble, T. R. et al. Percutaneous haemodynamic and renal support in patients presenting with decompensated heart failure: a multi-centre efficacy study using the Reitan Catheter Pump (RCP). Int. J. Cardiol. 275, 53–58 (2019).

    Article  PubMed  Google Scholar 

  43. Galiwango, P. J., McReynolds, A., Ivanov, J., Chan, C. T. & Floras, J. S. Activity with ambulation attenuates diuretic responsiveness in chronic heart failure. J. Card. Fail. 17, 797–803 (2011).

    Article  PubMed  Google Scholar 

  44. Konstam, M. A. et al. Continuous aortic flow augmentation: a pilot study of hemodynamic and renal responses to a novel percutaneous intervention in decompensated heart failure. Circulation 112, 3107–3114 (2005).

    Article  PubMed  Google Scholar 

  45. Greenberg, B. et al. Effects of continuous aortic flow augmentation in patients with exacerbation of heart failure inadequately responsive to medical therapy: results of the Multicenter Trial of the Orqis Medical Cancion System for the Enhanced Treatment of Heart Failure Unresponsive to Medical Therapy (MOMENTUM). Circulation 118, 1241–1249 (2008).

    Article  PubMed  Google Scholar 

  46. Mullens, W. et al. Evaluation of kidney function throughout the heart failure trajectory — a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 22, 584–603 (2020).

    Article  PubMed  Google Scholar 

  47. Wettersten, N. et al. Decongestion discriminates risk for one-year mortality in patients with improving renal function in acute heart failure. Eur. J. Heart Fail. 23, 1122–1130 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Brisco, M. A. et al. Relevance of changes in serum creatinine during a heart failure trial of decongestive strategies: insights from the DOSE trial. J. Card. Fail. 22, 753–760 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Natov, P. S. et al. Improvement in renal function during the treatment of acute decompensated heart failure: relationship with markers of renal tubular injury and prognostic importance. Circ. Heart Fail. 16, e009776 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Testani, J. M., Kimmel, S. E., Dries, D. L. & Coca, S. G. Prognostic importance of early worsening renal function after initiation of angiotensin-converting enzyme inhibitor therapy in patients with cardiac dysfunction. Circ. Heart Fail. 4, 685–691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wettersten, N. et al. Short-term prognostic implications of serum and urine neutrophil gelatinase-associated lipocalin in acute heart failure: findings from the AKINESIS study. Eur. J. Heart Fail. 22, 251–263 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Adamson, C. et al. Initial decline (“dip”) in estimated glomerular filtration rate following initiation of dapagliflozin in patients with heart failure and reduced ejection fraction: insights from DAPA-HF. Circulation 146, 438–449 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Damman, K. et al. Clinical importance of urinary sodium excretion in acute heart failure. Eur. J. Heart Fail. 22, 1438–1447 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Hodson, D. Z. et al. Natriuretic response is highly variable and associated with 6-month survival: insights from the ROSE-AHF trial. JACC Heart Fail. 7, 383–391 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Biegus, J. et al. Renal profiling based on estimated glomerular filtration rate and spot urine sodium identifies high-risk acute heart failure patients. Eur. J. Heart Fail. 23, 729–739 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Martens, P. et al. Assessing intrinsic renal sodium avidity in acute heart failure: implications in predicting and guiding decongestion. Eur. J. Heart Fail. 24, 1978–1987 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Rao, V. S. et al. Natriuretic equation to predict loop diuretic response in patients with heart failure. J. Am. Coll. Cardiol. 77, 695–708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Biegus, J. et al. The blunted loop diuretic response in acute heart failure is driven by reduced tubular responsiveness rather than insufficient tubular delivery. The role of furosemide urine excretion on diuretic and natriuretic response in acute heart failure. Eur. J. Heart Fail. 25, 1323–1333 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Christensen, S., Shalmi, M. & Petersen, J. S. Lithium clearance as an indicator of proximal tubular sodium handling during furosemide diuresis. J. Pharmacol. Exp. Ther. 246, 753–757 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Beutler, J. J., Boer, W. H., Koomans, H. A. & Dorhout Mees, E. J. Comparative study of the effects of furosemide, ethacrynic acid and bumetanide on the lithium clearance and diluting segment reabsorption in humans. J. Pharmacol. Exp. Ther. 260, 768–772 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Rao, V. S. et al. Compensatory distal reabsorption drives diuretic resistance in human heart failure. J. Am. Soc. Nephrol. 28, 3414–3424 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cox, Z. L. et al. Compensatory post-diuretic renal sodium reabsorption is not a dominant mechanism of diuretic resistance in acute heart failure. Eur. Heart J. 42, 4468–4477 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hollenberg, S. M. et al. 2024 ACC Expert Consensus Decision Pathway on clinical assessment, management, and trajectory of patients hospitalized with heart failure focused update: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 84, 1241–1267 (2024).

    Article  PubMed  Google Scholar 

  64. Cox, Z. L. et al. Efficacy and safety of dapagliflozin in patients with acute heart failure. J. Am. Coll. Cardiol. 83, 1295–1306 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Onishi, A. et al. A role for tubular Na+/H+ exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am. J. Physiol. Ren. Physiol. 319, F712–F728 (2020).

    Article  CAS  Google Scholar 

  66. Borges-Junior, F. A. et al. Empagliflozin inhibits proximal tubule NHE3 activity, preserves GFR, and restores euvolemia in nondiabetic rats with induced heart failure. J. Am. Soc. Nephrol. 32, 1616–1629 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rao, V. S. et al. Empagliflozin in heart failure: regional nephron sodium handling effects. J. Am. Soc. Nephrol. 35, 189–201 (2024).

    Article  PubMed  Google Scholar 

  68. Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N. Engl. J. Med. 384, 117–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Griffin, M. et al. Empagliflozin in heart failure: diuretic and cardiorenal effects. Circulation 142, 1028–1039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Doehner, W. et al. Uric acid and sodium-glucose cotransporter-2 inhibition with empagliflozin in heart failure with reduced ejection fraction: the EMPEROR-reduced trial. Eur. Heart J. 43, 3435–3446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Felker, G. M. New decongestion strategies in an evolving heart failure landscape. N. Engl. J. Med. 387, 1231–1233 (2022).

    Article  PubMed  Google Scholar 

  72. Abbo, A. R. et al. Diuresis efficacy in ambulatory congested heart failure patients: intrapatient comparison of 3 diuretic regimens (DEA-HF). JACC Heart Fail. 12, 1396–1405 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Martens, P. et al. Pre-treatment bicarbonate levels and decongestion by acetazolamide: the ADVOR trial. Eur. Heart J. 44, 1995–2005 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Van den Eynde, J. et al. Serum chloride and the response to acetazolamide in patients with acute heart failure and volume overload: a post hoc analysis from the ADVOR trial. Circ. Heart Fail. 17, e011749 (2024).

    PubMed  Google Scholar 

  75. Ter Maaten, J. M. et al. Renal tubular resistance is the primary driver for loop diuretic resistance in acute heart failure. Eur. J. Heart Fail. 19, 1014–1022 (2017).

    Article  PubMed  Google Scholar 

  76. Subramanya, A. R. & Ellison, D. H. Distal convoluted tubule. Clin. J. Am. Soc. Nephrol. 9, 2147–2163 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ellison, D. H., Velazquez, H. & Wright, F. S. Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. J. Clin. Invest. 83, 113–126 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jentzer, J. C., DeWald, T. A. & Hernandez, A. F. Combination of loop diuretics with thiazide-type diuretics in heart failure. J. Am. Coll. Cardiol. 56, 1527–1534 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Carta, F. & Supuran, C. T. Diuretics with carbonic anhydrase inhibitory action: a patent and literature review (2005 - 2013). Expert Opin. Ther. Pat. 23, 681–691 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Ern Yeoh, S. et al. Dapagliflozin versus metolazone in heart failure resistant to loop diuretics. Eur. Heart J. 44, 2966–2977 (2023).

    Article  Google Scholar 

  81. Brisco-Bacik, M. A. et al. Outcomes associated with a strategy of adjuvant metolazone or high-dose loop diuretics in acute decompensated heart failure: a propensity analysis. J. Am. Heart Assoc. 7, e009149 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pearce, D. et al. Collecting duct principal cell transport processes and their regulation. Clin. J. Am. Soc. Nephrol. 10, 135–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. The RALES Investigators. Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]). Am. J. Cardiol. 78, 902–907 (1996).

    Article  Google Scholar 

  84. Butler, J. et al. Efficacy and safety of spironolactone in acute heart failure: the ATHENA-HF randomized clinical trial. JAMA Cardiol. 2, 950–958 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. de Denus, S. et al. Spironolactone metabolite concentrations in decompensated heart failure: insights from the ATHENA-HF trial. Eur. J. Heart Fail. 22, 1451–1461 (2020).

    Article  PubMed  Google Scholar 

  86. Cox, Z. L., Hung, R., Lenihan, D. J. & Testani, J. M. Diuretic strategies for loop diuretic resistance in acute heart failure: the 3T trial. JACC Heart Fail. 8, 157–168 (2020).

    Article  PubMed  Google Scholar 

  87. Aliti, G. B. et al. Aggressive fluid and sodium restriction in acute decompensated heart failure: a randomized clinical trial. JAMA Intern. Med. 173, 1058–1064 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, C. et al. Simultaneous use of hypertonic saline and IV furosemide for fluid overload: a systematic review and meta-analysis. Crit. Care Med. 49, e1163–e1175 (2021).

    Article  PubMed  Google Scholar 

  89. Cobo Marcos, M. et al. Efficacy and safety of hypertonic saline therapy in ambulatory patients with heart failure: the SALT-HF trial. Eur. J. Heart Fail. 26, 2118–2128 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Dauw, J. et al. Sodium loading in ambulatory patients with heart failure with reduced ejection fraction: mechanistic insights into sodium handling. Eur. J. Heart Fail. 26, 616–624 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Montgomery, R. A. et al. Oral sodium to preserve renal efficiency in acute heart failure: a randomized, placebo-controlled, double-blind study. J. Card. Fail. 29, 986–996 (2023).

    Article  PubMed  Google Scholar 

  92. Griffin, M. et al. Real world use of hypertonic saline in refractory acute decompensated heart failure: a U.S. Center’s Experience. JACC Heart Fail. 8, 199–208 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mullens, W. et al. Dietary sodium and fluid intake in heart failure. A clinical consensus statement of the Heart Failure Association of the ESC. Eur. J. Heart Fail. 26, 730–741 (2024).

    Article  PubMed  Google Scholar 

  94. Cogswell, M. E. et al. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA 319, 1209–1220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Colin-Ramirez, E., Arcand, J. & Ezekowitz, J. A. Estimates of dietary sodium consumption in patients with chronic heart failure. J. Card. Fail. 21, 981–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Kotchen, T. A., Welch, W. J., Lorenz, J. N. & Ott, C. E. Renal tubular chloride and renin release. J. Lab. Clin. Med. 110, 533–540 (1987).

    CAS  PubMed  Google Scholar 

  97. Briggs, J. P. & Schnermann, J. B. Whys and wherefores of juxtaglomerular apparatus function. Kidney Int. 49, 1724–1726 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Wesson, D. E. Glomerular filtration effects of acute volume expansion: importance of chloride. Kidney Int. 32, 238–245 (1987).

    Article  CAS  PubMed  Google Scholar 

  99. Subramanya, A. R., Yang, C. L., McCormick, J. A. & Ellison, D. H. WNK kinases regulate sodium chloride and potassium transport by the aldosterone-sensitive distal nephron. Kidney Int. 70, 630–634 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Ponce-Coria, J. et al. Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc. Natl Acad. Sci. USA 105, 8458–8463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ter Maaten, J. M. et al. Hypochloremia, diuretic resistance, and outcome in patients with acute heart failure. Circ. Heart Fail. 9, e003109 (2016).

    Article  PubMed  Google Scholar 

  102. Grodin, J. L. et al. Implications of serum chloride homeostasis in acute heart failure (from ROSE-AHF). Am. J. Cardiol. 119, 78–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Hanberg, J. S. et al. Hypochloremia and diuretic resistance in heart failure: mechanistic insights. Circ. Heart Fail. 9, e003180 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Cox, Z. L. et al. Randomized controlled trial of urinE chemiStry guided aCute heArt faiLure treATmEnt (ESCALATE): rationale and design. Am. Heart J. 265, 121–131 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cox, Z. L. et al. Multi-nephron segment diuretic therapy to overcome diuretic resistance in acute heart failure: a single-center experience. J. Card. Fail. 28, 21–31 (2022).

    Article  PubMed  Google Scholar 

  106. Ambrosy, A. P. et al. Body weight change during and after hospitalization for acute heart failure: patient characteristics, markers of congestion, and outcomes: findings from the ASCEND-HF trial. JACC Heart Fail. 5, 1–13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Nijst, P. et al. The pathophysiological role of interstitial sodium in heart failure. J. Am. Coll. Cardiol. 65, 378–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Brinkley, D. M. Jr. et al. Spot urine sodium as triage for effective diuretic infusion in an ambulatory heart failure unit. J. Card. Fail. 24, 349–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Honda, S. et al. Long-term prognostic significance of urinary sodium concentration in patients with acute heart failure. Int. J. Cardiol. 254, 189–194 (2018).

    Article  PubMed  Google Scholar 

  110. Collins, S. P. et al. Early urine electrolyte patterns in patients with acute heart failure. ESC Heart Fail. 6, 80–88 (2019).

    Article  PubMed  Google Scholar 

  111. Luk, A. et al. First spot urine sodium after initial diuretic identifies patients at high risk for adverse outcome after heart failure hospitalization. Am. Heart J. 203, 95–100 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Biegus, J. et al. Serial assessment of spot urine sodium predicts effectiveness of decongestion and outcome in patients with acute heart failure. Eur. J. Heart Fail. 21, 624–633 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Dauw, J. et al. Protocolized natriuresis-guided decongestion improves diuretic response: the Multicenter ENACT-HF study. Circ. Heart Fail. 17, e011105 (2024).

    CAS  PubMed  Google Scholar 

  114. Vanhentenrijk, S. et al. Rationale and design of the DECONGEST (Diuretic Treatment in Acute Heart Failure with Volume Overload Guided by Serial Spot Urine Sodium Assessment) study. J. Card. Fail. 31, 651–660 (2025).

    Article  PubMed  Google Scholar 

  115. Siddiqi, H. K. et al. The utility of urine sodium-guided diuresis during acute decompensated heart failure. Heart Fail. Rev. 29, 1161–1173 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Testani, J. M. et al. Rapid and highly accurate prediction of poor loop diuretic natriuretic response in patients with heart failure. Circ. Heart Fail. 9, e002370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Iwanek, G. et al. Spot urine sodium-to-creatinine ratio surpasses sodium in identifying poor diuretic response in acute heart failure. ESC Heart Fail. 11, 3438–3442 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chen, H. H. et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA 310, 2533–2543 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cuffe, M. S. et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA 287, 1541–1547 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Gottlieb, S. S. et al. Effects of nesiritide and predictors of urine output in acute decompensated heart failure: results from ASCEND-HF (acute study of clinical effectiveness of nesiritide and decompensated heart failure). J. Am. Coll. Cardiol. 62, 1177–1183 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Packer, M. et al. Effect of ularitide on cardiovascular mortality in acute heart failure. N. Engl. J. Med. 376, 1956–1964 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Kozhuharov, N. et al. Effect of a strategy of comprehensive vasodilation vs usual care on mortality and heart failure rehospitalization among patients with acute heart failure: the GALACTIC randomized clinical trial. JAMA 322, 2292–2302 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Testani, J. M. et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ. Heart Fail. 7, 261–270 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Eder, M. et al. The importance of forward flow and venous congestion in diuretic response in acute heart failure: insights from the ESCAPE trial. Int. J. Cardiol. 381, 57–61 (2023).

    Article  PubMed  Google Scholar 

  125. Voors, A. A. et al. Diuretic response in patients with acute decompensated heart failure: characteristics and clinical outcome — an analysis from RELAX-AHF. Eur. J. Heart Fail. 16, 1230–1240 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. ter Maaten, J. M. et al. Diuretic response in acute heart failure-an analysis from ASCEND-HF. Am. Heart J. 170, 313–321 (2015).

    Article  PubMed  Google Scholar 

  127. Pellicori, P. et al. Impact of vasodilators on diuretic response in patients with congestive heart failure: a mechanistic trial of cimlanod (BMS-986231). Eur. J. Heart Fail. 26, 142–151 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. Testani, J. M., Coca, S. G., McCauley, B. D., Shannon, R. P. & Kimmel, S. E. Impact of changes in blood pressure during the treatment of acute decompensated heart failure on renal and clinical outcomes. Eur. J. Heart Fail. 13, 877–884 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Voors, A. A. et al. Early drop in systolic blood pressure and worsening renal function in acute heart failure: renal results of Pre-RELAX-AHF. Eur. J. Heart Fail. 13, 961–967 (2011).

    Article  PubMed  Google Scholar 

  130. Dupont, M. et al. Determinants of dynamic changes in serum creatinine in acute decompensated heart failure: the importance of blood pressure reduction during treatment. Eur. J. Heart Fail. 15, 433–440 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Kula, A. J. et al. Influence of titration of neurohormonal antagonists and blood pressure reduction on renal function and decongestion in decompensated heart failure. Circ. Heart Fail. 9, e002333 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Testani, J. M. & Damman, K. Venous congestion and renal function in heart failure … it’s complicated. Eur. J. Heart Fail. 15, 599–601 (2013).

    Article  PubMed  Google Scholar 

  133. Firth, J. D., Raine, A. E. & Ledingham, J. G. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 1, 1033–1035 (1988).

    Article  CAS  PubMed  Google Scholar 

  134. Boorsma, E. M., Ter Maaten, J. M., Voors, A. A. & van Veldhuisen, D. J. Renal compression in heart failure: the renal tamponade hypothesis. JACC Heart Fail. 10, 175–183 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Dilley, J. R., Corradi, A. & Arendshorst, W. J. Glomerular ultrafiltration dynamics during increased renal venous pressure. Am. J. Physiol. 244, F650–F658 (1983).

    CAS  PubMed  Google Scholar 

  136. Nohria, A. et al. Cardiorenal interactions: insights from the ESCAPE trial. J. Am. Coll. Cardiol. 51, 1268–1274 (2008).

    Article  PubMed  Google Scholar 

  137. Abraham, W. T. et al. Direct interstitial decongestion in an animal model of acute-on-chronic ischemic heart failure. JACC Basic Transl. Sci. 6, 872–881 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Itkin, M., Rockson, S. G. & Burkhoff, D. Pathophysiology of the lymphatic system in patients with heart failure: JACC state-of-the-art review. J. Am. Coll. Cardiol. 78, 278–290 (2021).

    Article  PubMed  Google Scholar 

  139. Costanzo, M. R. Ultrafiltration in acute heart failure. Card. Fail. Rev. 5, 9–18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Costanzo, M. R. et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J. Am. Coll. Cardiol. 49, 675–683 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Costanzo, M. R. et al. Extracorporeal ultrafiltration for fluid overload in heart failure: current status and prospects for further research. J. Am. Coll. Cardiol. 69, 2428–2445 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Costanzo, M. R. et al. Aquapheresis versus intravenous diuretics and hospitalizations for heart failure. JACC Heart Fail. 4, 95–105 (2016).

    Article  PubMed  Google Scholar 

  143. Ivey-Miranda, J. B. et al. Reprieve system for the treatment of patients with acute decompensated heart failure. J. Card. Fail. https://doi.org/10.1016/j.cardfail.2025.02.002 (2025).

    Article  PubMed  Google Scholar 

  144. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06362668 (2025).

  145. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05174312 (2025).

  146. Rao, V. S. et al. First-in-human experience with peritoneal direct sodium removal using a zero-sodium solution: a new candidate therapy for volume overload. Circulation 141, 1043–1053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rao, V. S. et al. Serial direct sodium removal in patients with heart failure and diuretic resistance. Eur. J. Heart Fail. 26, 1215–1230 (2024).

    Article  CAS  PubMed  Google Scholar 

  148. Panagides, V. et al. Percutaneous lymphatic drainage through the thoracic duct: new paths in heart failure. CJC Open 5, 593–596 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Franksson, C., Lundgren, G., Magnusson, G. & Ringden, O. Drainage of thoracic duct lymph in renal transplant patients. Transplantation 21, 133–140 (1976).

    Article  CAS  PubMed  Google Scholar 

  150. Aronson, D. et al. Enhancing sweat rate using a novel device for the treatment of congestion in heart failure. Circ. Heart Fail. 16, e009787 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Miller, L., Cunningham, M., Richardson, A. & Burton, B. Wireless powered and water-proof mechanical circulatory support device for ambulatory class III heart failure. JACC Basic Transl. Sci. 7, 328–329 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Vanderheyden, M. et al. TRVD therapy in acute HF: proof of concept in animal model and initial clinical experience. J. Am. Coll. Cardiol. 77, 1481–1483 (2021).

    Article  PubMed  Google Scholar 

  153. Rao, V. S. et al. Renal negative pressure treatment as a novel therapy for heart failure-induced renal dysfunction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 321, R588–R594 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Georges, G., Fudim, M., Burkhoff, D., Leon, M. & Genereux, P. Patient selection and end point definitions for decongestion studies in acute decompensated heart failure: part 1. J. Soc. Cardiovasc. Angiogr. Interv. 2, 101060 (2023).

    PubMed  PubMed Central  Google Scholar 

  155. Rosenblum, H. et al. Conceptual considerations for device-based therapy in acute decompensated heart failure: DRI2P2S. Circ. Heart Fail. 13, e006731 (2020).

    Article  PubMed  Google Scholar 

  156. Bradley, S. M., Levy, W. C. & Veenstra, D. L. Cost-consequences of ultrafiltration for acute heart failure: a decision model analysis. Circ. Cardiovasc. Qual. Outcomes 2, 566–573 (2009).

    Article  PubMed  Google Scholar 

  157. Pham, T. D. et al. Aldosterone regulates pendrin and epithelial sodium channel activity through intercalated cell mineralocorticoid receptor-dependent and -independent mechanisms over a wide range in serum potassium. J. Am. Soc. Nephrol. 31, 483–499 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Nielsen, J. et al. Sodium transporter abundance profiling in kidney: effect of spironolactone. Am. J. Physiol. Ren. Physiol. 283, F923–F933 (2002).

    Article  Google Scholar 

  159. Leviel, F. et al. The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J. Clin. Invest. 120, 1627–1635 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Jeffrey M. Testani.

Ethics declarations

Competing interests

Z.L.C. reports grants from AstraZeneca and personal fees from Abiomed, Kestra Medical Technologies, Lexicon Pharmaceuticals, Reprieve Cardiovascular and Vectorious. K.D. reports speaker and consultancy fees to his employer from Abbott, AstraZeneca, Boehringer Ingelheim, Echosense, FIRE1 and Novartis. J.M.T. reports grants and/or personal fees from 3ive Labs, Abbott, AstraZeneca, Bayer, BD, Bristol Myers Squibb, Cardionomic, Corteria, Edwards Lifesciences, FIRE1, Lexicon Pharmaceuticals, Lilly, MagentaMed, Merck, Novartis, Otsuka, Precardia, Regeneron, Relypsa, Reprieve, Sanofi, Sequana Medical, Windtree Therapeutics and W.L. Gore. J.M.T. has a patent relating to the treatment of diuretic resistance issued to Yale University and Corvidia Therapeutics, a patent relating to methods for measuring renalase issued to Yale University, and a patent relating to the treatment of diuretic resistance pending with Reprieve.

Peer review

Peer review information

Nature Reviews Cardiology thanks Maria Rosa Constanzo, Steven Goldsmith and Frederik Verbrugge for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, Z.L., Damman, K. & Testani, J.M. Decongestion in heart failure: medical and device therapies. Nat Rev Cardiol 22, 961–977 (2025). https://doi.org/10.1038/s41569-025-01152-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-025-01152-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing