Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The chemistry of snake venom and its medicinal potential

Abstract

The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Composition of the venom of snakes from the Elapidae and Viperidae families.
Fig. 2: The three main types of PLA2 bound to their targets.
Fig. 3: Structures of SVMPs and their substrates.
Fig. 4: Structure of SVSPs and their substrates.
Fig. 5: Approved drugs derived from snake venoms.
Fig. 6: Drugs derived from snake venoms in clinical or preclinical trials.

Similar content being viewed by others

References

  1. Holford, M., Daly, M., King, G. F. & Norton, R. S. Venoms to the rescue. Science 361, 842–844 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A. & Fry, B. G. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol. Evol. 28, 219–229 (2013). A review of the natural history of venoms and mechanisms of venom evolution.

    Article  PubMed  Google Scholar 

  3. King, G. F. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin. Biol. Ther. 11, 1469–1484 (2011). This review covers all stages of the development of drugs based on animal venoms.

    Article  CAS  PubMed  Google Scholar 

  4. Herzig, V. et al. Animal toxins — nature’s evolutionary-refined toolkit for basic research and drug discovery. Biochem. Pharmacol. 181, 114096 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pineda, S. S. et al. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc. Natl Acad. Sci. USA 117, 11399–11408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cid-Uribe, J. I., Veytia-Bucheli, J. I., Romero-Gutierrez, T., Ortiz, E. & Possani, L. D. Scorpion venomics: a 2019 overview. Expert Rev. Proteom. 17, 67–83 (2020).

    Article  CAS  Google Scholar 

  7. Tasoulis, T. & Isbister, G. K. A review and database of snake venom proteomes. Toxins 9, 290 (2017). An analysis of the composition and diversity of snake venom.

    Article  PubMed Central  Google Scholar 

  8. Casewell, N. R. et al. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc. Natl Acad. Sci. USA 111, 9205–9210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Massey, D. J. et al. Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from southern Arizona. J. Proteom. 75, 2576–87 (2012).

    Article  CAS  Google Scholar 

  10. Casewell, N. R., Jackson, T. N. W., Laustsen, A. H. & Sunagar, K. Causes and consequences of snake venom variation. Trends Pharmacol. Sci. 41, 570–581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Durban, J. et al. Integrated venomics and venom gland transcriptome analysis of juvenile and adult Mexican rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus revealed miRNA-modulated ontogenetic shifts. J. Proteome Res. 16, 3370–3390 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Pla, D. et al. Phylovenomics of Daboia russelii across the Indian subcontinent. Bioactivities and comparative in vivo neutralization and in vitro third-generation antivenomics of antivenoms against venoms from India, Bangladesh and Sri Lanka. J. Proteom. 207, 103443 (2019).

    Article  CAS  Google Scholar 

  13. Senji Laxme, R. R. et al. Beyond the ‘big four’: venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLoS Negl. Trop. Dis. 13, e0007899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chanda, A., Kalita, B., Patra, A., Senevirathne, W. D. S. T. & Mukherjee, A. K. Proteomic analysis and antivenomics study of Western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region. Expert Rev. Proteom. 16, 171–184 (2018).

    Article  Google Scholar 

  15. Tasoulis, T., Pukala, T. L. & Isbister, G. K. Investigating toxin diversity and abundance in snake venom proteomes. Front. Pharmacol. (2022). A review of the proteomic methods used to separate and quantify snake venom toxins, comparing their merits and limitations.

  16. Editorial. Snake-bite envenoming: a priority neglected tropical disease. Lancet 390, 2 (2017).

    Article  Google Scholar 

  17. Gutierrez, J. M. et al. Snakebite envenoming. Nat. Rev. Dis. Primers 3, 17063 (2017). A review on the pathophysiology and treatment of snakebite envenoming.

    Article  PubMed  Google Scholar 

  18. Williams, D. The Global Snake Bite Initiative: an antidote for snake bite. Lancet 375, 89–91 (2010).

    Article  PubMed  Google Scholar 

  19. Kasturiratne, A. et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591–1604 (2008).

    Article  Google Scholar 

  20. McDermott, A. Venom back in vogue as a wellspring for drug candidates. Proc. Natl Acad. Sci. USA 117, 10100–10104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bordon, K. et al. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front. Pharmacol. 11, 1132 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Almeida, J. R. R. et al. Snake venom peptides and low mass proteins: molecular tools and therapeutic agents. Curr. Med. Chem. 24, 3254–3282 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Fry, B. G. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 15, 403–420 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ojeda, P. G. et al. Computational studies of snake venom toxins. Toxins 10, 8 (2018).

    Article  Google Scholar 

  25. Calvete, J. J., Sanz, L., Angulo, Y., Lomonte, B. & Gutiérrez, J. M. Venoms, venomics, antivenomics. FEBS Lett. 583, 1736–1743 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Modahl, C. M., Brahma, R. K., Koh, C. Y., Shioi, N. & Kini, R. M. Omics technologies for profiling toxin diversity and evolution in snake venom: impacts on the discovery of therapeutic and diagnostic agents. Annu. Rev. Anim. Biosci. 8, 91–116 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. The Uniprot Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, 480–489 (2021).

    Article  Google Scholar 

  28. Simoes-Silva, R. et al. Snake venom, a natural library of new potential therapeutic molecules: challenges and current perspectives. Curr. Pharm. Biotechnol. 19, 308–335 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Calvete, J. J. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Expert Rev. Proteom. 11, 315–329 (2014).

    Article  CAS  Google Scholar 

  30. Brahma, R. K., McCleary, R. J. R., Kini, R. M. & Doley, R. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes. Toxicon 93, 1–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, L. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 251364 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gutiérrez, J. M. & Lomonte, B. Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon 62, 27–39 (2013). A review of the structure and function of the central PLA2 toxin family.

    Article  PubMed  Google Scholar 

  33. Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V. & Kokotos, G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 111, 6130–6185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kang, T. S. et al. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 278, 4544–4576 (2011). A paper focusing on the structure and reaction mechanisms of the most prominent snake venom enzymatic toxins.

    Article  CAS  PubMed  Google Scholar 

  35. Schaloske, R. H. & Dennis, E. A. The phospholipase A2 superfamily and its group numbering system. Biochim. Biophys. Acta 1761, 1246–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Ferraz, C. R. et al. Multifunctional toxins in snake venoms and therapeutic implications: from pain to hemorrhage and necrosis. Front. Ecol. Evol. 7, 218 (2019).

    Article  Google Scholar 

  37. Kini, R. M. & Koh, C. Y. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem. Pharmacol. 181, 114105 (2020). A review of the family of 3FTxs and their potential medicinal applications for cardiovascular diseases.

    Article  CAS  PubMed  Google Scholar 

  38. Fry, B. G. et al. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J. Mol. Evol. 57, 110–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Kini, R. M. & Doley, R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 56, 855–867 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Olaoba, O. T., Karina dos Santos, P., Selistre-de-Araujo, H. S. & Ferreira de Souza, D. H. Snake venom metalloproteinases (SVMPs): a structure–function update. Toxicon X 7, 100052 (2020). A review of the large and complex family of SVMP toxins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gutiérrez, J. M., Escalante, T., Rucavado, A. & Herrera, C. Hemorrhage caused by snake venom metalloproteinases: a journey of discovery and understanding. Toxins 8, 93 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Takeda, S. ADAM and ADAMTS family proteins and snake venom metalloproteinases: a structural overview. Toxins 8, 155 (2016).

    Article  PubMed Central  Google Scholar 

  43. Ullah, A. et al. Thrombin-like enzymes from snake venom: structural characterization and mechanism of action. Int. J. Biol. Macromol. 114, 788–811 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Hiu, J. J. & Yap, M. K. K. Cytotoxicity of snake venom enzymatic toxins: phospholipase A(2) and l-amino acid oxidase. Biochem. Soc. Trans. 48, 719–731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tan, K. K., Bay, B. H. & Gopalakrishnakone, P. l-amino acid oxidase from snake venom and its anticancer potential. Toxicon 144, 7–13 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Paloschi, M. V. An update on potential molecular mechanisms underlying the actions of snake venom l-amino acid oxidases (LAAOs). Curr. Med. Chem. 25, 2520–2530 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Ullah, A. Structure–function studies and mechanism of action of snake venom l-amino acid oxidases. Front. Pharmacol. 11, 110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inagaki, H. in Snake Venoms (eds Gopalakrishnakone, P., Inagaki, H., Vogel, C.-V., Mukherjee, A. K. & Rashed Rahmy, T.) (Springer, 2017).

  49. Markland, F. S. & Swenson, S. Snake venom metalloproteinases. Toxicon 62, 3–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Serrano, S. M. & Maroun, R. C. Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 45, 1115–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Serrano, S. M. The long road of research on snake venom serine proteinases. Toxicon 62, 19–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Arlinghaus, F. T. & Eble, J. A. C-type lectin-like proteins from snake venoms. Toxicon 60, 512–519 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Morita, T. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon 45, 1099–1114 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Lu, Q., Navdaev, A., Clemetson, J. M. & Clemetson, K. J. Snake venom C-type lectins interacting with platelet receptors. Structure–function relationships and effects on haemostasis. Toxicon 45, 1089–1098 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Vink, S. Natriuretic peptide drug leads from snake venom. Toxicon 59, 434–445 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Sridharan, S., Kini, R. M. & Richards, A. M. Venom natriuretic peptides guide the design of heart failure therapeutics. Pharmacol. Res. 155, 104687 (2020). This review examines the structure–function relationships of venom natriuretic peptides, and discusses peptide engineering strategies for creating therapeutic natriuretic peptide analogues.

    Article  CAS  PubMed  Google Scholar 

  57. Munawar, A. Snake venom peptides: tools of biodiscovery. Toxins 10, 474 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  58. Laustsen, A. H., Lomonte, B., Lohse, B., Fernández, J. & Gutiérrez, J. M. Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: identification of key toxin targets for antivenom development. J. Proteom. 119, 126–142 (2015).

    Article  CAS  Google Scholar 

  59. Damm, M., Hempel, B. F., Nalbantsoy, A. & Süssmuth, R. D. Comprehensive snake venomics of the Okinawa Habu pit viper, Protobothrops flavoviridis, by complementary mass spectrometry-guided approaches. Molecules 23, 1893 (2018).

    Article  PubMed Central  Google Scholar 

  60. Coronado, M. A. et al. Structure of the polypeptide crotamine from the Brazilian rattlesnake Crotalus durissus terrificus. Acta Crystallogr. D 69, 1958–1964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Falcao, C. B. & Radis-Baptista, G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 126, 170234 (2020).

    Article  PubMed  Google Scholar 

  62. Slotta, K. H. & Fraenkel-Conrat, H. Two active proteins from rattlesnake venom. Nature 13, 213–213 (1938).

    Article  Google Scholar 

  63. Berg, O. G., Gelb, M. H., Tsai, M. D. & Jain, M. K. Interfacial enzymology: the secreted phospholipase A(2)-paradigm. Chem. Rev. 101, 2613–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Tsai, Y. C., Yu, B. Z., Wang, Y. Z., Chen, J. & Jain, M. K. Desolvation map of the i-face of phospholipase A2. Biochim. Biophys. Acta 1758, 653–665 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Bahnson, B. J. Structure, function and interfacial allosterism in phospholipase A2: insight from the anion-assisted dimer. Arch. Biochem. Biophys. 433, 96–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Scott, D. L. et al. Interfacial catalysis: the mechanism of phospholipase A2. Science 250, 1541–1546 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sérgio, S., Ramos, M. J., Lim, C. & Fernandes, P. A. Relationship between enzyme/substrate properties and enzyme efficiency in hydrolases. ACS Catal. 5, 5877–5887 (2015).

    Article  Google Scholar 

  68. Sousa, S. F. et al. Activation free energy, substrate binding free energy, and enzyme efficiency fall in a very narrow range of values for most enzymes. ACS Catal. 10, 8444–8453 (2020).

    Article  CAS  Google Scholar 

  69. Resende, L. M. et al. Structural, enzymatic and pharmacological profiles of AplTX-II — a basic sPLA2 (D49) isolated from the Agkistrodon piscivorus leucostoma snake venom. Int. J. Biol. Macromol. 175, 572–585 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Lomonte, B. & Rangel, J. Snake venom Lys49 myotoxins: from phospholipases A(2) to non-enzymatic membrane disruptors. Toxicon 60, 520–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Fernández, J. et al. Muscle phospholipid hydrolysis by Bothrops asper Asp49 and Lys49 phospholipase A2 myotoxins — distinct mechanisms of action. FEBS J. 280, 3878–3886 (2013).

    Article  PubMed  Google Scholar 

  72. Almeida, J. R. et al. CoaTx-II, a new dimeric Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom with bactericidal potential: insights into its structure and biological roles. Toxicon 120, 147–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Almeida, J. R. et al. Harnessing snake venom phospholipases A(2) to novel approaches for overcoming antibiotic resistance. Drug Dev. Res. 80, 68–85 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Almeida, J. R. et al. A novel synthetic peptide inspired on Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom active against multidrug-resistant clinical isolates. Eur. J. Med. Chem. 149, 248–256 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Kwong, P. D., McDonald, N. Q., Sigler, P. B. & Hendrickson, W. A. Structure of β2-bungarotoxin — potassium channel binding by kunitz modules and targeted phospholipase action. Structure 3, 1109–1119 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Rowan, E. G. What does β-bungarotoxin do at the neuromuscular junction? Toxicon 39, 107–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Doley, R. & Kini, R. M. Protein complexes in snake venom. Cell. Mol. Life Sci. 66, 2851–2871 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Kini, R. M. & Koh, C. Y. Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: definition and nomenclature of interaction sites. Toxins 8, 284 (2016).

    Article  PubMed Central  Google Scholar 

  79. Sanchez, E. F., Flores-Ortiz, R. J., Alvarenga, V. G. & Eble, J. A. Direct fibrinolytic snake venom metalloproteinases affecting hemostasis: structural, biochemical features and therapeutic potential. Toxins 9, 392 (2017).

    Article  PubMed Central  Google Scholar 

  80. Bledzka, K., Smyth, S. S. & Plow, E. F. Integrin αIIbβ3 from discovery to efficacious therapeutic target. Circ. Res. 112, 1189–1200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Takeda, S., Igarashi, T. & Mori, H. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases. FEBS Lett. 581, 5859–5864 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Lingott, T., Schleberger, C., Gutiérrez, J. M. & Merfort, I. High-resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: Insight into inhibitor binding. Biochemistry 48, 6166–6174 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Akao, P. K. et al. Structural studies of BmooMPα-I, a non-hemorrhagic metalloproteinase from Bothrops moojeni venom. Toxicon 55, 361–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Boldrini-França, J. et al. Beyond hemostasis: a snake venom serine protease with potassium channel blocking and potential antitumor activities. Sci. Rep. 10, 4476 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mackessy, S. P. in Toxins and Hemostasis (eds Kini, R., Clemetson, K., Markland, F., McLane, M. & Morita, T.) 519–557 (Springer, 2010).

  86. Vaiyapuri, S., Thiyagarajan, N., Hutchinson, E. G. & Gibbins, J. M. Sequence and phylogenetic analysis of viper venom serine proteases. Bioinformation 8, 763–772 2012).

  87. Kurtović, T. et al. VaSP1, catalytically active serine proteinase from Vipera ammodytes ammodytes venom with unconventional active site triad. Toxicon 77, 93–104 (2014).

    Article  PubMed  Google Scholar 

  88. Sousa, S. F. et al. Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. Wiley Interdisc. Rev. Mol. Sci. 7, 1281 (2017). A review of the computational methods being used to elucidate the snake venom enzymatic reactivity.

    Google Scholar 

  89. Chung, L. W. et al. The ONIOM method and its applications. Chem. Rev. 115, 5678–5796 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Amaro, R. E. & Mulholland, A. J. Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. Nat. Rev. Chem. 2, 148 (2018).

    Article  CAS  Google Scholar 

  91. Himo, F. Recent trends in quantum chemical modeling of enzymatic reactions. J. Am. Chem. Soc. 139, 6780–6786 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Estevão-Costa, M. I., Sanz-Soler, R., Johanningmeier, B. & Eble, J. A. Snake venom components in medicine: from the symbolic rod of Asclepius to tangible medical research and application. Int. J. Biochem. Cell Biol. 104, 94–113 (2018). This review describes the application of snake venoms in drug discovery.

    Article  PubMed  Google Scholar 

  93. Marsh, N. A. Diagnostic uses of snake venom. Haemostasis 31, 211–217 (2001).

    CAS  PubMed  Google Scholar 

  94. Francischetti, I. M. B. & Gil, M. R. in Transfusion Medicine and Hemostasis (eds Shaz, B. H., Hillyer, C. D. & Reyes Gil, M.) 969–975 (Elsevier, 2019).

  95. Schmidtko, A., Lötsch, J., Freynhagen, R. & Geisslinger, G. Ziconotide for treatment of severe chronic pain. Lancet 375, 1569–1577 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Miljanich, G. P. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11, 3029–3040 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Rocha, E. S. M., Beraldo, W. T. & Rosenfeld, G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am. J. Physiol. 156, 261–273 (1949).

    Article  Google Scholar 

  98. Ferreira, S. H. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. Br. J. Pharmacol. Chemother. 24, 163–169 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ferreira, S. H., Bartelt, D. C. & Greene, L. J. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry 9, 2583–2593 (1970).

    Article  CAS  PubMed  Google Scholar 

  100. McCleary, R. J. R. & Kini, R. M. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon 62, 56–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Ferreira, S. H., Greene, L. J., Alabaster, V. A., Bakhle, Y. S. & Vane, J. R. Activity of various fractions of bradykinin potentiating factor against angiotensin-I converting enzyme. Nature 225, 379–380 (1970).

    Article  CAS  PubMed  Google Scholar 

  102. Cushman, D. W. & Ondetti, M. A. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension 17, 589–592 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Bryan, J. From snake venom to ACE inhibitor — the discovery and rise of captopril. Pharm. J. 282, 455–456 (2009).

    Google Scholar 

  104. Patchett, A. A. The chemistry of enalapril. Br. J. Clin. Pharmacol. 18, 201–207 (1984).

    Article  CAS  Google Scholar 

  105. Acharya, K. R., Sturrock, E. D., Riordan, J. F. & Ehlers, M. R. W. ACE revisited: a new target for structure-based drug design. Nat. Rev. Drug Discov. 2, 891–902 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Acharya, G., Wang, W., Vavilala, D. T., Mukherji, M. & Lee, C. H. in Advanced Drug Delivery (eds Mitra, A. K., Lee, C. H. & Cheng, K.) 341–364 (Wiley, 2014).

  107. Lazarovici, P., Marcinkiewicz, C. & Lelkes, P. I. From snake venom’s disintegrins and C-type lectins to anti-platelet drugs. Toxins 11, 303 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  108. Topol, E. J., Byzova, T. V. & Plow, E. F. Platelet GPIIb-IIIa blockers. Lancet 353, 227–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Lang, S. H. et al. Treatment with tirofiban for acute coronary syndrome (ACS): a systematic review and network analysis. Curr. Med. Res. Opin. 28, 351–370 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Barrett, J. S. et al. Pharmacokinetics and pharmacodynamics of MK-383, a selective nonpeptide platelet glycoprotein-IIb/IIIa receptor antagonist, in healthy men. Clin. Pharmacol. Ther. 56, 377–388 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Gan, Z. R., Gould, R. J., Jacobs, J. W., Friedman, P. A. & Polokoff, M. A. Echistatin — a potent platelet-aggregation inhibitor from the venom of the viper Echis carinatus. J. Biol. Chem. 263, 19827–19832 (1988).

    Article  CAS  PubMed  Google Scholar 

  112. Hartman, G. D. Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J. Med. Chem. 35, 4640–4642 (1992).

    Article  CAS  PubMed  Google Scholar 

  113. Van Drie, J. H. Computer-aided drug design: the next 20 years. J. Comput. Aided Mol. Des. 21, 591–601 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Scarborough, R. M. et al. Design of potent and specific integrin antagonists — peptide antagonists with high specificity for glycoprotein-IIb–IIIa. J. Biol. Chem. 268, 1066–1073 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Scarborough, R. M. et al. Barbourin — a GPIIb–IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J. Biol. Chem. 266, 9359–9362 (1991).

    Article  CAS  PubMed  Google Scholar 

  116. Scarborough, R. M. Development of eptifibatide. Am. Heart J. 138, 1093–1104 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. O’Shea, J. C. & Tcheng, J. E. Eptifibatide: a potent inhibitor of the platelet receptor integrin glycoprotein IIb/IIIa. Expert Opin. Pharmacother. 3, 1199–1210 (2002).

    Article  PubMed  Google Scholar 

  118. Masuda, H. Batroxobin accelerated tissue repair via neutrophil extracellular trap regulation and defibrinogenation in a murine ischemic hindlimb model. PLoS ONE 14, e0220898 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vu, T. T. Batroxobin binds fibrin with higher affinity and promotes clot expansion to a greater extent than thrombin. J. Biol. Chem. 288, 16862–16871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Waheed, H., Moin, S. F. & Choudhary, M. I. Snake venom: from deadly toxins to life-saving therapeutics. Curr. Med. Chem. 24, 1874–1891 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Gazerani, P. & Cairns, B. E. Venom-based biotoxins as potential analgesics. Expert Rev. Neurother. 14, 1261–1274 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Lin, F., Reid, P. F. & Qin, Z.-H. Cobrotoxin could be an effective therapeutic for COVID-19. Acta Pharmacol. Sin. 41, 1258–1260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pérez-Peinado, C. et al. Hitchhiking with nature: snake venom peptides to fight cancer and superbugs. Toxins 12, 255 (2020). This review describes the application of snake venoms to treat cancer and infection by antibiotic-resistant microorganisms.

    Article  PubMed Central  Google Scholar 

  124. Li, B. X. et al. In vitro assessment and phase I randomized clinical trial of anfibatide, a snake-venom-derived anti-thrombotic agent targeting human platelet GPIbα. Sci. Rep. 11, 11663 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gao, Y. et al. Crystal structure of agkisacucetin, a GPIb-binding snake C-type lectin that inhibits platelet adhesion and aggregation. Proteins 80, 1707–1711 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Jackson, S. P. The growing complexity of platelet aggregation. Blood 109, 5087–5095 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Guo, Y. et al. Balancing the expression and production of a heterodimeric protein: recombinant agkisacutacin as a novel antithrombotic drug candidate. Sci. Rep. 5, 11730 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Tasima, L. J. et al. Crotamine in Crotalus durissus: distribution according to subspecies and geographic origin, in captivity or nature. J. Venom. Anim. Toxins Incl. Trop. Dis. 26, 20190053 (2020).

    Article  Google Scholar 

  129. Moreira, L. A. et al. Acute toxicity, antinociceptive, and anti-inflammatory activities of the orally administered crotamine in mice. Naunyn Schmiedebergs Arch. Pharmacol. 394, 1703–1711 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Nicastro, G. et al. Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom. Eur. J. Biochem. 270, 1969–1979 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Kerkis, A. et al. Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J. 18, 1407–1409 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Hayashi, M. A. F. et al. Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon 52, 508–517 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Kerkis, A., Hayashi, M. A. F., Yamane, T. & Kerkis, I. Properties of cell penetrating peptides (CPPs). IUBMB Life 58, 7–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Pereira, A. et al. Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opin. Investig. Drugs 20, 1189–1200 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Campeiro, J. D. et al. Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile. Amino Acids 50, 267–278 (2018). This study demonstrates the promising antitumoral activity of crotamine through oral administration.

    Article  CAS  PubMed  Google Scholar 

  136. Mancin, A. C. et al. The analgesic activity of crotamine, a neurotoxin from Crotalus durissus terrificus (South American rattlesnake) venom: a biochemical and pharmacological study. Toxicon 36, 1927–37 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. de Carvalho Porta, L. et al. Biophysical and pharmacological characterization of a full-length synthetic analog of the antitumor polypeptide crotamine. J. Mol. Med. 98, 1561–1571 (2020).

    Article  PubMed  Google Scholar 

  138. Mambelli-Lisboa, N. C., Sciani, J. M., Silva, A. R. B. P. D. & Kerkis, I. Co-localization of crotamine with internal membranes and accentuated accumulation in tumor cells. Molecules 23, 968 (2018).

    Article  PubMed Central  Google Scholar 

  139. Park, J. Y. et al. Antinociceptive and anti-inflammatory effects of recombinant crotamine in mouse models of pain. Toxins 13, 707 (2021). An in vivo study of the antinociceptive and anti-inflammatory activity of crotamine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Schweitz, H., Vigne, P., Moinier, D., Frelin, C. & Lazdunski, M. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J. Biol. Chem. 267, 13928–13932 (1992).

    Article  CAS  PubMed  Google Scholar 

  141. Volpe, M., Rubattu, S. & Burnett, J. Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur. Heart J. 35, 419–425 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. O’Connor, C. M. M. et al. Effect of nesiritide in patients with acute decompensated heart failure. N. Engl. J. Med. 365, 32–43 (2011).

    Article  PubMed  Google Scholar 

  143. Matsue, Y. et al. Carperitide is associated with increased in-hospital mortality in acute heart failure: a propensity score-matched analysis. J. Card. Fail. 21, 859–864 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Ichiki, T., Dzhoyashvili, N. & Burnett, J. C. Jr Natriuretic peptide based therapeutics for heart failure: cenderitide. A novel first-in-class designer natriuretic peptide. Int. J. Cardiol. 281, 166–171 (2019).

    Article  PubMed  Google Scholar 

  145. Kawakami, R. et al. A human study to evaluate safety, tolerability, and cyclic GMP activating properties of cenderitide in subjects with stable chronic heart failure. Clin. Pharmacol. Ther. 104, 546–552 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Diochot, S. et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 490, 552–557 (2012). This paper reports the discovery of a black mamba 3FTx that targets acid-sensing ion channels with potent analgesic activity.

    Article  CAS  PubMed  Google Scholar 

  147. Yoder, N., Yoshioka, C. & Gouaux, E. Gating mechanisms of acid-sensing ion channels. Nature 555, 397–401 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wemmie, J. A., Taugher, R. J. & Kreple, C. J. Acid-sensing ion channels in pain and disease. Nat. Rev. Neurosci. 14, 461–471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schroeder, C. I. et al. Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2. Angew. Chem. Int. Ed. 53, 1017–1020 (2014).

    Article  CAS  Google Scholar 

  150. Mourier, G. et al. Mambalgin-1 pain-relieving peptide, stepwise solid-phase synthesis, crystal structure, and functional domain for acid-sensing ion channel 1a Inhibition. J. Biol. Chem. 291, 2616–2629 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Diochot, S. et al. Analgesic effects of mambalgin peptide inhibitors of acid-sensing ion channels in inflammatory and neuropathic pain. Pain 157, 552–559 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Verkest, C. et al. Effects of systemic inhibitors of acid-sensing ion channels 1 (ASIC1) against acute and chronic mechanical allodynia in a rodent model of migraine. Br. J. Pharmacol. 175, 4154–4166 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sun, D. M. et al. Structural insights into human acid-sensing ion channel 1a inhibition by snake toxin mambalgin1. eLife 9, 57096 (2020). This paper reports structural details of the working mechanism of the analgesic mambalgin-1 in blocking the acid-sensing ion channel 1a.

    Article  Google Scholar 

  154. Salinas, M. et al. Mambalgin-1 pain-relieving peptide locks the hinge between α4 and α5 helices to inhibit rat acid-sensing ion channel 1a. Neuropharmacology 185, 108453 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Yacoub, T. Antimicrobials from venomous animals: an overview. Molecules 25, 2402 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  156. Siniavin, A. E. et al. Snake venom phospholipase A2s exhibit strong virucidal activity against SARS-CoV-2 and inhibit the viral spike glycoprotein interaction with ACE2. Cell Mol. Life Sci. 78, 7777–7794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Santos-Filho, N. A. et al. Antibacterial activity of the non-cytotoxic peptide (p-BthTX-I)2 and its serum degradation product against multidrug-resistant bacteria. Molecules 22, 1898 (2017).

    Article  PubMed Central  Google Scholar 

  158. Freire, M. C. L. C. et al. Non-toxic dimeric peptides derived from the bothropstoxin-I are potent SARS-CoV-2 and papain-like protease inhibitors. Molecules 26, 4896 (2021). A report of snake venom peptides with antiviral activity towards SARS-CoV-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Domling, A. & Gao, L. Chemistry and biology of SARS-CoV-2. Chem 6, 1283–1295 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yang, J. et al. Freely accessible chemical database resources of compounds for in silico drug discovery. Curr. Med. Chem. 26, 7581–7597 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47, 930–940 (2019).

    Article  Google Scholar 

  162. Sterling, T. & Irwin, J. J. ZINC 15-ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. van Hilten, N. et al. Virtual compound libraries in computer-assisted drug discovery. J. Chem. Inf. Model. 59, 644–651 (2019).

    Article  PubMed  Google Scholar 

  164. Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 17, 97–113 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Warkentin, T. E., Greinacher, A. & Koster, A. Bivalirudin. Thromb. Haemost. 99, 830–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Barnett, A. Exenatide. Expert Opin. Pharmacother. 8, 2593–2608 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. King, G. F. in Venoms to Drugs: Venom as a Source for the Development of Human Therapeutics (ed. King, G. F.) 37–79 (Royal Society of Chemistry, 2015).

  168. Kini, R. M. Toxins in thrombosis and haemostasis: potential beyond imagination. J. Thromb. Haemost. 9, 195–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Kini, R. M. & Evans, H. J. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 27, 613–35 (1989).

    Article  CAS  PubMed  Google Scholar 

  171. Kini, R. M. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 42, 827–840 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Croll, T. I., Sammito, M. D., Kryshtafovych, A. & Read, R. J. Evaluation of template-based modeling in CASP13. Proteins Struct. Funct. Bioinform. 87, 1113–1127 (2019).

    Article  CAS  Google Scholar 

  173. Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Das, R. & Baker, D. Macromolecular modeling with Rosetta. Annu. Rev. Biochem. 77, 363–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Wang, Y., Virtanen, J., Xue, Z. & Zhang, Y. I-TASSER-MR: automated molecular replacement for distant-homology proteins using iterative fragment assembly and progressive sequence truncation. Nucleic Acids Res. 45, 429–434 (2017).

    Article  Google Scholar 

  176. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 54, 5.6.1–5.6.37 (2020).

    Google Scholar 

  177. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lensink, M. F., Nadzirin, N., Velankar, S. & Wodak, S. J. Modeling protein–protein, protein–peptide, and protein–oligosaccharide complexes: CAPRI. Proteins 88, 916–938 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Moreira, I. S., Fernandes, P. A. & Ramos, M. J. Protein–protein docking dealing with the unknown. J. Comput. Chem. 31, 317–342 (2010).

    CAS  PubMed  Google Scholar 

  180. Simões, I. C. M. et al. Properties that rank protein–protein docking poses with high accuracy. Phys. Chem. Chem. Phys. 20, 20927–20942 (2018). A promising computational method to predict toxin–target complexation structures.

    Article  PubMed  Google Scholar 

  181. Moreira, I. S., Martins, J. M., Coimbra, J. T. S., Ramos, M. J. & Fernandes, P. A. A new scoring function for protein–protein docking that identifies native structures with unprecedented accuracy. Phys. Chem. Chem. Phys. 17, 2378–2387 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Quignot, C. et al. InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs. Nucleic Acids Res. 46, 408–416 (2018).

    Article  Google Scholar 

  183. Kozakov, D. et al. The ClusPro web server for protein-protein docking. Nat. Protoc. 12, 255–278 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Park, T., Baek, M., Lee, H. & Seok, C. GalaxyTongDock: symmetric and asymmetric ab initio protein–protein docking web server with improved energy parameters. J. Comput. Chem. 40, 2413–2417 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).

    Article  PubMed  Google Scholar 

  186. Moreira, I. S., Fernandes, P. A. & Ramos, M. J. Hot spots — a review of the protein–protein interface determinant amino-acid residues. Proteins Struct. Funct. Bioinform. 68, 803–812 (2007).

    Article  CAS  Google Scholar 

  187. Martins, S. A. et al. Computational alanine scanning mutagenesis: MM-PBSA vs TI. J. Chem. Theory Comput. 9, 1311–1319 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Simões, I. C. M., Costa, I. P. D., Coimbra, J. T. S., Ramos, M. J. & Fernandes, P. A. New parameters for higher accuracy in the computation of binding free energy differences upon alanine scanning mutagenesis on protein–protein interfaces. J. Chem. Inf. Model. 57, 60–72 (2017). An accurate computational method to identify toxin–target binding regions and binding epitopes.

    Article  PubMed  Google Scholar 

  189. Geng, C., Xue, L. C., Roel-Touris, J. & Bonvin, A. M. J. J. Finding the ΔΔG spot: are predictors of binding affinity changes upon mutations in protein–protein interactions ready for it? Wiley Interdiscip. Rev. Mol. Sci. 9, 1410 (2019).

    Google Scholar 

  190. Barlow, K. A. et al. Flex ddG: Rosetta ensemble-based estimation of changes in protein–protein binding affinity upon mutation. J. Phys. Chem. B 122, 5389–5399 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kortemme, T. & Baker, D. A simple physical model for binding energy hot spots in protein–protein complexes. Proc. Natl Acad. Sci. USA 99, 14116–21 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sribar, J. et al. The neurotoxic secreted phospholipase A2 from the Vipera a. ammodytes venom targets cytochrome c oxidase in neuronal mitochondria. Sci. Rep. 9, 283 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Meenakshisundaram, R., Sweni, S. & Thirumalaikolundusubramanian, P. Hypothesis of snake and insect venoms against human immunodeficiency virus: a review. AIDS Res. Ther. 6, 25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Fenard, D. et al. Secreted phospholipases A2, a new class of HIV inhibitors that block virus entry into host cells. J. Clin. Invest. 104, 611–618 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Muller, V. D. M. et al. Crotoxin and phospholipases A2 from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses. Toxicon 59, 507–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Ahmed, N. K., Tennant, K. D., Markland, F. S. & LACZ, J. P. Biochemical characteristics of fibrolase, a fibrinolytic protease from snake venom. Haemostasis 20, 147–154 (1990).

    CAS  PubMed  Google Scholar 

  197. Boldrini-Franca, J., Pinheiro-Junior, E. L. & Arantes, E. C. Functional and biological insights of rCollinein-1, a recombinant serine protease from Crotalus durissus collilineatus. J. Venom. Anim. Toxins Incl. Trop. Dis. 25, 147118 (2019).

    Article  Google Scholar 

  198. Funk, C., Gmür, J., Herold, R. & Straub, P. W. Reptilase-R — a new reagent in blood coagulation. Br. J. Haematol. 21, 43–52 (1971).

    Article  CAS  PubMed  Google Scholar 

  199. Graziano, F. et al. Autologous fibrin sealant (Vivostat(R)) in the neurosurgical practice. Part I: intracranial surgical procedure. Surg. Neurol. Int. 6, 77 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Graziano, F., Maugeri, R., Basile, L., Meccio, F. & Iacopino, D. G. Aulogous fibrin sealant (Vivostat(R)) in the neurosurgical practice. Part II: vertebro-spinal procedures. Surg. Neurol. Int. 7, 77–82 (2016).

    Article  Google Scholar 

  201. Koivula, K., Rondinelli, S. & Nasman, J. The three-finger toxin MTα is a selective α2B-adrenoceptor antagonist. Toxicon 56, 440–447 (2010).

    Article  CAS  PubMed  Google Scholar 

  202. Barnwal, B. et al. Ringhalexin from Hemachatus haemachatus: a novel inhibitor of extrinsic tenase complex. Sci. Rep. 6, 25935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Banerjee, Y. et al. Biophysical characterization of anticoagulant hemextin AB complex from the venom of snake Hemachatus haemachatus. Biophys. J. 93, 3963–76 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chanda, C., Sarkar, A., Sistla, S. & Chakrabarty, D. Anti-platelet activity of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom. Biochem. Biophys. Res. Commun. 441, 550–554 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Fernandez-Gomez, R. et al. Growth inhibition of Trypanosoma cruzi and Leishmania donovani infantum by different snake venoms — preliminary identification of proteins from Cerastes cerastes venom which interact with the parasites. Toxicon 32, 875–882 (1994).

    Article  CAS  PubMed  Google Scholar 

  206. Costa Torres, A. F. et al. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: phospholipase A2 and l-amino acid oxidase. Toxicon 55, 795–804 (2010).

    Article  PubMed  Google Scholar 

  207. Sakurai, Y. et al. Anticoagulant activity of M-LAO, l-amino acid oxidase purified from Agkistrodon halys blomhoffii, through selective inhibition of factor IX. Biochim. Biophys. Acta 1649, 51–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  208. Adade, C. M. et al. Crovirin, a snake venom cysteine-rich secretory protein (CRISP) with promising activity against trypanosomes and Leishmania. PLoS Negl. Trop. Dis. 8, 3252 (2014).

    Article  Google Scholar 

  209. Badari, J. C., Díaz-Roa, A., Rocha, M. M. T., Mendonça, R. Z. & Silva Junior, P. I. D. Patagonin-CRISP: antimicrobial activity and source of antimicrobial molecules in Duvernoy’s gland secretion (Philodryas patagoniensis snake). Front. Pharmacol. 11, 586705 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Tadokoro, T., Modahl, C. M., Maenaka, K. & Aoki-Shioi, N. Cysteine-rich secretory proteins (CRISPs) from venomous snakes: an overview of the functional diversity in a large and underappreciated superfamily. Toxins 12, 175 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  211. Assafim, M. et al. Exploiting the antithrombotic effect of the (pro)thrombin inhibitor bothrojaracin. Toxicon 119, 46–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Shen, D.-K. et al. Ca2+-induced binding of anticoagulation factor II from the venom of Agkistrodon acutus with factor IX. Biopolymers 97, 818–824 (2012).

    Article  CAS  PubMed  Google Scholar 

  213. Zhang, Y. et al. Anticoagulation factor I, a snaclec (snake C-type lectin) from Agkistrodon acutus venom binds to FIX as well as FX: Ca2+ induced binding data. Toxicon 59, 718–723 (2012).

    Article  CAS  PubMed  Google Scholar 

  214. Rabelo, L. F. G. et al. Alternagin-C, a disintegrin-like protein from Bothrops alternatus venom, attenuates inflammation and angiogenesis and stimulates collagen deposition of sponge-induced fibrovascular tissue in mice. Int. J. Biol. Macromol. 140, 653–660 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Gilchrist, I. C. Platelet glycoprotein IIb/IIIa inhibitors in percutaneous coronary intervention: focus on the pharmacokinetic–pharmacodynamic relationships of eptifibatide. Clin. Pharmacokinet. 42, 703–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  216. Lucena, S. E. et al. Anti-invasive and anti-adhesive activities of a recombinant disintegrin, r-viridistatin 2, derived from the Prairie rattlesnake (Crotalus viridis viridis). Toxicon 60, 31–9 (2012).

    Article  CAS  PubMed  Google Scholar 

  217. Kuo, Y. J., Chung, C. H. & Huang, T. F. From discovery of snake venom disintegrins to a safer therapeutic antithrombotic agent. Toxins 11, 372 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  218. Cesar, P. H. S., Braga, M. A., Trento, M. V. C., Menaldo, D. L. & Marcussi, S. Snake venom disintegrins: an overview of their interaction with integrins. Curr. Drug Targets 20, 465–477 (2019).

    Article  PubMed  Google Scholar 

  219. Calvete, J. J. The continuing saga of snake venom disintegrins. Toxicon 62, 40–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Ciolek, J. et al. Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Proc. Natl Acad. Sci. USA 114, 7154–7159 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Colombo, A. L. et al. Effects of the natural peptide crotamine from a South American rattlesnake on Candida auris, an emergent multidrug antifungal resistant human pathogen. Biomolecules 9, 205 (2019).

    Article  PubMed Central  Google Scholar 

  222. El Chamy Maluf, S. et al. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides 78, 11–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Dal Mas, C. et al. Anthelmintic effects of a cationic toxin from a South American rattlesnake venom. Toxicon 116, 49–55 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Macedo, S. R. A. et al. Biodegradable microparticles containing crotamine isolated from Crotalus durissus terrificus display antileishmanial activity in vitro. Pharmacology 95, 78–86 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. Mackessy S. P. (ed.) Handbook of Venoms and Toxins of Reptiles (CRC, 2021). This book describes the composition, bioactivity, pathophysiology and medicinal applications of snake venom.

  226. Salvador, G. H. M., dos Santos, J. I., Lomonte, B. & Fontes, M. R. M. Crystal structure of a phospholipase A2 from Bothrops asper venom: insights into a new putative “myotoxic cluster”. Biochimie 133, 95–102 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Murakami, M. T. et al. Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug suramin. J. Mol. Biol. 350, 416–426 (2005).

    Article  CAS  PubMed  Google Scholar 

  228. Kalita, B., Mackessy, S. P. & Mukherjee, A. K. Proteomic analysis reveals geographic variation in venom composition of Russell’s viper in the Indian subcontinent: implications for clinical manifestations post-envenomation and antivenom treatment. Expert Rev. Proteomics 15, 837–849 (2018).

    Article  CAS  PubMed  Google Scholar 

  229. Favaloro, E. J. The Russell viper venom time (RVVT) test for investigation of lupus anticoagulant (LA). Am. J. Hematol. 94, 1290–1296 (2019).

    Article  PubMed  Google Scholar 

  230. Chen, H.-S., Tsai, H.-Y., Wang, Y.-M. & Tsai, I.-H. P-III hemorrhagic metalloproteinases from Russell’s viper venom: cloning, characterization, phylogenetic and functional site analyses. Biochimie 90, 1486–1498 (2008).

    Article  CAS  PubMed  Google Scholar 

  231. Nakayama, D., Ben Ammar, Y., Miyata, T. & Takeda, S. Structural basis of coagulation factor V recognition for cleavage by RVV-V. FEBS Lett. 585, 3020–3025 (2011).

    Article  CAS  PubMed  Google Scholar 

  232. You, W.-K. et al. Functional characterization of recombinant batroxobin, a snake venom thrombin-like enzyme, expressed from Pichia pastoris. FEBS Lett. 571, 67–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  233. Sousa, L. F. et al. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon. J. Proteom. 159, 32–46 (2017).

    Article  CAS  Google Scholar 

  234. Núñez, V. et al. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. J. Proteom. 73, 57–78 (2009).

    Article  Google Scholar 

  235. Calvete, J. J. et al. Snake population venomics and antivenomics of Bothrops atrox: paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J. Proteom. 74, 510–527 (2011).

    Article  CAS  Google Scholar 

  236. Kohlhoff, M. et al. Exploring the proteomes of the venoms of the Peruvian pit vipers Bothrops atrox, B. barnetti and B. pictus. J. Proteom. 75, 2181–2195 (2012).

    Article  CAS  Google Scholar 

  237. Hatakeyama, D. M. et al. Venom complexity of Bothrops atrox (common lancehead) siblings. J. Venom. Anim. Toxins Incl. Trop. Dis. 26, 20200018 (2020).

    Article  Google Scholar 

  238. Wallnoefer, H. G., Lingott, T., Gutiérrez, J. M., Merfort, I. & Liedl, K. R. Backbone flexibility controls the activity and specificity of a protein–protein interface: specificity in snake venom metalloproteases. J. Am. Chem. Soc. 132, 10330–10337 (2010).

    Article  CAS  PubMed  Google Scholar 

  239. Camacho, E., Escalante, T., Remans, K., Gutiérrez, J. M. & Rucavado, A. Site mutation of residues in a loop surrounding the active site of a PI snake venom metalloproteinase abrogates its hemorrhagic activity. Biochem. Biophys. Res. Commun. 512, 859–863 (2019). This study provides insight into the molecular-level mechanism of physiological substrate recognition by SVMPs.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from FCT/MCTES — the Portuguese Foundation for Science and Technology — through project PTDC/QUI-OUT/1401/2020 and from the Associate Laboratory for Green Chemistry (LAQV), which is financed by FCT/MCTES within the scope of project UIDB/50006/2020. M.F.V. acknowledges FCT/MCTES for PhD grant SFRH/BD/119206/2016. The authors thank the technological platforms network of the Oswaldo Cruz Foundation (FIOCRUZ) for the support and financing of the services provided by the Flow Cytometry and the Bioprospection and Molecular Interaction facilities/FIOCRUZ Rondônia and o Programa de Excelência em Pesquisa (PROEP) da FIOCRUZ Rondônia. The authors also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Rondônia (FAPERO) and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental (INCT-EpiAmO) from Brazil for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and edited the article prior to submission. P.A.F., A.L.O., M.F.V. and M.J.R. also researched the data and contributed to the writing of the article.

Corresponding author

Correspondence to Pedro A. Fernandes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Juan J. Calvete and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Reptile Database: http://www.reptile-database.org/

Supplementary information

Glossary

Neurotoxicity

The ability of a substance to negatively affect the structure or function of the central or peripheral nervous system.

Haemotoxicity

The ability of a substance to negatively affect the cardiovascular system or disrupt haemostasis.

Cytotoxicity

The ability of a substance to negatively affect the structure or function of cells.

Toxins

Toxic compounds produced by a living organism or a virus.

Elapidae

Family of >300 venomous snakes with fixed front fangs. Their venom is often neurotoxic. This family includes the mambas, cobras, coral snakes and most Australian snakes, among others.

Viperidae

Family of >300 venomous heavy-body snakes with long, retractable front fangs. Their venom is frequently haemotoxic and cytotoxic. This family includes Old World vipers, rattlesnakes and lanceheads, among others.

Medically important snakes

Snake species that cause notable morbidity and mortality. This classification depends on the venom toxicity, the frequency of snake–human interactions, the aggressiveness of the snake and the health-care facilities.

Myotoxicity

Cytotoxicity specifically directed to myocytes (muscle cells).

C-type lectins

Superfamily of >1,000 proteins, most of which bind carbohydrates in a Ca2+-dependent manner. The proteins share a C-type lectin-like domain in their carbohydrate-binding region. In snake venoms, they are haemotoxic.

C-type lectin-like proteins

A protein family whose members feature a domain with the C-type lectin fold, which lacks critical structural elements to recognize and bind sugars. In snake venoms, these proteins are haemotoxic.

Sarcolemma

Specialized type of cell plasma membrane that surrounds muscle cells. It is frequently the target of snake venom myotoxins.

Lysosomes

Membrane-bound organelle containing digestive, hydrolytic enzymes whose function is primarily the degradation of macromolecules, old cell parts and microorganisms. Lysosomes represent the waste disposal of a cell.

Neuromuscular junction

A specialized synapse established between a motor neuron and a muscle fibre through which signals for muscle contraction are transmitted.

Fibrinogen

A protein complex in the plasma of vertebrates that is enzymatically and sequentially converted into fibrin and a fibrin-based blood clot. Fibrinogen is responsible for stopping bleeding from blood vessels.

Intrathecal administration

Invasive drug administration by injection through the skull or the spine, allowing the drug to reach the cerebrospinal fluid, and thus the brain, without crossing the blood–brain barrier.

Natriuresis

The process of excretion of sodium in the urine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, A.L., Viegas, M.F., da Silva, S.L. et al. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 6, 451–469 (2022). https://doi.org/10.1038/s41570-022-00393-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-022-00393-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research