Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac intermediary metabolism in heart failure: substrate use, signalling roles and therapeutic targets

Abstract

The number of patients with heart failure is expected to rise sharply owing to ageing populations, poor dietary habits, unhealthy lifestyles and improved survival rates from conditions such as hypertension and myocardial infarction. Heart failure is classified into two main types: heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). These forms fundamentally differ, especially in how metabolism is regulated, but they also have shared features such as mitochondrial dysfunction. HFrEF is typically driven by neuroendocrine activation and mechanical strain, which demands a higher ATP production to sustain cardiac contraction. However, the primary energy source in a healthy heart (fatty acid β-oxidation) is often suppressed in HFrEF. Although glucose uptake increases in HFrEF, mitochondrial dysfunction disrupts glucose oxidation, and glycolysis and ketone oxidation only partially compensate for this imbalance. Conversely, HFpEF, particularly in individuals with metabolic diseases, such as obesity or type 2 diabetes mellitus, results from both mechanical and metabolic overload. Elevated glucose and lipid levels overwhelm normal metabolic pathways, leading to an accumulation of harmful metabolic byproducts that impair mitochondrial and cellular function. In this Review, we explore how disruptions in cardiac metabolism are not only markers of heart failure but also key drivers of disease progression. We also examine how metabolic intermediates influence signalling pathways that modify proteins and regulate gene expression in the heart. The growing recognition of the role of metabolic alterations in heart failure has led to groundbreaking treatments that target these metabolic disruptions, offering new hope for these patients.

Key points

  • Both heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF) are associated with cardiac metabolic inflexibility and altered myocardial energetics, but with distinct underlying mechanisms.

  • In HFrEF, mechanical overload increases the energy cost of contraction, leading to mitochondrial exhaustion and ultimately reduced oxidative capacity.

  • HFpEF, particularly its cardiometabolic form, is driven by metabolic overload, which saturates myocardial oxidative capacity and results in the accumulation of toxic metabolic intermediates.

  • These metabolic intermediates contribute to post-translational modifications of cardiac proteins across all subcellular compartments, affecting ionic fluxes, contraction, mitochondrial function and epigenetic regulation.

  • Metabolic activity and flux assessments using tracers allow in vivo and ex vivo analysis of cardiac metabolism; future studies should integrate single-cell omics approaches to refine analyses and drive new discoveries.

  • Current (SGLT2 inhibitors, GLP1R agonists) and emerging therapies (NAD precursors, ketone esters) targeting metabolic pathways at both systemic and myocardial levels offer promising treatment opportunities, particularly for HFpEF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cardiac intermediary metabolism in human HFrEF and HFpEF.
Fig. 2: Main post-translational modifications mediated by intermediate metabolites and coenzymes.
Fig. 3: Proposed cardiac targets and downstream metabolic effects of SGLT2 inhibitors, GLP1R agonists and NAD+ precursors in HF.

Similar content being viewed by others

References

  1. Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac energy metabolism in heart failure. Circ. Res. 128, 1487–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bornstein, M. R., Tian, R. & Arany, Z. Human cardiac metabolism. Cell Metab. 36, 1456–1481 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Watson, W. D. et al. Retained metabolic flexibility of the failing human heart. Circulation 148, 109–123 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Capone, F. et al. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc. Res. 118, 3556–3575 (2023).

    Article  PubMed  Google Scholar 

  5. Mori, J., Zhang, L., Oudit, G. Y. & Lopaschuk, G. D. Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure. J. Mol. Cell Cardiol. 63, 98–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Drygała, S., Radzikowski, M. & Maciejczyk, M. β-blockers and metabolic modulation: unraveling the complex interplay with glucose metabolism, inflammation and oxidative stress. Front. Pharmacol. 15, 1489657 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pherwani, S. et al. Ketones provide an extra source of fuel for the failing heart without impairing glucose oxidation. Metabolism 154, 155818 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Selvaraj, S., Kelly, D. P. & Margulies, K. B. Implications of altered ketone metabolism and therapeutic ketosis in heart failure. Circulation 141, 1800–1812 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Neubauer, S. The failing heart-an engine out of fuel. N. Engl. J. Med. 356, 1140–1151 (2007).

    Article  PubMed  Google Scholar 

  10. Bertero, E. & Maack, C. Metabolic remodelling in heart failure. Nat. Rev. Cardiol. 15, 457–470 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Streng, K. W. et al. Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int. J. Cardiol. 271, 132–139 (2018).

    Article  PubMed  Google Scholar 

  12. Deichl, A., Wachter, R. & Edelmann, F. Comorbidities in heart failure with preserved ejection fraction. Herz 47, 301–307 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Prausmüller, S. et al. Obesity in heart failure with preserved ejection fraction with and without diabetes: risk factor or innocent bystander? Eur. J. Prev. Cardiol. 30, 1247–1254 (2023).

    Article  PubMed  Google Scholar 

  14. Pandey, A. et al. Relationship between physical activity, body mass index, and risk of heart failure. J. Am. Coll. Cardiol. 69, 1129–1142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Adamson, C. et al. Dapagliflozin for heart failure according to body mass index: the DELIVER trial. Eur. Heart J. 43, 4406–4417 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meddeb, M. et al. Myocardial ultrastructure of human heart failure with preserved ejection fraction. Nat. Cardiovasc. Res. 3, 907–914 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389, 1069–1084 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Vacca, A. et al. Lifestyle interventions in cardiometabolic HFpEF: dietary and exercise modalities.Heart Fail. Rev. https://doi.org/10.1007/s10741-024-10439-1 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Doenst, T., Nguyen, T. D. & Abel, E. D. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 113, 709–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weiss, R. G., Bottomley, P. A., Hardy, C. J. & Gerstenblith, G. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N. Engl. J. Med. 323, 1593–1600 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Neubauer, S. et al. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96, 2190–2196 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Weiss, R. G., Gerstenblith, G. & Bottomley, P. A. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc. Natl Acad. Sci. USA 102, 808–813 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bottomley, P. A. et al. Metabolic rates of ATP transfer through creatine kinase (CK flux) predict clinical heart failure events and death. Sci. Transl. Med. 5, 215re3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Keceli, G. et al. Mitochondrial creatine kinase attenuates pathologic remodeling in heart failure. Circ. Res. 130, 741–759 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Phan, T. T. et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J. Am. Coll. Cardiol. 54, 402–409 (2009).

    Article  PubMed  Google Scholar 

  26. Mahmod, M. et al. The interplay between metabolic alterations, diastolic strain rate and exercise capacity in mild heart failure with preserved ejection fraction: a cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 20, 88 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Burrage, M. K. et al. Energetic basis for exercise-induced pulmonary congestion in heart failure with preserved ejection fraction. Circulation 144, 1664–1678 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chidsey, C. A., Weinbach, E. C., Pool, P. E. & Morrow, A. G. Biochemical studies of energy production in the failing human heart. J. Clin. Invest. 45, 40–50 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sobel, B. E., Spann, J. F., Pool, P. E., Sonnenblick, E. H. & Braunwald, E. Normal oxidative phosphorylation in mitochondria from the failing heart. Circulation Res. 21, 355–364 (1967).

    Article  CAS  Google Scholar 

  30. Cordero-Reyes, A. M. et al. Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. J. Mol. Cell Cardiol. 68, 98–105 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holzem, K. M. et al. Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts. FASEB J. 30, 2698–2707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharov, V. G., Todor, A. V., Silverman, N., Goldstein, S. & Sabbah, H. N. Abnormal mitochondrial respiration in failed human myocardium. J. Mol. Cell Cardiol. 32, 2361–2367 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Buchwald, A. et al. Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur. Heart J. 11, 509–516 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Jarreta, D. et al. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc. Res. 45, 860–865 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Melenovsky, V. et al. Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. Eur. J. Heart Fail. 19, 522–530 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Karamanlidis, G. et al. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ. Res. 106, 1541–1548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scheubel, R. J. et al. Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J. Am. Coll. Cardiol. 40, 2174–2181 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Park, S.-Y. et al. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal? Am. J. Physiol. Heart Circ. Physiol. 307, H346–H352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garnier, A. et al. Control by circulating factors of mitochondrial function and transcription cascade in heart failure: a role for endothelin-1 and angiotensin II. Circ. Heart Fail. 2, 342–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Diakos, N. A. et al. Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning. JACC Basic Transl. Sci. 1, 432–444 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chaanine, A. H. et al. Mitochondrial morphology, dynamics, and function in human pressure overload or ischemic heart disease with preserved or reduced ejection fraction. Circ. Heart Fail. 12, e005131 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Hahn, V. S. et al. Myocardial gene expression signatures in human heart failure with preserved ejection fraction. Circulation 143, 120–134 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Razeghi, P. et al. Metabolic gene expression in fetal and failing human heart. Circulation 104, 2923–2931 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Sihag, S., Cresci, S., Li, A. Y., Sucharov, C. C. & Lehman, J. J. PGC-1α and ERRα target gene downregulation is a signature of the failing human heart. J. Mol. Cell Cardiol. 46, 201–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. John, C. et al. Sex differences in cardiac mitochondria in the New Zealand obese mouse. Front. Endocrinol. 9, 732 (2018).

    Article  Google Scholar 

  46. Sanchez-Ruderisch, H. et al. Sex-specific regulation of cardiac microRNAs targeting mitochondrial proteins in pressure overload. Biol. Sex. Differ. 10, 8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Grimbert, L. et al. Spatiotemporal AMPKα2 deletion in mice induces cardiac dysfunction, fibrosis and cardiolipin remodeling associated with mitochondrial dysfunction in males only. Biol. Sex. Differ. 12, 52 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Regitz-Zagrosek, V. & Kararigas, G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol. Rev. 97, 1–37 (2017).

    Article  PubMed  Google Scholar 

  49. Ventura-Clapier, R. et al. Mitochondria: a central target for sex differences in pathologies. Clin. Sci. 131, 803–822 (2017).

    Article  CAS  Google Scholar 

  50. Cao, Y. et al. Sex differences in heart mitochondria regulate diastolic dysfunction. Nat. Commun. 13, 3850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Doenst, T. et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc. Res. 86, 461–470 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Shirakabe, A. et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 133, 1249–1263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoshii, A. et al. Blunted cardiac mitophagy in response to metabolic stress contributes to HFpEF. Circ. Res. 135, 1004–1017 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Sun, Q. et al. Mitochondrial fatty acid oxidation is the major source of cardiac adenosine triphosphate production in heart failure with preserved ejection fraction. Cardiovasc. Res. 120, 360–371 (2024).

    Article  PubMed  Google Scholar 

  55. Tong, D. et al. NAD+ repletion reverses heart failure with preserved ejection fraction. Circ. Res. 128, 1629–1641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heusch, G. et al. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol. 67, 102894 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schwarzer, M. et al. Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure. J. Physiol. 592, 3767–3782 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491–506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Piquereau, J. et al. Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc. Res. 94, 408–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Wai, T. et al. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350, aad0116 (2015).

    Article  PubMed  Google Scholar 

  61. Ikeda, Y. et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circulation Res. 116, 264–278 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Wai, T. Is mitochondrial morphology important for cellular physiology? Trends Endocrinol. Metab. 35, 854–871 (2024).

    Article  CAS  PubMed  Google Scholar 

  63. Piquereau, J. et al. Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front. Physiol. 4, 102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, Y., Liu, Y. & Dorn, G. W. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ. Res. 109, 1327–1331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Picca, A., Faitg, J., Auwerx, J., Ferrucci, L. & D’Amico, D. Mitophagy in human health, ageing and disease. Nat. Metab. 5, 2047–2061 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gladyshev, V. N. et al. Molecular damage in aging. Nat. Aging 1, 1096–1106 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Keating, S. T. & El-Osta, A. Epigenetics and metabolism. Circ. Res. 116, 715–736 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Bertero, E. & Maack, C. Calcium signaling and reactive oxygen species in mitochondria. Circ. Res. 122, 1460–1478 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Hage, C. et al. Metabolomic profile in HFpEF vs HFrEF patients. J. Card. Fail. 26, 1050–1059 (2020).

    Article  PubMed  Google Scholar 

  70. O’Sullivan, J. F. et al. Cardiac substrate utilization and relationship to invasive exercise hemodynamic parameters in HFpEF. JACC Basic Transl. Sci. 9, 281–299 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Koleini, N. et al. Landscape of glycolytic metabolites and their regulating proteins in myocardium from human heart failure with preserved ejection fraction. Eur. J. Heart Fail. 26, 1941–1951 (2024).

    CAS  PubMed  Google Scholar 

  72. Flam, E. et al. Integrated landscape of cardiac metabolism in end-stage human nonischemic dilated cardiomyopathy. Nat. Cardiovasc. Res. 1, 817–829 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dávila-Román, V. G. et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 40, 271–277 (2002).

    Article  PubMed  Google Scholar 

  74. Neglia, D. et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 293, H3270–H3278 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Bertrand, L., Horman, S., Beauloye, C. & Vanoverschelde, J.-L. Insulin signalling in the heart. Cardiovasc. Res. 79, 238–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Sun, Q., Karwi, Q. G., Wong, N. & Lopaschuk, G. D. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovascular Res. 120, 1996–2016 (2024).

    Article  CAS  Google Scholar 

  77. Zhang, L. et al. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ. Heart Fail. 6, 1039–1048 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Zhabyeyev, P. et al. Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc. Res. 97, 676–685 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Zhong, M., Alonso, C. E., Taegtmeyer, H. & Kundu, B. K. Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure-overload left ventricular hypertrophy in vivo. J. Nucl. Med. 54, 609–615 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Umbarawan, Y. et al. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice. Cardiovasc. Res. 114, 1132–1144 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cohen, J. B. et al. Clinical phenogroups in heart failure with preserved ejection fraction: detailed phenotypes, prognosis, and response to spironolactone. JACC Heart Fail. 8, 172–184 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pierre-Jean, M. et al. Phenotyping of heart failure with preserved ejection faction using electronic health records and echocardiography. Eur. Heart J. Open 4, oead133 (2024).

    Article  PubMed  Google Scholar 

  83. Henry, J. A., Couch, L. S. & Rider, O. J. Myocardial metabolism in heart failure with preserved ejection fraction. J. Clin. Med. 13, 1195 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fillmore, N. et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol. Med. 24, 3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chiao, Y. A. et al. Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging 8, 314–327 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shao, D. et al. Increasing fatty acid oxidation prevents high-fat diet-induced cardiomyopathy through regulating parkin-mediated mitophagy. Circulation 142, 983–997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nayor, M. et al. Impaired exercise tolerance in heart failure with preserved ejection fraction: quantification of multiorgan system reserve capacity. JACC Heart Fail. 8, 605–617 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Loffredo, F. S., Nikolova, A. P., Pancoast, J. R. & Lee, R. T. Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium. Circ. Res. 115, 97–107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mao, R. et al. Association of biological age acceleration with cardiac morphology, function, and incident heart failure: insights from UK biobank participants. Eur. Heart J. Cardiovasc. Imaging 25, 1315–1323 (2024).

    Article  PubMed  Google Scholar 

  90. Hayflick, L. How and why we age. Exp. Gerontol. 33, 639–653 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Ruiz-Meana, M. et al. Ryanodine receptor glycation favors mitochondrial damage in the senescent heart. Circulation 139, 949–964 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, Y.-B., Meng, Y.-H., Chang, S., Zhang, R.-Y. & Shi, C. High fructose causes cardiac hypertrophy via mitochondrial signaling pathway. Am. J. Transl. Res. 8, 4869–4880 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rabbani, N. & Thornalley, P. J. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem. Biophys. Res. Commun. 458, 221–226 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Brownlee, M. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 46, 223–234 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Abordo, E. A., Minhas, H. S. & Thornalley, P. J. Accumulation of alpha-oxoaldehydes during oxidative stress: a role in cytotoxicity. Biochem. Pharmacol. 58, 641–648 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Papadaki, M. et al. Myofilament glycation in diabetes reduces contractility by inhibiting tropomyosin movement, is rescued by cMyBPC domains. J. Mol. Cell Cardiol. 162, 1–9 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Bou-Teen, D. et al. Defective dimerization of FoF1-ATP synthase secondary to glycation favors mitochondrial energy deficiency in cardiomyocytes during aging. Aging Cell 21, e13564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heather, L. C. et al. Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart. Cardiovasc. Res. 72, 430–437 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Heather, L. C. et al. Critical role of complex III in the early metabolic changes following myocardial infarction. Cardiovasc. Res. 85, 127–136 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Funada, J. et al. Substrate utilization by the failing human heart by direct quantification using arterio-venous blood sampling. PLoS One 4, e7533 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Voros, G. et al. Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling. Circ. Heart Fail. 11, e004953 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, L. et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112, 3280–3288 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Beadle, R. M. et al. Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy. JACC Heart Fail. 3, 202–211 (2015).

    Article  PubMed  Google Scholar 

  104. Schmidt-Schweda, S. & Holubarsch, C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin. Sci. 99, 27–35 (2000).

    Article  CAS  Google Scholar 

  105. Holubarsch, C. J. F. et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin. Sci. 113, 205–212 (2007).

    Article  CAS  Google Scholar 

  106. Lopatin, Y. M. et al. Rationale and benefits of trimetazidine by acting on cardiac metabolism in heart failure. Int. J. Cardiol. 203, 909–915 (2016).

    Article  PubMed  Google Scholar 

  107. Hisatome, I. et al. Trimetazidine inhibits Na+,K+-ATPase activity, and overdrive hyperpolarization in guinea-pig ventricular muscles.Eur. J. Pharmacol. 195, 381–388 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Nassiri, S. et al. Effects of trimetazidine on heart failure with reduced ejection fraction and associated clinical outcomes: a systematic review and meta-analysis. Open Heart 11, e002579 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Cavar, M. et al. Trimetazidine does not alter metabolic substrate oxidation in cardiac mitochondria of target patient population. Br. J. Pharmacol. 173, 1529–1540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dyck, J. R. B. et al. Malonyl coenzyme A decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ. Res. 94, e78–e84 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Young, M. E., Laws, F. A., Goodwin, G. W. & Taegtmeyer, H. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J. Biol. Chem. 276, 44390–44395 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Chess, D. J., Khairallah, R. J., O’Shea, K. M., Xu, W. & Stanley, W. C. A high-fat diet increases adiposity but maintains mitochondrial oxidative enzymes without affecting development of heart failure with pressure overload. Am. J. Physiol. Heart Circ. Physiol. 297, H1585–H1593 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dong, Z. et al. Astragaloside IV alleviates heart failure via activating PPARα to switch glycolysis to fatty acid β-oxidation. Sci. Rep. 7, 2691 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tan, Y. et al. Short-term but not long-term high fat diet feeding protects against pressure overload-induced heart failure through activation of mitophagy. Life Sci. 272, 119242 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Sharma, S. et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 18, 1692–1700 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Schiattarella, G. G. et al. Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nat. Commun. 12, 1684 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hahn, V. S. et al. Myocardial metabolomics of human heart failure with preserved ejection fraction. Circulation 147, 1147–1161 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Park, T.-S. et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J. Lipid Res. 49, 2101–2112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, S. et al. Glycolysis-mediated activation of v-ATPase by nicotinamide mononucleotide ameliorates lipid-induced cardiomyopathy by repressing the CD36-TLR4 Axis. Circ. Res. 134, 505–525 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van de Bovenkamp, A. A. et al. Trimetazidine in heart failure with preserved ejection fraction: a randomized controlled cross-over trial. Esc. Heart Fail. 10, 2998–3010 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Deng, Y. et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ. Res. 128, 232–245 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Youm, Y.-H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Berg-Hansen, K. et al. Cardiovascular effects of oral ketone ester treatment in patients with heart failure with reduced ejection fraction: a randomized, controlled, double-blind trial. Circulation 149, 1474–1489 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ichihara, K., Neely, J. R., Siehl, D. L. & Morgan, H. E. Utilization of leucine by working rat heart. Am. J. Physiol. 239, E430–E436 (1980).

    CAS  PubMed  Google Scholar 

  126. Fillmore, N., Wagg, C. S., Zhang, L., Fukushima, A. & Lopaschuk, G. D. Cardiac branched-chain amino acid oxidation is reduced during insulin resistance in the heart. Am. J. Physiol. Endocrinol. Metab. 315, E1046–E1052 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Sun, H. et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Uddin, G. M. et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc. Diabetol. 18, 86 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Murashige, D. et al. Extra-cardiac BCAA catabolism lowers blood pressure and protects from heart failure. Cell Metab. 34, 1749–1764.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, W. et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 311, H1160–H1169 (2016).

    Article  PubMed  Google Scholar 

  131. Li, T. et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab. 25, 374–385 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, M. et al. Therapeutic effect of targeting branched-chain amino acid catabolic flux in pressure-overload induced heart failure. J. Am. Heart Assoc. 8, e011625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Filipski, K. J. et al. Discovery of first branched-chain ketoacid dehydrogenase kinase (BDK) inhibitor clinical candidate PF-07328948.J. Med. Chem. 68, 2466–2482 (2025).

    Article  CAS  PubMed  Google Scholar 

  134. Uddin, G. M. et al. Deletion of BCATm increases insulin-stimulated glucose oxidation in the heart. Metabolism 124, 154871 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Yu, J.-Y. et al. Cell-autonomous effect of cardiomyocyte branched-chain amino acid catabolism in heart failure in mice. Acta Pharmacol. Sin. 44, 1380–1390 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ye, Z., Wang, S., Zhang, C. & Zhao, Y. Coordinated modulation of energy metabolism and inflammation by branched-chain amino acids and fatty acids. Front. Endocrinol. 11, 617 (2020).

    Article  Google Scholar 

  137. Karwi, Q. G. & Lopaschuk, G. D. Branched-chain amino acid metabolism in the failing heart. Cardiovasc. Drugs Ther. 37, 413–420 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Saxton, R. A. et al. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351, 53–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Walejko, J. M. et al. Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart. Nat. Commun. 12, 1680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ogston, A. G. Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature 162, 963 (1948).

    Article  CAS  PubMed  Google Scholar 

  142. Ochoa, S., Stern, J. R. & Schneider, M. C. Enzymatic synthesis of citric acid. II. crystalline condensing enzyme. J. Biol. Chem. 193, 691–702 (1951).

    Article  CAS  PubMed  Google Scholar 

  143. Kornberg, H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem.J. 99, 1–11 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang, Y. et al. Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nat. Metab. 2, 1248–1264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ho, K. L. et al. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovasc. Res. 117, 1178–1187 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Ho, K. L. et al. The ketogenic diet does not improve cardiac function and blunts glucose oxidation in ischaemic heart failure. Cardiovasc. Res. 120, 1126–1137 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Taegtmeyer, H. On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Basic Res. Cardiol. 78, 435–450 (1983).

    Article  CAS  PubMed  Google Scholar 

  148. Hunter, B. et al. Proteomic and metabolomic analyses of the human adult myocardium reveal ventricle-specific regulation in end-stage cardiomyopathies. Commun. Biol. 7, 1666 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Taegtmeyer, H. Metabolic responses to cardiac hypoxia. increased production of succinate by rabbit papillary muscles. Circ. Res. 43, 808–815 (1978).

    Article  CAS  PubMed  Google Scholar 

  150. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Turer, A. et al. Remodeling of substrate consumption in the murine sTAC model of heart failure. J. Mol. Cell Cardiol. 134, 144–153 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hogan, K. A., Chini, C. C. S. & Chini, E. N. The multi-faceted Ecto-enzyme CD38: roles in immunomodulation, cancer, aging, and metabolic diseases. Front. Immunol. 10, 1187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lin, W. K. et al. Synthesis of the Ca2+-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: role in β-adrenoceptor signaling. J. Biol. Chem. 292, 13243–13257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Diguet, N. et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation 137, 2256–2273 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Lee, C. F. et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134, 883–894 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tannous, C. et al. Nicotinamide riboside supplementation restores myocardial nicotinamide adenine dinucleotide levels, improves survival, and promotes protective environment post myocardial infarction.Cardiovasc. Drugs Ther. https://doi.org/10.1007/s10557-023-07525-1 (2023).

    Article  PubMed  Google Scholar 

  157. Abdellatif, M. et al. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci. Transl. Med. 13, eabd7064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hsu, C.-P., Yamamoto, T., Oka, S. & Sadoshima, J. The function of nicotinamide phosphoribosyltransferase in the heart. DNA Repair 23, 64–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Dierickx, P. et al. Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD+ biosynthesis and sustain cardiac function. Nat. Cardiovasc. Res. 1, 45–58 (2022).

    Article  PubMed  Google Scholar 

  160. Doan, K. V. et al. Cardiac NAD+ depletion in mice promotes hypertrophic cardiomyopathy and arrhythmias prior to impaired bioenergetics. Nat. Cardiovasc. Res. 3, 1236–1248 (2024).

    Article  CAS  PubMed  Google Scholar 

  161. Tannous, C. et al. NMRK2 gene is upregulated in dilated cardiomyopathy and required for cardiac function and NAD levels during aging. Int. J. Mol. Sci. 22, 3534 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lee, C. F., Caudal, A., Abell, L., Nagana Gowda, G. A. & Tian, R. Targeting NAD+ metabolism as interventions for mitochondrial disease. Sci. Rep. 9, 3073 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Walker, M. A. et al. Raising NAD+ level stimulates short-chain dehydrogenase/reductase proteins to alleviate heart failure independent of mitochondrial protein deacetylation. Circulation 148, 2038–2057 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Høyland, L. E. et al. Subcellular NAD+ pools are interconnected and buffered by mitochondrial NAD. Nat. Metab. 6, 2319–2337 (2024).

    Article  PubMed  Google Scholar 

  165. Nebel, M. et al. Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling and arrhythmias in the heart evoked by β-adrenergic stimulation. J. Biol. Chem. 288, 16017–16030 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vikram, A. et al. Sirtuin 1 regulates cardiac electrical activity by deacetylating the cardiac sodium channel. Nat. Med. 23, 361–367 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Matasic, D. S. et al. Modulation of the cardiac sodium channel NaV1.5 peak and late currents by NAD+ precursors. J. Mol. Cell Cardiol. 141, 70–81 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tannous, C. et al. Nicotinamide adenine dinucleotide: biosynthesis, consumption and therapeutic role in cardiac diseases.Acta Physiol. 231, e13551 (2021).

    Article  CAS  Google Scholar 

  169. Selvarajah, B., Azuelos, I., Anastasiou, D. & Chambers, R. C. Fibrometabolism — an emerging therapeutic frontier in pulmonary fibrosis. Sci. Signal. 14, eaay1027 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Lombardi, A. A. et al. Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nat. Commun. 10, 4509 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Xie, N. et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192, 1462–1474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bernard, K. et al. Metabolic reprogramming is required for myofibroblast contractility and differentiation. J. Biol. Chem. 290, 25427–25438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gibb, A. A. et al. Glutamine uptake and catabolism is required for myofibroblast formation and persistence. J. Mol. Cell Cardiol. 172, 78–89 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gibb, A. A. et al. Glutaminolysis is essential for myofibroblast persistence and in vivo targeting reverses fibrosis and cardiac dysfunction in heart failure. Circulation 145, 1625–1628 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yang, B. et al. TRIM35 triggers cardiac remodeling by regulating SLC7A5-mediated amino acid transport and mTORC1 activation in fibroblasts. Cell Commun. Signal. 22, 444 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, Y., Zhang, J., Wang, Z., Wang, C. & Ma, D. Endothelial-cell-mediated mechanism of coronary microvascular dysfunction leading to heart failure with preserved ejection fraction. Heart Fail. Rev. 28, 169–178 (2023).

    Article  PubMed  Google Scholar 

  177. Li, Y. et al. Crosstalk between endothelial cells with a non-canonical EndoMT phenotype and cardiomyocytes/fibroblasts via IGFBP5 aggravates TAC-induced cardiac dysfunction. Eur. J. Pharmacol. 966, 176378 (2024).

    Article  CAS  PubMed  Google Scholar 

  178. Adapala, R. K. et al. Deletion of endothelial TRPV4 protects heart from pressure overload-induced hypertrophy. Hypertension 80, 2345–2356 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Trenson, S. et al. Cardiac microvascular endothelial cells in pressure overload-induced heart disease. Circ. Heart Fail. 14, e006979 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Wu, X. et al. SIRT6 mitigates heart failure with preserved ejection fraction in diabetes. Circ. Res. 131, 926–943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ong, Y. T. et al. A YAP/TAZ-TEAD signalling module links endothelial nutrient acquisition to angiogenic growth. Nat. Metab. 4, 672–682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Huang, H. et al. Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J. 36, 2334–2352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Andreadou, I. et al. Immunometabolism in heart failure. https://doi.org/10.1038/s41569-025-01165-8 (2025).

  184. Fuller, S. J. et al. Cardiac protein kinases: the cardiomyocyte kinome and differential kinase expression in human failing hearts. Cardiovasc. Res. 108, 87–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Güran, A. et al. Quantitative analysis of the cardiac phosphoproteome in response to acute β-adrenergic receptor stimulation in vivo. Int. J. Mol. Sci. 22, 12584 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  186. van Berlo, J. H., Maillet, M. & Molkentin, J. D. Signaling effectors underlying pathologic growth and remodeling of the heart. J. Clin. Invest. 123, 37–45 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Tian, R., Nascimben, L., Ingwall, J. S. & Lorell, B. H. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation 96, 1313–1319 (1997).

    Article  CAS  PubMed  Google Scholar 

  188. Luptak, I. et al. Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J. Mol. Cell Cardiol. 116, 106–114 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Marino, A. et al. AMP-activated protein kinase: a remarkable contributor to preserve a healthy heart against ROS injury. Free Radic. Biol. Med. 166, 238–254 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Steinberg, G. R. & Hardie, D. G. New insights into activation and function of the AMPK. Nat. Rev. Mol. Cell Biol. 24, 255–272 (2023).

    Article  CAS  PubMed  Google Scholar 

  191. Russell, R. R. et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J. Clin. Invest. 114, 495–503 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zarrinpashneh, E. et al. Role of the alpha2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. Am. J. Physiol. Heart Circ. Physiol. 291, H2875–H2883 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Kim, A. S. et al. A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. J. Mol. Cell Cardiol. 51, 24–32 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gélinas, R. et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat. Commun. 9, 374 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kim, T. T. & Dyck, J. R. B. Is AMPK the savior of the failing heart? Trends Endocrinol. Metab. 26, 40–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Beauloye, C., Bertrand, L., Horman, S. & Hue, L. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc. Res. 90, 224–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  197. Gundewar, S. et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ. Res. 104, 403–411 (2009).

    Article  CAS  PubMed  Google Scholar 

  198. Sasaki, H. et al. Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circulation 119, 2568–2577 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. Yin, M. et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am. J. Physiol. Heart Circ. Physiol. 301, H459–H468 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Tong, D. et al. Impaired AMP-activated protein kinase signaling in heart failure with preserved ejection fraction-associated atrial fibrillation. Circulation 146, 73–76 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Thapa, D. et al. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart. Am. J. Physiol. Heart Circ. Physiol. 313, H265–H274 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Walker, M. A. et al. Acetylation of muscle creatine kinase negatively impacts high-energy phosphotransfer in heart failure. JCI Insight 6, e144301 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Renguet, E. et al. α-Tubulin acetylation on lysine 40 controls cardiac glucose uptake. Am. J. Physiol. Heart Circ. Physiol. 322, H1032–H1043 (2022).

    Article  CAS  PubMed  Google Scholar 

  204. Hirschey, M. D. et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177–190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Horton, J. L. et al. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight 2, e84897 (2016).

    PubMed  Google Scholar 

  206. De Loof, M. et al. Enhanced protein acetylation initiates fatty acid-mediated inhibition of cardiac glucose transport. Am. J. Physiol. Heart Circ. Physiol. 324, H305–H317 (2023).

    Article  PubMed  Google Scholar 

  207. Lin, Y. H. et al. Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity. J. Mol. Cell. Cardiol. 139, 135–147 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Abdellatif, M. & Kroemer, G. Heart failure with preserved ejection fraction: an age-related condition. J. Mol. Cell Cardiol. 167, 83–84 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Jing, E. et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62, 3404–3417 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Davidson, M. T. et al. Extreme acetylation of the cardiac mitochondrial proteome does not promote heart failure. Circ. Res. 127, 1094–1108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Inoue, A. & Fujimoto, D. Enzymatic deacetylation of histone. Biochem. Biophys. Res. Commun. 36, 146–150 (1969).

    Article  CAS  PubMed  Google Scholar 

  212. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  213. Liou, G.-G., Tanny, J. C., Kruger, R. G., Walz, T. & Moazed, D. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell 121, 515–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  214. Kane, A. E. & Sinclair, D. A. Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ. Res. 123, 868–885 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. D’Onofrio, N., Servillo, L. & Balestrieri, M. L. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid. Redox Signal. 28, 711–732 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Prola, A. et al. SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation. Cell Death Differ. 24, 343–356 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Alrob, O. A. et al. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc. Res. 103, 485–497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Murugasamy, K., Munjal, A. & Sundaresan, N. R. Emerging roles of SIRT3 in cardiac metabolism. Front. Cardiovasc. Med. 9, 850340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Mesquita, F. S. et al. Mechanisms and functions of protein S-acylation. Nat. Rev. Mol. Cell Biol. 25, 488–509 (2024).

    Article  PubMed Central  Google Scholar 

  220. Trefely, S., Lovell, C. D., Snyder, N. W. & Wellen, K. E. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol. Metab. 38, 100941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wagner, G. R. et al. A class of reactive Acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 25, 823–837.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wu, M. et al. Sirt5 improves cardiomyocytes fatty acid metabolism and ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via CPT2 de-succinylation. Redox Biol. 73, 103184 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wei, C. et al. SIRT5-related lysine demalonylation of GSTP1 contributes to cardiomyocyte pyroptosis suppression in diabetic cardiomyopathy. Int. J. Biol. Sci. 20, 585–605 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Yang, X. et al. Proteomics and β-hydroxybutyrylation modification characterization in the hearts of naturally senescent mice. Mol. Cell Proteom. 22, 100659 (2023).

    Article  CAS  Google Scholar 

  225. Ju, J. et al. Crotonylation of NAE1 modulates cardiac hypertrophy via gelsolin neddylation. Circ. Res. 135, 806–821 (2024).

    Article  CAS  PubMed  Google Scholar 

  226. Vanni, E., Beauloye, C., Horman, S. & Bertrand, L. AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure. Essays Biochem. 68, 363–377 (2024).

    Article  CAS  PubMed  Google Scholar 

  227. Mailleux, F., Gélinas, R., Beauloye, C., Horman, S. & Bertrand, L. O-GlcNAcylation, enemy or ally during cardiac hypertrophy development? Biochim. Biophys. Acta 1862, 2232–2243 (2016).

    Article  CAS  PubMed  Google Scholar 

  228. Lunde, I. G. et al. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol. Genomics 44, 162–172 (2012).

    Article  CAS  PubMed  Google Scholar 

  229. Umapathi, P. et al. Excessive O-GlcNAcylation causes heart failure and sudden death. Circulation 143, 1687–1703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Prakoso, D. et al. Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart. Cardiovasc. Res. 118, 212–225 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Zhu, W. Z. et al. First comprehensive identification of cardiac proteins with putative increased O-GlcNAc levels during pressure overload hypertrophy. PLoS One 17, e0276285 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Boehi, F., Manetsch, P. & Hottiger, M. O. Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov. 7, 104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Zhou, H.-Z. et al. Poly(ADP-ribose) polymerase-1 hyperactivation and impairment of mitochondrial respiratory chain complex I function in reperfused mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 291, H714–H723 (2006).

    Article  CAS  PubMed  Google Scholar 

  234. Wang, X., Yan, X., Xi, Y. & Liu, J. Investigation of the mechanism of poly (ADP-ribose) polymerase (PARP) in elderly mouse myocardial ischemia-reperfusion injury. Cell Mol. Biol. 70, 104–109 (2024).

    Article  CAS  PubMed  Google Scholar 

  235. Henning, R. J., Bourgeois, M. & Harbison, R. D. Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors: mechanisms of action and role in cardiovascular disorders. Cardiovasc. Toxicol. 18, 493–506 (2018).

    Article  CAS  PubMed  Google Scholar 

  236. Qu, H. et al. 1,25(OH)2 D3 improves cardiac dysfunction, hypertrophy, and fibrosis through PARP1/SIRT1/mTOR-related mechanisms in type 1 diabetes. Mol. Nutr. Food Res. https://doi.org/10.1002/mnfr.201600338 (2017).

    Article  PubMed  Google Scholar 

  237. Piquereau, J., Boitard, S. E., Ventura-Clapier, R. & Mericskay, M. Metabolic therapy of heart failure: is there a future for B vitamins? Int. J. Mol. Sci. 23, 30 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Piquereau, J. et al. Cobalamin and folate protect mitochondrial and contractile functions in a murine model of cardiac pressure overload. J. Mol. Cell Cardiol. 102, 34–44 (2017).

    Article  CAS  PubMed  Google Scholar 

  239. Ye, S., Zhou, X., Chen, P. & Lin, J.-F. Folic acid attenuates remodeling and dysfunction in the aging heart through the ER stress pathway. Life Sci. 264, 118718 (2021).

    Article  CAS  PubMed  Google Scholar 

  240. Li, W. et al. Folic acid prevents cardiac dysfunction and reduces myocardial fibrosis in a mouse model of high-fat diet-induced obesity. Nutr. Metab. 14, 68 (2017).

    Article  Google Scholar 

  241. Pooya, S. et al. Methyl donor deficiency impairs fatty acid oxidation through PGC-1α hypomethylation and decreased ER-α, ERR-α, and HNF-4α in the rat liver. J. Hepatol. 57, 344–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  242. Garcia, M. M. et al. Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1α by PRMT1 and SIRT1. J. Pathol. 225, 324–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  243. Beltran-Alvarez, P., Pagans, S. & Brugada, R. The cardiac sodium channel is post-translationally modified by arginine methylation. J. Proteome Res. 10, 3712–3719 (2011).

    Article  CAS  PubMed  Google Scholar 

  244. Beltran-Alvarez, P. et al. Interplay between R513 methylation and S516 phosphorylation of the cardiac voltage-gated sodium channel. Amino Acids 47, 429–434 (2015).

    Article  CAS  PubMed  Google Scholar 

  245. Papait, R. et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc. Natl Acad. Sci. USA 110, 20164–20169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Gilsbach, R. et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat. Commun. 9, 391 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Papait, R., Serio, S. & Condorelli, G. Role of the epigenome in heart failure. Physiol. Rev. 100, 1753–1777 (2020).

    Article  CAS  PubMed  Google Scholar 

  248. Murphy, M. P. & Chouchani, E. T. Why succinate? physiological regulation by a mitochondrial coenzyme Q sentinel. Nat. Chem. Biol. 18, 461–469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Van Meter, M. et al. JNK phosphorylates SIRT6 to stimulate DNA double-strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks. Cell Rep. 16, 2641–2650 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Huang, D. & Kraus, W. L. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol. Cell 82, 2315–2334 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Li, X. et al. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature 622, 619–626 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Deogharia, M. et al. Histone demethylase KDM5 regulates cardiomyocyte maturation by promoting fatty acid oxidation, oxidative phosphorylation, and myofibrillar organization. Cardiovasc. Res. 120, 630–643 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Wang, B. et al. Loss of KDM5B ameliorates pathological cardiac fibrosis and dysfunction by epigenetically enhancing ATF3 expression. Exp. Mol. Med. 54, 2175–2187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. An, D. et al. Alpha-ketoglutarate ameliorates pressure overload-induced chronic cardiac dysfunction in mice. Redox Biol. 46, 102088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Epstein, A. C. R. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  256. Hirsilä, M., Koivunen, P., Günzler, V., Kivirikko, K. I. & Myllyharju, J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem. 278, 30772–30780 (2003).

    Article  PubMed  Google Scholar 

  257. Mirtschink, P. & Krek, W. Hypoxia-driven glycolytic and fructolytic metabolic programs: pivotal to hypertrophic heart disease. Biochim. Biophys. Acta 1863, 1822–1828 (2016).

    Article  CAS  PubMed  Google Scholar 

  258. Sant’Ana, P. G. et al. Hypoxia-inducible factor 1-alpha and glucose metabolism during cardiac remodeling progression from hypertrophy to heart failure. Int. J. Mol. Sci. 24, 6201 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Kebede, A. F. et al. Histone propionylation is a mark of active chromatin. Nat. Struct. Mol. Biol. 24, 1048–1056 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Yang, Z., He, M., Austin, J., Sayed, D. & Abdellatif, M. Reducing branched-chain amino acids improves cardiac stress response in mice by decreasing histone H3K23 propionylation. J. Clin. Invest. 133, e169399 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Yang, Z., He, M., Austin, J., Pfleger, J. & Abdellatif, M. Histone H3K9 butyrylation is regulated by dietary fat and stress via an acyl-CoA dehydrogenase short chain-dependent mechanism. Mol. Metab. 53, 101249 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  263. Ahmed, K. et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab. 11, 311–319 (2010).

    Article  CAS  PubMed  Google Scholar 

  264. Newman, J. C. & Verdin, E. β-Hydroxybutyrate: much more than a metabolite. Diabetes Res. Clin. Pract. 106, 173–181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Li, B. et al. β-Hydroxybutyrate inhibits histone deacetylase 3 to promote claudin-5 generation and attenuate cardiac microvascular hyperpermeability in diabetes. Diabetologia 64, 226–239 (2021).

    Article  CAS  PubMed  Google Scholar 

  266. Gao, C. & Hou, L. Branched chain amino acids metabolism in heart failure. Front. Nutr. 10, 1279066 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Meijer, A. J., Lorin, S., Blommaart, E. F. & Codogno, P. Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 47, 2037–2063 (2015).

    Article  CAS  PubMed  Google Scholar 

  268. Gumus Balikcioglu, P. et al. Branched-chain α-keto acids and glutamate/glutamine: biomarkers of insulin resistance in childhood obesity. Endocrinol. Diabetes Metab. 6, e388 (2023).

    Article  CAS  PubMed  Google Scholar 

  269. Loona, D. P. S., Das, B., Kaur, R., Kumar, R. & Yadav, A. K. Free fatty acid receptors (FFARs): emerging therapeutic targets for the management of diabetes mellitus. Curr. Med. Chem. 30, 3404–3440 (2023).

    Article  CAS  PubMed  Google Scholar 

  270. Mirza, A. Z., Althagafi, I. I. & Shamshad, H. Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. Eur. J. Med. Chem. 166, 502–513 (2019).

    Article  CAS  PubMed  Google Scholar 

  271. Mericskay, M. Preventing the fatty acid-transporter CD36 from taking its toll on the heart. Circulation Res. 134, 526–528 (2024).

    Article  CAS  PubMed  Google Scholar 

  272. Glatz, J. F. C., Heather, L. C. & Luiken, J. J. F. P. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol. Rev. 104, 727–764 (2024).

    Article  CAS  PubMed  Google Scholar 

  273. Soppert, J., Lehrke, M., Marx, N., Jankowski, J. & Noels, H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv. Drug Deliv. Rev. 159, 4–33 (2020).

    Article  CAS  PubMed  Google Scholar 

  274. Knuplez, E. & Marsche, G. An updated review of pro- and anti-inflammatory properties of plasma lysophosphatidylcholines in the vascular system. IJMS 21, 4501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  276. Ferrannini, E. et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65, 1190–1195 (2016).

    Article  CAS  PubMed  Google Scholar 

  277. Goedeke, L. et al. SGLT2 inhibition alters substrate utilization and mitochondrial redox in healthy and failing rat hearts. J. Clin. Invest. 134, e176708 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Selvaraj, S. et al. Metabolomic profiling of the effects of dapagliflozin in heart failure with reduced ejection fraction: DEFINE-HF. Circulation 146, 808–818 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Hundertmark, M. J. et al. Assessment of cardiac energy metabolism, function, and physiology in patients with heart failure taking empagliflozin: the randomized, controlled EMPA-VISION trial. Circulation 147, 1654–1669 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Selvaraj, S. et al. Targeted metabolomic profiling of dapagliflozin in heart failure with preserved ejection fraction: the preserved-HF trial. JACC Heart Fail. 12, 999–1011 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Selvaraj, S. et al. Metabolic effects of the SGLT2 inhibitor dapagliflozin in heart failure across the spectrum of ejection fraction. Circ. Heart Fail. 17, e011980 (2024).

    Article  CAS  PubMed  Google Scholar 

  282. Zhang, H. et al. Empagliflozin decreases lactate generation in an NHE-1 dependent fashion and increases α-ketoglutarate synthesis from palmitate in type II diabetic mouse hearts. Front. Cardiovasc. Med. 7, 592233 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Santos-Gallego, C. G. et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J. Am. Coll. Cardiol. 73, 1931–1944 (2019).

    Article  CAS  PubMed  Google Scholar 

  284. Li, X. et al. Direct cardiac actions of the sodium glucose co-transporter 2 inhibitor empagliflozin improve myocardial oxidative phosphorylation and attenuate pressure-overload heart failure. J. Am. Heart Assoc. 10, e018298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Kadosaka, T. et al. Empagliflozin attenuates arrhythmogenesis in diabetic cardiomyopathy by normalizing intracellular Ca2+ handling in ventricular cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 324, H341–H354 (2023).

    Article  CAS  PubMed  Google Scholar 

  286. Jaswal, J. S., Keung, W., Wang, W., Ussher, J. R. & Lopaschuk, G. D. Targeting fatty acid and carbohydrate oxidation-a novel therapeutic intervention in the ischemic and failing heart. Biochim. Biophys. Acta 1813, 1333–1350 (2011).

    Article  CAS  PubMed  Google Scholar 

  287. Berger, J. H. et al. SGLT2 inhibitors act independently of SGLT2 to confer benefit for HFrEF in mice. Circ. Res. 135, 632–634 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Chen, S. et al. Sodium glucose cotransporter-2 inhibitor empagliflozin reduces infarct size independently of sodium glucose cotransporter-2. Circulation 147, 276–279 (2023).

    Article  CAS  PubMed  Google Scholar 

  289. Wu, Q. et al. Dapagliflozin protects against chronic heart failure in mice by inhibiting macrophage-mediated inflammation, independent of SGLT2. Cell Rep. Med. 4, 101334 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Chen, S. et al. Empagliflozin prevents heart failure through inhibition of the NHE1-NO pathway, independent of SGLT2. Basic Res. Cardiol. 119, 751–772 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Dyck, J. R. B. et al. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: evidence for potential off-target effects. J. Mol. Cell Cardiol. 167, 17–31 (2022).

    Article  CAS  PubMed  Google Scholar 

  292. Baartscheer, A. et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60, 568–573 (2017).

    Article  CAS  PubMed  Google Scholar 

  293. Trum, M. et al. Empagliflozin inhibits increased Na influx in atrial cardiomyocytes of patients with HFpEF. Cardiovasc. Res. 120, 999–1010 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Philippaert, K. et al. Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation 143, 2188–2204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Hegyi, B. et al. Empagliflozin reverses late Na+ current enhancement and cardiomyocyte proarrhythmia in a translational murine model of heart failure with preserved ejection fraction. Circulation 145, 1029–1031 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Wijnker, P. J. M. et al. Hypertrophic cardiomyopathy dysfunction mimicked in human engineered heart tissue and improved by sodium-glucose cotransporter 2 inhibitors. Cardiovasc. Res. 120, 301–317 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Aksentijević, D. & Shattock, M. J. With a grain of salt: sodium elevation and metabolic remodelling in heart failure. J. Mol. Cell Cardiol. 161, 106–115 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Maack, C. et al. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ. Res. 99, 172–182 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Kohlhaas, M. et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121, 1606–1613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Bertero, E., Prates Roma, L., Ameri, P. & Maack, C. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc. Res. 114, 12–18 (2018).

    Article  CAS  PubMed  Google Scholar 

  301. Uthman, L. et al. Empagliflozin reduces oxidative stress through inhibition of the novel inflammation/NHE/[Na+]c/ROS-pathway in human endothelial cells. Biomed. Pharmacother. 146, 112515 (2022).

    Article  CAS  PubMed  Google Scholar 

  302. Li, X. et al. Empagliflozin prevents oxidative stress in human coronary artery endothelial cells via the NHE/PKC/NOX axis. Redox Biol. 69, 102979 (2024).

    Article  CAS  PubMed  Google Scholar 

  303. Aksentijević, D. et al. Intracellular sodium elevation reprograms cardiac metabolism. Nat. Commun. 11, 4337 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Chung, Y. J. et al. Elevated Na is a dynamic and reversible modulator of mitochondrial metabolism in the heart. Nat. Commun. 15, 4277 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Packer, M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat. Rev. Cardiol. 20, 443–462 (2023).

    Article  CAS  PubMed  Google Scholar 

  306. Matsushima, S. & Sadoshima, J. The role of sirtuins in cardiac disease. Am. J. Physiol. Heart Circ. Physiol. 309, H1375–H1389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Fang, X. & Gustafsson, Å. B. HFpEF’s fuel flaw: impaired fatty acid oxidation stalls mitophagy. Circ. Res. 135, 1018–1020 (2024).

    Article  CAS  PubMed  Google Scholar 

  308. Apperloo, E. M. et al. Efficacy and safety of SGLT2 inhibitors with and without glucagon-like peptide 1 receptor agonists: a SMART-C collaborative meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol. 12, 545–557 (2024).

    Article  CAS  PubMed  Google Scholar 

  309. Neuen, B. L. et al. Cardiovascular, kidney, and safety outcomes with GLP-1 receptor agonists alone and in combination with SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis. Circulation 150, 1781–1790 (2024).

    Article  CAS  PubMed  Google Scholar 

  310. Neves, J. S., Zannad, F., Butler, J., Packer, M. & Ferreira, J. P. Should the select trial make us comfortable using GLP-1 receptor agonists in HFrEF? J. Am. Coll. Cardiol. 84, 1119–1122 (2024).

    Article  CAS  PubMed  Google Scholar 

  311. Godschall, E. N. et al. A brain reward circuit inhibited by next-generation weight loss drugs. Preprint at bioRxiv https://doi.org/10.1101/2024.12.12.628169 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Ryan, D. H. et al. Long-term weight loss effects of semaglutide in obesity without diabetes in the select trial. Nat. Med. 30, 2049–2057 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Withaar, C. et al. The cardioprotective effects of semaglutide exceed those of dietary weight loss in mice with HFpEF. JACC Basic Transl. Sci. 8, 1298–1314 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Sharma, A. et al. Elucidating the role of weight loss and glycaemic control in patients with type 2 diabetes. Diabetes Obes. Metab. 26, 5347–5357 (2024).

    Article  CAS  PubMed  Google Scholar 

  315. Luna-Marco, C. et al. Cardiovascular benefits of SGLT2 inhibitors and GLP-1 receptor agonists through effects on mitochondrial function and oxidative stress. Free Radic. Biol. Med. 213, 19–35 (2024).

    Article  CAS  PubMed  Google Scholar 

  316. Myasoedova, V. A. et al. Anti-inflammation and anti-oxidation: the key to unlocking the cardiovascular potential of SGLT2 inhibitors and GLP1 receptor agonists.Antioxidants 13, 16 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Lin, K. et al. Semaglutide protects against diabetes-associated cardiac inflammation via Sirt3-dependent RKIP pathway.Br. J. Pharmacol. https://doi.org/10.1111/bph.17327 (2024).

    Article  PubMed  Google Scholar 

  318. Inoue, T. et al. GLP-1 analog liraglutide protects against cardiac steatosis, oxidative stress and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis 240, 250–259 (2015).

    Article  CAS  PubMed  Google Scholar 

  319. Germano, J. et al. Intermittent use of a short-course glucagon-like peptide-1 receptor agonist therapy limits adverse cardiac remodeling via parkin-dependent mitochondrial turnover. Sci. Rep. 10, 8284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Naruse, G. et al. The intestine responds to heart failure by enhanced mitochondrial fusion through glucagon-like peptide-1 signalling. Cardiovasc. Res. 115, 1873–1885 (2019).

    Article  CAS  PubMed  Google Scholar 

  321. Durak, A. & Turan, B. Liraglutide provides cardioprotection through the recovery of mitochondrial dysfunction and oxidative stress in aging hearts. J. Physiol. Biochem. 79, 297–311 (2023).

    Article  CAS  PubMed  Google Scholar 

  322. Ma, Y.-L. et al. Semaglutide ameliorates cardiac remodeling in male mice by optimizing energy substrate utilization through the Creb5/NR4a1 axis. Nat. Commun. 15, 4757 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Lewis, A. J. M. et al. Hyperpolarized 13C and 31P MRS detects differences in cardiac energetics, metabolism, and function in obesity, and responses following treatment. NMR Biomed. 37, e5206 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Huisamen, B., Genade, S. & Lochner, A. Signalling pathways activated by glucagon-like peptide-1 (7-36) amide in the rat heart and their role in protection against ischaemia. Cardiovasc. J. Afr. 19, 77–83 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  325. Ban, K. et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008).

    Article  CAS  PubMed  Google Scholar 

  326. Nguyen, T. D., Shingu, Y., Amorim, P. A., Schwarzer, M. & Doenst, T. Glucagon-like peptide-1 reduces contractile function and fails to boost glucose utilization in normal hearts in the presence of fatty acids. Int. J. Cardiol. 168, 4085–4092 (2013).

    Article  PubMed  Google Scholar 

  327. Nielsen, R. et al. Effect of liraglutide on myocardial glucose uptake and blood flow in stable chronic heart failure patients: a double-blind, randomized, placebo-controlled LIVE sub-study. J. Nucl. Cardiol. 26, 585–597 (2019).

    Article  PubMed  Google Scholar 

  328. Bullock, B. P., Heller, R. S. & Habener, J. F. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137, 2968–2978 (1996).

    Article  CAS  PubMed  Google Scholar 

  329. Fang, P. et al. Glucagon-like peptide-1 receptor agonist protects against diabetic cardiomyopathy by modulating microRNA-29b-3p/SLMAP. Drug Des. Devel. Ther. 17, 791–806 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Kadowaki, S. et al. Cardioprotective actions of a glucagon-like peptide-1 receptor agonist on hearts donated after circulatory death. J. Am. Heart Assoc. 12, e027163 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Stone, C. R. et al. Semaglutide improves myocardial perfusion and performance in a large animal model of coronary artery disease.Arterioscler. Thromb. Vasc. Biol. https://doi.org/10.1161/ATVBAHA.124.321850 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Le Gouill, E. et al. Endothelial nitric oxide synthase (eNOS) knockout mice have defective mitochondrial beta-oxidation. Diabetes 56, 2690–2696 (2007).

    Article  PubMed  Google Scholar 

  333. von Haehling, S., Ebner, N., Dos Santos, M. R., Springer, J. & Anker, S. D. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat. Rev. Cardiol. 14, 323–341 (2017).

    Article  Google Scholar 

  334. Anker, S. D. et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet 361, 1077–1083 (2003).

    Article  CAS  PubMed  Google Scholar 

  335. Anker, S. D. et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349, 1050–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  336. Alebna, P. L. et al. Update on obesity, the obesity paradox, and obesity management in heart failure. Prog. Cardiovasc. Dis. 82, 34–42 (2024).

    Article  PubMed  Google Scholar 

  337. Du, X. et al. Increased branched-chain amino acid levels are associated with long-term adverse cardiovascular events in patients with STEMI and acute heart failure. Life Sci. 209, 167–172 (2018).

    Article  CAS  PubMed  Google Scholar 

  338. Cheng, M.-L. et al. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics. J. Am. Coll. Cardiol. 65, 1509–1520 (2015).

    Article  CAS  PubMed  Google Scholar 

  339. Neinast, M. D. et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 29, 417–429.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  340. Supruniuk, E., Żebrowska, E. & Chabowski, A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit. Rev. Food Sci. Nutr. 63, 2559–2597 (2023).

    Article  CAS  PubMed  Google Scholar 

  341. Ragni, M. et al. Dietary essential amino acids for the treatment of heart failure with reduced ejection fraction. Cardiovasc. Res. 119, 982–997 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Horton, J. L. et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense.JCI Insight 4, e124079 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  343. Vignier, N. et al. Rescue of biosynthesis of nicotinamide adenine dinucleotide protects the heart in cardiomyopathy caused by lamin A/C gene mutation. Hum. Mol. Genet. 27, 3870–3880 (2018).

    Article  CAS  PubMed  Google Scholar 

  344. Zhou, B. et al. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. J. Clin. Invest. 130, 6054–6063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Wang, D. D. et al. Safety and tolerability of nicotinamide riboside in heart failure with reduced ejection fraction. JACC Basic Transl. Sci. 7, 1183–1196 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  346. Xiao, Y. et al. Insulin and glycolysis dependency of cardioprotection by nicotinamide riboside. Basic Res. Cardiol. 119, 403–418 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Yamamoto, T. et al. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One 9, e98972 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  348. Kao, G. et al. Nicotinamide riboside and CD38: covalent inhibition and live-cell labeling. JACS Au 4, 4345–4360 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. de Zélicourt, A. et al. CD38-NADase is a new major contributor to duchenne muscular dystrophic phenotype. EMBO Mol. Med. 14, e12860 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  350. Mishra, S. & Kass, D. A. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 18, 400–423 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  351. Hernandez-Resendiz, S. et al. Targeting mitochondrial shape: at the heart of cardioprotection. Basic Res. Cardiol. 118, 49 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  352. Horvath, C. & Kararigas, G. Sex-dependent mechanisms of cell death modalities in cardiovascular disease. Can. J. Cardiol. 38, 1844–1853 (2022).

    PubMed  Google Scholar 

  353. Lam, C. S. P. et al. Sex differences in heart failure. Eur. Heart J. 40, 3859–3868c (2019).

    Article  PubMed  Google Scholar 

  354. Benjamin, E. J. et al. Heart disease and stroke statistics — 2019 update: a report from the American Heart Association. Circulation 139, e56–e528 (2019).

    Article  PubMed  Google Scholar 

  355. Lee, Y., Yoon, M., Choi, D.-J. & Park, J. J. Differential effect of sex on mortality according to age in heart failure. J. Am. Heart Assoc. 13, e034419 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  356. Barton, J. C. et al. Between-sex differences in risk factors for cardiovascular disease among patients with myocardial infarction-a systematic review. J. Clin. Med. 12, 5163 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  357. Syamlal, G., Mazurek, J. M. & Dube, S. R. Gender differences in smoking among U.S. working adults. Am. J. Prev. Med. 47, 467–475 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  358. Beale, A. L., Meyer, P., Marwick, T. H., Lam, C. S. P. & Kaye, D. M. Sex differences in cardiovascular pathophysiology: why women are overrepresented in heart failure with preserved ejection fraction. Circulation 138, 198–205 (2018).

    Article  PubMed  Google Scholar 

  359. Sabbatini, A. R. & Kararigas, G. Menopause-related estrogen decrease and the pathogenesis of HFpEF: JACC review topic of the week. J. Am. Coll. Cardiol. 75, 1074–1082 (2020).

    Article  CAS  PubMed  Google Scholar 

  360. Qiu, W. et al. Sex differences in long-term heart failure prognosis: a comprehensive meta-analysis. Eur. J. Prev. Cardiol. 31, 2013–2023 (2024).

    Article  PubMed  Google Scholar 

  361. Zhang, Z. et al. Age-specific gender differences in in-hospital mortality by type of acute myocardial infarction. Am. J. Cardiol. 109, 1097–1103 (2012).

    Article  PubMed  Google Scholar 

  362. Lau, E. S. et al. Sex differences in cardiometabolic traits and determinants of exercise capacity in heart failure with preserved ejection fraction. JAMA Cardiol. 5, 30–37 (2020).

    Article  PubMed  Google Scholar 

  363. Hodis, H. N. et al. Vascular effects of early versus late postmenopausal treatment with estradiol. N. Engl. J. Med. 374, 1221–1231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Grady, D. et al. Cardiovascular disease outcomes during 6.8 years of hormone therapy: heart and estrogen/progestin replacement study follow-up (HERS II). JAMA 288, 49–57 (2002).

    Article  PubMed  Google Scholar 

  365. Park, C. J. et al. Genetic rescue of nonclassical ERα signaling normalizes energy balance in obese Erα-null mutant mice. J. Clin. Invest. 121, 604–612 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Pedram, A. et al. Estrogen reduces lipid content in the liver exclusively from membrane receptor signaling. Sci. Signal. 6, ra36 (2013).

    Article  PubMed  Google Scholar 

  367. Ventura-Clapier, R. et al. Gender issues in cardiovascular diseases. Focus on energy metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165722 (2020).

    Article  CAS  PubMed  Google Scholar 

  368. Capllonch-Amer, G. et al. Estradiol stimulates mitochondrial biogenesis and adiponectin expression in skeletal muscle. J. Endocrinol. 221, 391–403 (2014).

    Article  CAS  PubMed  Google Scholar 

  369. Stirone, C., Duckles, S. P., Krause, D. N. & Procaccio, V. Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol. Pharmacol. 68, 959–965 (2005).

    Article  CAS  PubMed  Google Scholar 

  370. Norberg, H. Clinical trial enrolment favours men. Eur. Heart J. 40, 1104–1105 (2019).

    Article  CAS  PubMed  Google Scholar 

  371. Stamatiou, R. & Kararigas, G. Participation of transgender and gender diverse persons in cardiovascular clinical trials. Am. Heart J. 44, 100420 (2024).

    Google Scholar 

  372. Wilkinson, D. J. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism. Mass. Spectrom. Rev. 37, 57–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  373. Buescher, J. M. et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Karlstaedt, A. Stable isotopes for tracing cardiac metabolism in diseases. Front. Cardiovasc. Med. 8, 734364 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. McClements, L. et al. Impact of reduced uterine perfusion pressure model of preeclampsia on metabolism of placenta, maternal and fetal hearts. Sci. Rep. 12, 1111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Ritterhoff, J. et al. Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Circ. Res. 126, 182–196 (2020).

    Article  CAS  PubMed  Google Scholar 

  377. Karlstaedt, A. et al. Oncometabolite d-2-hydroxyglutarate impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc. Natl Acad. Sci. USA 113, 10436–10441 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Gao, Y. et al. Autophagic signaling promotes systems-wide remodeling in skeletal muscle upon oncometabolic stress by D2-HG. Mol. Metab. 86, 101969 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Vaniya, A. et al. Allele-specific dysregulation of lipid and energy metabolism in early-stage hypertrophic cardiomyopathy. J. Mol. Cell Cardiol. 8, 100073 (2024).

    Google Scholar 

  380. Hansen, K. B. et al. Myocardial efficiency in patients with different aetiologies and stages of heart failure. Eur. Heart J. Cardiovasc. Imaging 23, 328–337 (2022).

    Article  PubMed  Google Scholar 

  381. Apps, A. et al. Proof-of-principle demonstration of direct metabolic imaging following myocardial infarction using hyperpolarized 13C CMR. JACC Cardiovasc. Imaging 14, 1285–1288 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  382. Rider, O. J. et al. Noninvasive in vivo assessment of cardiac metabolism in the healthy and diabetic human heart using hyperpolarized 13C MRI. Circ. Res. 126, 725–736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  384. Axelrod, M. L. et al. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 611, 818–826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Lemaitre, R. N. et al. Circulating very long-chain saturated fatty acids and heart failure: the cardiovascular health study. J. Am. Heart Assoc. 7, e010019 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article is based on work from the COST Action EU-METAHEART (CA22169) Working Group 1 (Substrate and Intermediary Metabolism in Failing Cardiomyocytes; https://cost-metaheart.eu), supported by COST (European Cooperation in Science and Technology). M.M. is supported by Institut National pour la Santé et la Recherche Médicale (INSERM) and research grants from Agence Nationale pour la Recherche (ANR) and Fédération Française de Cardiologie (FFC). C.J.Z. is supported by a research grant from Boehringer Ingelheim and the European Foundation for the Study of Diabetes (EFSD). L.C.H. acknowledges support from the British Heart Foundation (FS/17/58/33072). A.K. is supported by the National Institutes of Health/National Heart, Lung and Blood Institute (R00-HL-141702, R01-HL-177461, R01-HL-173975) and National Institutes of Health/National Cancer Institute (R01-CA-283313). J.I. and M.R-M. are supported by the Instituto de Salud Carlos III of the Spanish Ministry of Health (FIS PI22/00513 and FIS PI23/00068). L.B. is supported by grants from the Fonds National de la Recherche Scientifique (FNRS, Belgium). G.K. acknowledges laboratory support provided by grants from the Icelandic Research Fund (217946-051), Icelandic Cancer Society Research Fund and University of Iceland Research Fund. C.M. is supported by Deutsche Forschungsgemeinschaft (German Research Foundation – SFB-1525/project No. 453989101 and Ma: 2528/8-1) and the German Centre for Cardiovascular Research (EX-22 and FKZ 81 × 2800227). G.G.S. is supported by the German Centre for Cardiovascular Research (81 × 3100210; 81 × 2100282), the Deutsche Forschungsgemeinschaft (German Research Foundation – SFB-1470–A02; SFB-1470–Z01) and the European Research Council (ERC StG 101078307).

Author information

Authors and Affiliations

Authors

Contributions

The authors each contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Mathias Mericskay.

Ethics declarations

Competing interests

C.M. is an advisory board member or speaker for Amgen, AstraZeneca, Bayer, Berlin Chemie, Boehringer Ingelheim, Bristol Myers Squibb, Edwards, Lilly, Novartis, Novo Nordisk and Servier. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Gary Lopaschuk and Rong Tian for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedication

The authors dedicate this Review to the memory of Professor Gary Lopaschuk (1955–2025), in recognition of his extraordinary contribution to the field of cardiometabolism.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mericskay, M., Zuurbier, C.J., Heather, L.C. et al. Cardiac intermediary metabolism in heart failure: substrate use, signalling roles and therapeutic targets. Nat Rev Cardiol 22, 704–727 (2025). https://doi.org/10.1038/s41569-025-01166-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-025-01166-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing