Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-coding RNAs in lipid metabolism and their roles in atherosclerosis

Abstract

The discovery of non-coding RNAs has expanded our understanding of how genetic features are linked to cellular function. The illumination of this so-called dark matter of the genome has revealed new categories of RNA with essential roles in the regulation of protein-coding genes and genome organization. In particular, microRNAs and long non-coding RNAs have emerged as important regulators of cardiovascular health and disease. In this Review, we summarize our current understanding of the mechanisms and functional roles of microRNAs and long non-coding RNAs in the regulation of lipid homeostasis, vascular biology and atherosclerosis. We discuss how interruption of non-coding RNA regulatory circuits influence lipoprotein metabolism in the liver and the circulation, as well as the effects of non-coding RNAs on inflammatory processes in the artery wall that contribute to atherosclerotic plaque formation. Finally, we highlight potential opportunities to harness non-coding RNAs as biomarkers and targeted therapeutics for atherosclerotic cardiovascular disease.

Key points

  • The discovery and characterization of non-coding RNAs have upended our view of the genome, revealing a vast RNA regulatory network that orchestrates cellular function beyond protein coding.

  • MicroRNAs — small (~22 nucleotides) non-coding RNAs that guide Argonaute complexes to target mRNAs for translational repression or degradation — fine-tune gene networks governing lipoprotein synthesis, lipoprotein clearance and reverse cholesterol transport, as well as cellular processes in atherosclerosis.

  • Long non-coding RNAs — transcripts of >200 nucleotides that do not code for proteins — are versatile regulators of genome organization and gene expression that act by scaffolding chromatin modifiers, guiding transcriptional complexes, modulating RNA splicing or stability and sequestering regulatory molecules.

  • Long non-coding RNAs have roles in lipid metabolism and atherosclerosis by coordinating the transcriptional and post-transcriptional regulation of cholesterol biosynthesis and efflux, triglyceride homeostasis and inflammatory and phenotypic programmes in vascular and immune cells.

  • Extracellular RNA communication via extracellular vesicles, HDL particles and Argonaute-bound complexes reveals intercellular signalling pathways, organ-to-organ regulatory circuits and novel biomarkers in cardiovascular disease.

  • Therapeutic manipulation of microRNAs and long non-coding RNAs holds transformative potential for atherosclerotic cardiovascular disease, but its clinical adoption requires overcoming barriers in delivery, targeting precision and immunogenicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MicroRNA regulation of hepatic lipid metabolism and lipoprotein biogenesis and turnover.
Fig. 2: MicroRNA control of cholesterol efflux, HDL biogenesis and reverse cholesterol transport.
Fig. 3: MicroRNA control of vascular wall cell processes that contribute to atherosclerosis.
Fig. 4: miRNA-based therapeutic strategies.
Fig. 5: Molecular mechanisms of lncRNA functions in lipid metabolism and atherosclerosis.
Fig. 6: lncRNAs involved in atherosclerotic plaque progression.

Similar content being viewed by others

References

  1. Orgel, L. E. & Crick, F. H. Selfish DNA: the ultimate parasite. Nature 284, 604–607 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feinberg, M. W. & Moore, K. J. MicroRNA regulation of atherosclerosis. Circ. Res. 118, 703–720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, Z., Salisbury, D. & Sallam, T. Long noncoding RNAs in atherosclerosis: JACC review topic of the week. J. Am. Coll. Cardiol. 72, 2380–2390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nordestgaard, B. G. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ. Res. 118, 547–563 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Bonaccorsi, I. et al. Natural killer cells in the innate immunity network of atherosclerosis. Immunol. Lett. 168, 51–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Bjorkegren, J. L. M. & Lusis, A. J. Atherosclerosis: recent developments. Cell 185, 1630–1645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 6, 508–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez-Hernando, C., Suarez, Y., Rayner, K. J. & Moore, K. J. MicroRNAs in lipid metabolism. Curr. Opin. Lipidol. 22, 86–92 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moore, K. J., Rayner, K. J., Suarez, Y. & Fernandez-Hernando, C. MicroRNAs and cholesterol metabolism. Trends Endocrinol. Metab. 21, 699–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Urbich, C., Kuehbacher, A. & Dimmeler, S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc. Res. 79, 581–588 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Bink, D. I., Pauli, J., Maegdefessel, L. & Boon, R. A. Endothelial microRNAs and long noncoding RNAs in cardiovascular ageing. Atherosclerosis 374, 99–106 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, S. D., Klimi, E., Bakker, W. A. M., Beqqali, A. & Baker, A. H. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br. J. Pharmacol. 182, 246–280 (2025).

    Article  CAS  PubMed  Google Scholar 

  16. Sekine, S. et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 136, 2304–2315.e4 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Doddapaneni, R. et al. Overexpression of microRNA-122 enhances in vitro hepatic differentiation of fetal liver-derived stem/progenitor cells. J. Cell. Biochem. 114, 1575–1583 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005).

    Article  PubMed  Google Scholar 

  22. Girard, M., Jacquemin, E., Munnich, A., Lyonnet, S. & Henrion-Caude, A. miR-122, a paradigm for the role of microRNAs in the liver. J. Hepatol. 48, 648–656 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Soh, J., Iqbal, J., Queiroz, J., Fernandez-Hernando, C. & Hussain, M. M. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat. Med. 19, 892–900 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Irani, S. et al. MicroRNA-30c mimic mitigates hypercholesterolemia and atherosclerosis in mice. J. Biol. Chem. 291, 18397–18409 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, M., Sun, W., Zhou, M. & Tang, Y. MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1. Sci. Rep. 7, 14493 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ji, J. et al. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 583, 759–766 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Vickers, K. C. et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 57, 533–542 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Wagschal, A. et al. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat. Med. 21, 1290–1297 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sakai, E. et al. miR-27b targets MAIP1 to mediate lipid accumulation in cultured human and mouse hepatic cells. Commun. Biol. 6, 669 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tan, Y., Ge, G., Pan, T., Wen, D. & Gan, J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS ONE 9, e105192 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ando, Y. et al. Association of circulating miR-20a, miR-27a, and miR-126 with non-alcoholic fatty liver disease in general population. Sci. Rep. 9, 18856 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goedeke, L. et al. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis 243, 499–509 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang, Y. et al. Exosomal miR-27b-3p secreted by visceral adipocytes contributes to endothelial inflammation and atherogenesis. Cell Rep. 42, 111948 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Vickers, K. C. et al. MicroRNA-223 coordinates cholesterol homeostasis. Proc. Natl Acad. Sci. USA 111, 14518–14523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singaravelu, R. et al. MicroRNA-7 mediates cross-talk between metabolic signaling pathways in the liver. Sci. Rep. 8, 361 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu, Y. et al. A metabolic stress-inducible miR-34a-HNF4alpha pathway regulates lipid and lipoprotein metabolism. Nat. Commun. 6, 7466 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Ding, J. et al. Effect of miR-34a in regulating steatosis by targeting PPARalpha expression in nonalcoholic fatty liver disease. Sci. Rep. 5, 13729 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goedeke, L. et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med. 21, 1280–1289 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang, H. et al. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis 243, 523–532 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Aranda, J. F., Canfran-Duque, A., Goedeke, L., Suarez, Y. & Fernandez-Hernando, C. The miR-199-dynamin regulatory axis controls receptor-mediated endocytosis. J. Cell Sci. 128, 3197–3209 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Salerno, A. G. et al. LDL receptor pathway regulation by miR-224 and miR-520d. Front. Cardiovasc. Med. 7, 81 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Solingen, C., Oldebeken, S. R., Salerno, A. G., Wanschel, A. & Moore, K. J. High-throughput screening identifies microRNAs regulating human PCSK9 and hepatic low-density lipoprotein receptor expression. Front. Cardiovasc. Med. 8, 667298 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dong, J. et al. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight 5, e143812 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang, Y. et al. miR-181d-5p ameliorates hypercholesterolemia by targeting PCSK9. J. Endocrinol. 262, e230402 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, X. et al. MiR-337-3p lowers serum LDL-C level through targeting PCSK9 in hyperlipidemic mice. Metabolism 119, 154768 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, X. et al. MiR-99a-5p up-regulates LDLR and functionally enhances LDL-C uptake via suppressing PCSK9 expression in human hepatocytes. Front. Genet. 15, 1469094 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma, N. et al. New PCSK9 inhibitor miR-552-3p reduces LDL-C via enhancing LDLR in high fat diet-fed mice. Pharmacol. Res. 167, 105562 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Rayner, K. J. et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478, 404–407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rayner, K. J. et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921–2931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rayner, K. J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marquart, T. J., Allen, R. M., Ory, D. S. & Baldan, A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl Acad. Sci. USA 107, 12228–12232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Najafi-Shoushtari, S. H. et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328, 1566–1569 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Ramirez, C. M. et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ. Res. 112, 1592–1601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Aguiar Vallim, T. Q. et al. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ. Res. 112, 1602–1612 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gerin, I. et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J. Biol. Chem. 285, 33652–33661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Davalos, A. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl Acad. Sci. USA 108, 9232–9237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rottiers, V. et al. Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR. Sci. Transl. Med. 5, 212ra162 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Afonso, M. S. et al. miR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques. Circ. Res. 128, 1122–1138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ouimet, M. et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Invest. 125, 4334–4348 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rotllan, N., Ramirez, C. M., Aryal, B., Esau, C. C. & Fernandez-Hernando, C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr−/− mice — brief report. Arterioscler. Thromb. Vasc. Biol. 33, 1973–1977 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Price, N. L. et al. Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Rep. 21, 1317–1330 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nishino, T. et al. SREBF1/microRNA-33b axis exhibits potent effect on unstable atherosclerotic plaque formation in vivo. Arterioscler. Thromb. Vasc. Biol. 38, 2460–2473 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Price, N. L. et al. Genetic ablation of miR-33 increases food intake, enhances adipose tissue expansion, and promotes obesity and insulin resistance. Cell Rep. 22, 2133–2145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goedeke, L. et al. Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Mol. Med. 6, 1133–1141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Horie, T. et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat. Commun. 4, 2883 (2013).

    Article  PubMed  Google Scholar 

  66. Cheng, J. et al. MicroRNA-144 silencing protects against atherosclerosis in male, but not female mice. Arterioscler. Thromb. Vasc. Biol. 40, 412–425 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Xu, Y. et al. Macrophage miR-34a is a key regulator of cholesterol efflux and atherosclerosis. Mol. Ther. 28, 202–216 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Canfran-Duque, A., Lin, C. S., Goedeke, L., Suarez, Y. & Fernandez-Hernando, C. Micro-RNAs and high-density lipoprotein metabolism. Arterioscler. Thromb. Vasc. Biol. 36, 1076–1084 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hartmann, P. et al. Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4. Nat. Commun. 7, 10521 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Joshi, D. et al. Endothelial gamma-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis. Nat. Cardiovasc. Res. 3, 1035–1048 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fang, Y. & Davies, P. F. Site-specific microRNA-92a regulation of Krüppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler. Thromb. Vasc. Biol. 32, 979–987 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Loyer, X. et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ. Res. 114, 434–443 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Chang, Y. J. et al. Extracellular microRNA-92a mediates endothelial cell–macrophage communication. Arterioscler. Thromb. Vasc. Biol. 39, 2492–2504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, Y. et al. Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circ. Res. 124, 575–587 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Shang, F. et al. MicroRNA-92a mediates endothelial dysfunction in CKD. J. Am. Soc. Nephrol. 28, 3251–3261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang, Y. et al. Circulating miR-92a expression level in patients with essential hypertension: a potential marker of atherosclerosis. J. Hum. Hypertens. 31, 200–205 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Abplanalp, W. T. et al. Efficiency and target derepression of anti-miR-92a: results of a first in human study. Nucleic Acid. Ther. 30, 335–345 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Daniel, J. M. et al. Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc. Res. 103, 564–572 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou, Z. et al. Targeted polyelectrolyte complex micelles treat vascular complications in vivo. Proc. Natl Acad. Sci. USA 118, e2114842118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fish, J. E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. van Solingen, C. et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J. Cell. Mol. Med. 13, 1577–1585 (2009).

    Article  PubMed  Google Scholar 

  83. Schober, A. et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat. Med. 20, 368–376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Santovito, D. et al. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Sci. Transl. Med. 12, eaaz2294 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T. & Lowenstein, C. J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl Acad. Sci. USA 105, 1516–1521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Asgeirsdottir, S. A. et al. MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation. Am. J. Physiol. Ren. Physiol. 302, F1630–F1639 (2012).

    Article  CAS  Google Scholar 

  87. Jansen, F. et al. Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. J. Mol. Cell. Cardiol. 104, 43–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Zernecke, A. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2, ra81 (2009).

    Article  PubMed  Google Scholar 

  89. van Solingen, C. et al. MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1+/Lin progenitor cells in ischaemia. Cardiovasc. Res. 92, 449–455 (2011).

    Article  PubMed  Google Scholar 

  90. Lv, B. et al. MicroRNA-181 in cardiovascular disease: emerging biomarkers and therapeutic targets. FASEB J. 38, e23635 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Su, Y. et al. MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis. 10, 365 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lin, J. et al. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10. FASEB J. 30, 3216–3226 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sun, X. et al. Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ. Res. 114, 32–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Fernandez-Hernando, C. & Suarez, Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr. Opin. Hematol. 25, 227–236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, L. et al. Time series miRNA–mRNA integrated analysis reveals critical miRNAs and targets in macrophage polarization. Sci. Rep. 6, 37446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, Y., Zhang, M., Zhong, M., Suo, Q. & Lv, K. Expression profiles of miRNAs in polarized macrophages. Int. J. Mol. Med. 31, 797–802 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Baer, C. et al. Suppression of microRNA activity amplifies IFN-gamma-induced macrophage activation and promotes anti-tumour immunity. Nat. Cell Biol. 18, 790–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Wei, Y. et al. Dicer in macrophages prevents atherosclerosis by promoting mitochondrial oxidative metabolism. Circulation 138, 2007–2020 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Du, F. et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 34, 759–767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nazari-Jahantigh, M. et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J. Clin. Invest. 122, 4190–4202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wei, Y. et al. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation 127, 1609–1619 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Androulidaki, A. et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31, 220–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mann, M. et al. An NF-kappaB-microRNA regulatory network tunes macrophage inflammatory responses. Nat. Commun. 8, 851 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. O’Connell, R. M., Chaudhuri, A. A., Rao, D. S. & Baltimore, D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl Acad. Sci. USA 106, 7113–7118 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. O’Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA 104, 1604–1609 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  106. van Solingen, C., Araldi, E., Chamorro-Jorganes, A., Fernandez-Hernando, C. & Suarez, Y. Improved repair of dermal wounds in mice lacking microRNA-155. J. Cell. Mol. Med. 18, 1104–1112 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Curtis, A. M. et al. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc. Natl Acad. Sci. USA 112, 7231–7236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Donners, M. M. et al. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS ONE 7, e35877 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hou, J. et al. MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J. Immunol. 183, 2150–2158 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Raitoharju, E. et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 219, 211–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Sheedy, F. J. et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol. 11, 141–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Das, A., Ganesh, K., Khanna, S., Sen, C. K. & Roy, S. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J. Immunol. 192, 1120–1129 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Canfran-Duque, A. et al. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Mol. Med. 9, 1244–1262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fan, X., Wang, E., Wang, X., Cong, X. & Chen, X. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp. Mol. Pathol. 96, 242–249 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Hoekstra, M. et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem. Biophys. Res. Commun. 394, 792–797 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Xi, J. et al. miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene 37, 3151–3165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hackett, E. E. et al. Mycobacterium tuberculosis limits host glycolysis and IL-1beta by restriction of PFK-M via MicroRNA-21. Cell Rep. 30, 124–136.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, D. et al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ. Res. 111, 967–981 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Sun, D. et al. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett. 586, 1472–1479 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, N. et al. MicroRNA-101 overexpression by IL-6 and TNF-alpha inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp. Cell Res. 336, 33–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Meiler, S., Baumer, Y., Toulmin, E., Seng, K. & Boisvert, W. A. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 35, 323–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Ramirez, C. M. et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol. 31, 2707–2714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Price, N. L., Goedeke, L., Suarez, Y. & Fernandez-Hernando, C. miR-33 in cardiometabolic diseases: lessons learned from novel animal models and approaches. EMBO Mol. Med. 13, e12606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ouimet, M. et al. MicroRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 37, 1058–1067 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ouimet, M. et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat. Immunol. 17, 677–686 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ouimet, M. et al. miRNA targeting of oxysterol-binding protein-like 6 regulates cholesterol trafficking and efflux. Arterioscler. Thromb. Vasc. Biol. 36, 942–951 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Price, N. L. et al. Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis. Proc. Natl Acad. Sci. USA 118, e2006478118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rahman, K. et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J. Clin. Invest. 127, 2904–2915 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Ying, W. et al. MicroRNA-223 is a crucial mediator of PPARgamma-regulated alternative macrophage activation. J. Clin. Invest. 125, 4149–4159 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhuang, G. et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 125, 2892–2903 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Nguyen, M. A. et al. miR-223 exerts translational control of proatherogenic genes in macrophages. Circ. Res. 131, 42–58 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jia, Y. et al. miR-223-3p prevents necroptotic macrophage death by targeting ripk3 in a negative feedback loop and consequently ameliorates advanced atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 44, 218–237 (2024).

    Article  CAS  PubMed  Google Scholar 

  134. McCubbrey, A. L. et al. MicroRNA-34a negatively regulates efferocytosis by tissue macrophages in part via SIRT1. J. Immunol. 196, 1366–1375 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Basatemur, G. L., Jorgensen, H. F., Clarke, M. C. H., Bennett, M. R. & Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 16, 727–744 (2019).

    Article  PubMed  Google Scholar 

  136. Chen, R., McVey, D. G., Shen, D., Huang, X. & Ye, S. Phenotypic switching of vascular smooth muscle cells in atherosclerosis. J. Am. Heart Assoc. 12, e031121 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jang, B. et al. MicroRNAs in vascular smooth muscle cells: mechanisms, therapeutic potential, and advances in delivery systems. Life Sci. 364, 123424 (2025).

    Article  CAS  PubMed  Google Scholar 

  138. Vacante, F., Denby, L., Sluimer, J. C. & Baker, A. H. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vasc. Pharmacol. 112, 24–30 (2019).

    Article  CAS  Google Scholar 

  139. Lovren, F. et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation 126, S81–S90 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Climent, M. et al. TGFbeta triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circ. Res. 116, 1753–1764 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Leeper, N. J. & Maegdefessel, L. Non-coding RNAs: key regulators of smooth muscle cell fate in vascular disease. Cardiovasc. Res. 114, 611–621 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Farina, F. M. et al. miR-128-3p is a novel regulator of vascular smooth muscle cell phenotypic switch and vascular diseases. Circ. Res. 126, e120–e135 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, J. et al. High-content analysis of microRNAs involved in the phenotype regulation of vascular smooth muscle cells. Sci. Rep. 12, 3498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Durham, A. L., Speer, M. Y., Scatena, M., Giachelli, C. M. & Shanahan, C. M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc. Res. 114, 590–600 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liao, X. B. et al. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology 154, 3344–3352 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Goettsch, C. et al. miR-125b regulates calcification of vascular smooth muscle cells. Am. J. Pathol. 179, 1594–1600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, J. et al. MicroRNA-32 promotes calcification in vascular smooth muscle cells: implications as a novel marker for coronary artery calcification. PLoS ONE 12, e0174138 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wang, S. S., Wang, C. & Chen, H. MicroRNAs are critical in regulating smooth muscle cell mineralization and apoptosis during vascular calcification. J. Cell. Mol. Med. 24, 13564–13572 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Geekiyanage, H., Rayatpisheh, S., Wohlschlegel, J. A., Brown, R. Jr & Ambros, V. Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proc. Natl Acad. Sci. USA 117, 24213–24223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13, 423–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2011).

    Article  PubMed  Google Scholar 

  153. Garcia-Martin, R. et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601, 446–451 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. McKenzie, A. J. et al. KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep. 15, 978–987 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Jiang, Y. et al. Peripheral blood miRNAs as a biomarker for chronic cardiovascular diseases. Sci. Rep. 4, 5026 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shan, Z. et al. An endocrine genetic signal between blood cells and vascular smooth muscle cells: role of microRNA-223 in smooth muscle function and atherogenesis. J. Am. Coll. Cardiol. 65, 2526–2537 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fichtlscherer, S. et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 107, 677–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Brandes, F. et al. Identification of microRNA biomarkers simultaneously expressed in circulating extracellular vesicles and atherosclerotic plaques. Front. Cardiovasc. Med. 11, 1307832 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Parahuleva, M. S. et al. MicroRNA expression profile of human advanced coronary atherosclerotic plaques. Sci. Rep. 8, 7823 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Tabet, F. et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun. 5, 3292 (2014).

    Article  PubMed  Google Scholar 

  163. Vickers, K. C. & Michell, D. L. HDL-small RNA export, transport, and functional delivery in atherosclerosis. Curr. Atheroscler. Rep. 23, 38 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mori, M. A., Ludwig, R. G., Garcia-Martin, R., Brandao, B. B. & Kahn, C. R. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 30, 656–673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mir, R. et al. Role of selected miRNAs as diagnostic and prognostic biomarkers in cardiovascular diseases, including coronary artery disease, myocardial infarction and atherosclerosis. J. Cardiovasc. Dev. Dis. 8, 22 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Navickas, R. et al. Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovasc. Res. 111, 322–337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tijsen, A. J., Pinto, Y. M. & Creemers, E. E. Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am. J. Physiol. Heart Circ. Physiol. 303, H1085–H1095 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Barraclough, J. Y., Joan, M., Joglekar, M. V., Hardikar, A. A. & Patel, S. MicroRNAs as prognostic markers in acute coronary syndrome patients — a systematic review. Cells 8, 1572 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jakob, P. et al. Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST-segment elevation myocardial infarction. Eur. Heart J. 38, 511–515 (2017).

    CAS  PubMed  Google Scholar 

  170. Saether, J. C. et al. Associations between circulating microRNAs and lipid-rich coronary plaques measured with near-infrared spectroscopy. Sci. Rep. 13, 7580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Blanco-Dominguez, R. et al. A novel circulating microRNA for the detection of acute myocarditis. N. Engl. J. Med. 384, 2014–2027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chen, Y., Gao, D. Y. & Huang, L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 81, 128–141 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Liu, Y. P. & Berkhout, B. miRNA cassettes in viral vectors: problems and solutions. Biochim. Biophys. Acta 1809, 732–745 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Ye, D. et al. MiR-138 promotes induced pluripotent stem cell generation through the regulation of the p53 signaling. Stem Cell 30, 1645–1654 (2012).

    Article  CAS  Google Scholar 

  175. Wang, D. et al. MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nat. Cell Biol. 15, 1153–1163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Munir, J., Yoon, J. K. & Ryu, S. Therapeutic miRNA-enriched extracellular vesicles: current approaches and future prospects. Cells 9, 2271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pottash, A. E. et al. Combinatorial microRNA loading into extracellular vesicles for increased anti-inflammatory efficacy. Noncoding RNA 8, 71 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Lee, S. W. L. et al. MicroRNA delivery through nanoparticles. J. Control. Release 313, 80–95 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Brillante, S., Volpe, M. & Indrieri, A. Advances in microRNA therapeutics: from preclinical to clinical studies. Hum. Gene Ther. 35, 628–648 (2024).

    Article  CAS  PubMed  Google Scholar 

  181. Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 440 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Hu, S. et al. Mechanisms of hydrogel-based microRNA delivery systems and its application strategies in targeting inflammatory diseases. J. Tissue Eng. 15, 20417314241265897 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Li, Y. et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 7, eabd6740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Holjencin, C. & Jakymiw, A. MicroRNAs and their big therapeutic impacts: delivery strategies for cancer intervention. Cells 11, 2332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Shang, R., Lee, S., Senavirathne, G. & Lai, E. C. microRNAs in action: biogenesis, function and regulation. Nat. Rev. Genet. 24, 816–833 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Zhao, L. et al. NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res. 49, D165–D171 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Quinn, J. J. et al. Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat. Biotechnol. 32, 933–940 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Carter, A. C. et al. Spen links RNA-mediated endogenous retrovirus silencing and X chromosome inactivation. eLife 9, e54508 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sallam, T., Sandhu, J. & Tontonoz, P. Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ. Res. 122, 155–166 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. de Goede, O. M. et al. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell 184, 2633–2648.e19 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Liu, S. J. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355, aah7111 (2017).

    Article  PubMed  Google Scholar 

  193. Luo, J., Yang, H. & Song, B. L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  195. Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hong, C. & Tontonoz, P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat. Rev. Drug Discov. 13, 433–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Zhang, L. et al. Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. eLife 6, e28766 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Sallam, T. et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature 534, 124–128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zhang, Z. et al. Collaborative interactions of heterogenous ribonucleoproteins contribute to transcriptional regulation of sterol metabolism in mice. Nat. Commun. 11, 984 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tontonoz, P. et al. Long noncoding RNA facilitated gene therapy reduces atherosclerosis in a murine model of familial hypercholesterolemia. Circulation 136, 776–778 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhang, Z. et al. A PPARgamma/long noncoding RNA axis regulates adipose thermoneutral remodeling in mice. J. Clin. Invest. 133, e170072 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Li, C. et al. Regulation of cholesterol homeostasis by a novel long non-coding RNA LASER. Sci. Rep. 9, 7693 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Wang, Y. et al. Rare variants in long non-coding RNAs are associated with blood lipid levels in the TOPMed whole-genome sequencing study. Am. J. Hum. Genet. 110, 1704–1717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sallam, T. et al. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nat. Med. 24, 304–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Salisbury, D. A. et al. LncRNAs in inflammation: lessons from a preclinical investigation of Mexis therapy in atherosclerosis. JACC Basic Transl. Sci. 7, 953–955 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Hennessy, E. J. et al. The long noncoding RNA CHROME regulates cholesterol homeostasis in primate. Nat. Metab. 1, 98–110 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. van Solingen, C. et al. Long noncoding RNA CHROMR regulates antiviral immunity in humans. Proc. Natl Acad. Sci. USA 119, e2210321119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Miao, H. et al. A long noncoding RNA distributed in both nucleus and cytoplasm operates in the PYCARD-regulated apoptosis by coordinating the epigenetic and translational regulation. PLoS Genet. 15, e1008144 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hu, Y. W. et al. A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis. J. Lipid Res. 55, 681–697 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Li, Y., Shen, S., Ding, S. & Wang, L. LincRNA DYN-LRB2-2 upregulates cholesterol efflux by decreasing TLR2 expression in macrophages. J. Cell. Biochem. 119, 1911–1921 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Cai, C. et al. LncRNA ENST00000602558.1 regulates ABCG1 expression and cholesterol efflux from vascular smooth muscle cells through a p65-dependent pathway. Atherosclerosis 285, 31–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Grabner, G. F., Xie, H., Schweiger, M. & Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445–1465 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Boren, J., Taskinen, M. R., Bjornson, E. & Packard, C. J. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat. Rev. Cardiol. 19, 577–592 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Ko, C. W., Qu, J., Black, D. D. & Tso, P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat. Rev. Gastroenterol. Hepatol. 17, 169–183 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Zhao, X. Y. et al. Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis. Nat. Commun. 9, 2986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhao, X. Y. et al. The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health. Mol. Metab. 14, 60–70 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Zhao, X. Y., Li, S., Wang, G. X., Yu, Q. & Lin, J. D. A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol. Cell 55, 372–382 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Benhammou, J. N. et al. Novel lipid long intervening noncoding RNA, oligodendrocyte maturation-associated long intergenic noncoding RNA, regulates the liver steatosis gene stearoyl-coenzyme A desaturase as an enhancer RNA. Hepatol. Commun. 3, 1356–1372 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Jiang, Y. et al. Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2. Nat. Metab. 3, 1569–1584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Wang, J. et al. The novel long noncoding RNA Lnc19959.2 modulates triglyceride metabolism-associated genes through the interaction with Purb and hnRNPA2B1. Mol. Metab. 37, 100996 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Huang, P. et al. LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6. Metabolism 94, 1–8 (2019).

    Article  PubMed  Google Scholar 

  222. Schoeler, M. & Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 20, 461–472 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wang, Y. et al. The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9. Science 381, 851–857 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Guo, Y. F. et al. lncRNA Hnscr regulates lipid metabolism by mediating adipocyte lipolysis. Endocrinology 164, bqad147 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Liu, B. et al. LncRNA Nron deficiency protects mice from diet-induced adiposity and hepatic steatosis. Metabolism 148, 155609 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Han, L. et al. Lipid droplet-associated lncRNA LIPTER preserves cardiac lipid metabolism. Nat. Cell Biol. 25, 1033–1046 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zhang, X. et al. Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of linc-ADAL in adipocyte metabolism. Sci. Transl. Med. 10, eaar5987 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Chen, J. et al. Deficiency of lncRNA MERRICAL abrogates macrophage chemotaxis and diabetes-associated atherosclerosis. Cell Rep. 43, 113815 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Cynn, E. et al. Human macrophage long intergenic noncoding RNA, SIMALR, suppresses inflammatory macrophage apoptosis via NTN1 (Netrin-1). Arterioscler. Thromb. Vasc. Biol. 43, 286–299 (2023).

    Article  CAS  PubMed  Google Scholar 

  230. Xiang, D. et al. Leukocyte-specific Morrbid promotes leukocyte differentiation and atherogenesis. Research 6, 0187 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tanwar, V. S. et al. Palmitic acid-induced long noncoding RNA PARAIL regulates inflammation via interaction with RNA-binding protein ELAVL1 in monocytes and macrophages. Arterioscler. Thromb. Vasc. Biol. 43, 1157–1175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kotzin, J. J. et al. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537, 239–243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Karasawa, T. et al. Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler. Thromb. Vasc. Biol. 38, 744–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. Ma, Y., Jiang, C. F., Li, P. & Cao, H. In vivo functional analysis of nonconserved human lncRNAs using a humanized mouse model. Methods Mol. Biol. 2254, 339–347 (2021).

    Article  CAS  PubMed  Google Scholar 

  235. Zilbauer, M. et al. A roadmap for the human gut cell atlas. Nat. Rev. Gastroenterol. Hepatol. 20, 597–614 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Qian, X., Zhao, J., Yeung, P. Y., Zhang, Q. C. & Kwok, C. K. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem. Sci. 44, 33–52 (2019).

    Article  CAS  PubMed  Google Scholar 

  238. Economides, A. N. et al. Conditionals by inversion provide a universal method for the generation of conditional alleles. Proc. Natl Acad. Sci. USA 110, E3179–E3188 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Lyu, Q. R., Zhang, S., Zhang, Z. & Tang, Z. Functional knockout of long non-coding RNAs with genome editing. Front. Genet. 14, 1242129 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zhang, S. et al. BESST: a novel LncRNA knockout strategy with less genome perturbance. Nucleic Acids Res. 51, e49 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Putnam, A., Thomas, L. & Seydoux, G. RNA granules: functional compartments or incidental condensates? Genes Dev. 37, 354–376 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  243. Tian, S., Curnutte, H. A. & Trcek, T. RNA granules: a view from the RNA perspective. Molecules 25, 3130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Onoguchi-Mizutani, R. & Akimitsu, N. Long noncoding RNA and phase separation in cellular stress response. J. Biochem. 171, 269–276 (2022).

    Article  CAS  PubMed  Google Scholar 

  245. Kan, R. L., Chen, J. & Sallam, T. Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation. Trends Genet. 38, 182–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  246. Jiang, X. et al. The role of m6A modification in the biological functions and diseases. Signal Transduct. Target. Ther. 6, 74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Liu, J. et al. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367, 580–586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Wei, J. et al. FTO mediates LINE1 m(6)A demethylation and chromatin regulation in mESCs and mouse development. Science 376, 968–973 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Uzonyi, A. et al. Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol. Cell 83, 237–251 e237 (2023).

    Article  CAS  PubMed  Google Scholar 

  250. Vicens, Q. & Kieft, J. S. Thoughts on how to think (and talk) about RNA structure. Proc. Natl Acad. Sci. USA 119, e2112677119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Kim, Y. & Lee, M. Deep learning approaches for lncRNA-mediated mechanisms: a comprehensive review of recent developments. Int. J. Mol. Sci. 24, 10299 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Irani, S., Iqbal, J., Antoni, W. J., Ijaz, L. & Hussain, M. M. microRNA-30c reduces plasma cholesterol in homozygous familial hypercholesterolemic and type 2 diabetic mouse models. J. Lipid Res. 59, 144–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  253. Wang, L. et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol. Cell. Biol. 33, 1956–1964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Hu, Z., Shen, W. J., Kraemer, F. B. & Azhar, S. MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol. Cell. Biol. 32, 5035–5045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kang, M. H. et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler. Thromb. Vasc. Biol. 33, 2724–2732 (2013).

    Article  CAS  PubMed  Google Scholar 

  256. Chen, C., Matye, D., Wang, Y. & Li, T. Liver-specific microRNA-185 knockout promotes cholesterol dysregulation in mice. Liver Res. 5, 232–238 (2021).

    Article  CAS  PubMed  Google Scholar 

  257. Yang, M. et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res. 55, 226–238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Jiang, Y., Yin, H. & Zheng, X. L. MicroRNA-1 inhibits myocardin-induced contractility of human vascular smooth muscle cells. J. Cell. Physiol. 225, 506–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  259. Sun, S. G. et al. miR-146a and Krüppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep. 12, 56–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  260. Halley, P. et al. Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep. 6, 222–230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Ruan, X. et al. Identification of human long noncoding RNAs associated with nonalcoholic fatty liver disease and metabolic homeostasis. J. Clin. Invest. 131, e136336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Holdt, L. M. et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 7, 12429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Vacante, F. et al. CARMN loss regulates smooth muscle cells and accelerates atherosclerosis in mice. Circ. Res. 128, 1258–1275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Zhang, W. et al. INKILN is a novel long noncoding RNA promoting vascular smooth muscle inflammation via scaffolding MKL1 and USP10. Circulation 148, 47–67 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Li, S. et al. LncRNA PSMB8-AS1 instigates vascular inflammation to aggravate atherosclerosis. Circ. Res. 134, 60–80 (2024).

    Article  CAS  PubMed  Google Scholar 

  266. Zhang, R. et al. LncRNA RP4-639F20.1 interacts with THRAP3 to attenuate atherosclerosis by regulating c-FOS in vascular smooth muscle cells proliferation and migration. Atherosclerosis 379, 117183 (2023).

    Article  CAS  PubMed  Google Scholar 

  267. Agbu, P. et al. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat. Rev. Mol. Cell Biol. 22, 425–438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Primers 5, 56 (2019).

    Article  PubMed  Google Scholar 

  269. Chen, W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat. Rev. Cardiol. 19, 228–249 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the American Heart Association (23SCEFIA1153739 to C.v.S.) and the National Institutes of Health (R01HL172335, R01HL172365 and P01HL131481 to K.J.M.; and R01 DK957554, R01 HL139549 and R01HL149766 to T.S.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the manuscript.

Corresponding author

Correspondence to Kathryn J. Moore.

Ethics declarations

Competing interests

The authors hold patents on the use of inhibitors targeting miR-33 (K.J.M.), CHROMR (K.J.M. and C.v.S.) and RALY (T.S.).

Peer review

Peer review information

Nature Reviews Cardiology thanks Alberto Davalos, M. Mahmood Hussain and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antisense oligonucleotides

(ASOs). Short, synthetic RNA strands designed to bind a specific RNA sequence and alter its stability.

Aptamer

Short, structured nucleic acid ligands that fold into defined shapes to bind specific proteins or small molecules with high affinity.

Cholesterol efflux

The cellular export of cholesterol to extracellular acceptors, primarily apolipoprotein A-1-containing HDL, via transporters such as phospholipid-transporting ATPase ABCA1.

Extracellular miRNAs

MicroRNAs (miRNAs) released from cells within vesicles or bound to proteins, which can be taken up by recipient cells to modulate gene expression.

HDL

Apolipoprotein A1-containing lipoprotein particles that mediate reverse cholesterol transport from tissues back to the liver.

Hepatosteatosis

Accumulation of fat droplets within hepatocytes, commonly referred to as fatty liver.

LDL

Cholesterol-rich particles that deliver cholesterol from the liver to peripheral tissues.

Macrophage foam cells

Lipid-laden macrophages in the arterial intima that arise from macrophage uptake of modified lipoproteins and that contribute to atherosclerotic plaque formation.

Reverse cholesterol transport

Multistep process by which cholesterol is removed from peripheral tissues and delivered back to the liver for excretion.

Vascular smooth muscle cells

(VSMCs). Phenotypic switching of vascular smooth muscle cells into alternative cell types (such as macrophage-like or osteogenic) that contribute to atherosclerosis.

VLDL

Triglyceride-rich particles secreted by the liver that transport endogenous lipids to peripheral tissues.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallam, T., van Solingen, C. & Moore, K.J. Non-coding RNAs in lipid metabolism and their roles in atherosclerosis. Nat Rev Cardiol (2026). https://doi.org/10.1038/s41569-025-01229-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41569-025-01229-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing