Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Counterintuitive chemoselectivity in the reduction of carbonyl compounds

Abstract

The reactivity of carbonyl functional groups largely depends on the substituents on the carbon atom. Reversal of the commonly accepted order of reactivity of different carbonyl compounds requires novel synthetic approaches. Achieving selective reduction will enable the transformation of carbon resources such as plastic waste, carbon dioxide and biomass into valuable chemicals. In this Review, we explore the reduction of less reactive carbonyl groups in the presence of those typically considered more reactive. We discuss reductions, including the controlled reduction of ureas, amides and esters to aldehydes, as well as chemoselective reductions of carbonyl groups, including the reduction of ureas over carbamates, amides and esters; the reduction of amides over esters, ketones and aldehydes; and the reduction of ketones over aldehydes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selective transformation of carbonyl compounds.
Fig. 2: Selective hydrogenolysis of ureas.
Fig. 3: Reaction pathways of amide hydrogenation.
Fig. 4: Controlled and chemoselective reduction of amides through C–N bond cleavage.
Fig. 5: Controlled and chemoselective reduction of amides through C–O bond cleavage.
Fig. 6: Controlled reduction of esters to aldehydes.
Fig. 7: Chemoselective reduction of ketones over aldehydes.

Similar content being viewed by others

References

  1. Dub, P. A. & Ikariya, T. Catalytic reductive transformations of carboxylic and carbonic acid derivatives using molecular hydrogen. ACS Catal. 2, 1718–1741 (2012).

    CAS  Google Scholar 

  2. Volkov, A., Tinnis, F., Slagbrand, T., Trillo, P. & Adolfsson, H. Chemoselective reduction of carboxamides. Chem. Soc. Rev. 45, 6685–6697 (2016).

    CAS  PubMed  Google Scholar 

  3. Werkmeister, S., Junge, K. & Beller, M. Catalytic hydrogenation of carboxylic acid esters, amides, and nitriles with homogeneous catalysts. Org. Process Res. Dev. 18, 289–302 (2014).

    CAS  Google Scholar 

  4. Smith, A. M. & Whyman, R. Review of methods for the catalytic hydrogenation of carboxamides. Chem. Rev. 114, 5477–5510 (2014).

    CAS  PubMed  Google Scholar 

  5. Cabrero-Antonino, J. R., Adam, R., Papa, V. & Beller, M. Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen. Nat. Commun. 11, 3893 (2020). This review covers the historical background of the hydrogenation of amide derivatives.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1989).

  7. Senatore, R., Ielo, L., Monticelli, S., Castoldi, L. & Pace, V. Weinreb amides as privileged acylating agents for accessing α-substituted ketones. Synthesis 51, 2792–2808 (2019).

    CAS  Google Scholar 

  8. Wuts, P. G. M. Greene’s Protective Groups in Organic Synthesis 5th edn (Wiley, 2014).

  9. Yahata, K. & Fujioka, H. In situ protection methodology in carbonyl chemistry. Chem. Pharm. Bull. 62, 1–11 (2014).

    CAS  Google Scholar 

  10. Young, I. S. & Baran, P. S. Protecting-group-free synthesis as an opportunity for invention. Nat. Chem. 1, 193–205 (2009).

    CAS  PubMed  Google Scholar 

  11. Afagh, N. A. & Yudin, A. K. Chemoselectivity and the curious reactivity preferences of functional groups. Angew. Chem. Int. Ed. 49, 262–310 (2010).

    CAS  Google Scholar 

  12. Mahatthananchai, J., Dumas, A. M. & Bode, J. W. Catalytic selective synthesis. Angew. Chem. Int. Ed. 51, 10954–10990 (2012).

    CAS  Google Scholar 

  13. Trader, D. J. & Carlson, E. E. Chemoselective hydroxyl group transformation: an elusive target. Mol. Biosyst. 8, 2484–2493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kristensen, T. E. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: history, scope and applications. Beilstein J. Org. Chem. 11, 446–468 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shafir, A., Lichtor, P. A. & Buchwald, S. L. N- versus O-arylation of aminoalcohols: orthogonal selectivity in copper-based catalysts. J. Am. Chem. Soc. 129, 3490–3491 (2007).

    CAS  PubMed  Google Scholar 

  16. Ohshima, T., Iwasaki, T., Maegawa, Y., Yoshiyama, A. & Mashima, K. Enzyme-like chemoselective acylation of alcohols in the presence of amines catalyzed by a tetranuclear zinc cluster. J. Am. Chem. Soc. 130, 2944–2945 (2008).

    CAS  PubMed  Google Scholar 

  17. Strambeanu, I. I. & White, M. C. Catalyst-controlled C–O versus C–N allylic functionalization of terminal olefins. J. Am. Chem. Soc. 135, 12032–12037 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Uesugi, S., Li, Z., Yazaki, R. & Ohshima, T. Chemoselective catalytic conjugate addition of alcohols over amines. Angew. Chem. Int. Ed. 53, 1611–1615 (2014).

    CAS  Google Scholar 

  19. Fernandes, A. C. Reductive depolymerization as an efficient methodology for the conversion of plastic waste into value-added compounds. Green Chem. 23, 7330–7360 (2021).

    CAS  Google Scholar 

  20. Kumar, A. & Gao, C. Homogeneous (de)hydrogenative catalysis for circular chemistry—using waste as a resource. ChemCatChem 13, 1105–1134 (2021).

    CAS  Google Scholar 

  21. Liguori, F., Moreno-Marrodán, C. & Barbaro, P. Valorisation of plastic waste via metal-catalysed depolymerisation. Beilstein J. Org. Chem. 17, 589–621 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, C. & El-Sepelgy, O. Reductive depolymerization of plastics catalyzed with transition metal complexes. Curr. Opin. Green Sustain. Chem. 32, 100547 (2021).

    CAS  Google Scholar 

  23. Lee, K., Jing, Y., Wang, Y. & Yan, N. A unified view on catalytic conversion of biomass and waste plastics. Nat. Rev. Chem. 6, 635–652 (2022).

    PubMed  PubMed Central  Google Scholar 

  24. Khopade, K. V., Chikkali, S. H. & Barsu, N. Metal-catalyzed plastic depolymerization. Cell Rep. Phys. Sci. 4, 101341 (2023).

    CAS  Google Scholar 

  25. Kumar, A., Daw, P. & Milstein, D. Homogeneous catalysis for sustainable energy: hydrogen and methanol economies, fuels from biomass, and related topics. Chem. Rev. 122, 385–441 (2022).

    CAS  PubMed  Google Scholar 

  26. Sakakura, T., Choi, J.-C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).

    CAS  PubMed  Google Scholar 

  27. Addis, D., Das, S., Junge, K. & Beller, M. Selective reduction of carboxylic acid derivatives by catalytic hydrosilylation. Angew. Chem. Int. Ed. 50, 6004–6011 (2011).

    CAS  Google Scholar 

  28. Balaraman, E., Ben-David, Y. & Milstein, D. Unprecedented catalytic hydrogenation of urea derivatives to amines and methanol. Angew. Chem. Int. Ed. 50, 11702–11705 (2011).

    CAS  Google Scholar 

  29. Miura, T., Held, I. E., Oishi, S., Naruto, M. & Saito, S. Catalytic hydrogenation of unactivated amides enabled by hydrogenation of catalyst precursor. Tetrahedron Lett. 54, 2674–2678 (2013).

    CAS  Google Scholar 

  30. Kothandaraman, J. et al. Efficient reversible hydrogen carrier system based on amine reforming of methanol. J. Am. Chem. Soc. 139, 2549–2552 (2017).

    CAS  PubMed  Google Scholar 

  31. Miura, T., Naruto, M., Toda, K., Shimomura, T. & Saito, S. Multifaceted catalytic hydrogenation of amides via diverse activation of a sterically confined bipyridine–ruthenium framework. Sci. Rep. 7, 1586 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Xie, Y., Hu, P., Ben-David, Y. & Milstein, D. A reversible liquid organic hydrogen carrier system based on methanol-ethylenediamine and ethylene urea. Angew. Chem. Int. Ed. 58, 5105–5109 (2019).

    CAS  Google Scholar 

  33. Liu, X. et al. Hydrogenative depolymerization of silicon-modified polyureas. Chem. Commun. 58, 5415–5418 (2022).

    CAS  Google Scholar 

  34. Das, U. K., Kumar, A., Ben-David, Y., Iron, M. A. & Milstein, D. Manganese catalyzed hydrogenation of carbamates and urea derivatives. J. Am. Chem. Soc. 141, 12962–12966 (2019).

    CAS  PubMed  Google Scholar 

  35. Liu, X. & Werner, T. Indirect reduction of CO2 and recycling of polymers by manganese-catalyzed transfer hydrogenation of amides, carbamates, urea derivatives, and polyurethanes. Chem. Sci. 12, 10590–10597 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar, A. & Luk, J. Catalytic hydrogenation of urea derivatives and polyureas. Eur. J. Org. Chem. 2021, 4546–4550 (2021).

    CAS  Google Scholar 

  37. Zhou, W. et al. Depolymerization of technical-grade polyamide 66 and polyurethane materials through hydrogenation. ChemSusChem 14, 4176–4180 (2021).

    CAS  PubMed  Google Scholar 

  38. Zubar, V., Haedler, A. T., Schütte, M., Hashmi, A. S. K. & Schaub, T. Hydrogenative depolymerization of polyurethanes catalyzed by a manganese pincer complex. ChemSusChem 15, e202101606 (2022).

    CAS  PubMed  Google Scholar 

  39. Wei, Z., Li, H., Wang, Y. & Liu, Q. A tailored versatile and efficient NHC-based NNC-pincer manganese catalyst for hydrogenation of polar unsaturated compounds. Angew. Chem. Int. Ed. 62, e202301042 (2023).

    CAS  Google Scholar 

  40. Ding, J. et al. Direct synthesis of urea from carbon dioxide and ammonia. Nat. Commun. 14, 4586 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tao, Z., Rooney, C. L., Liang, Y. & Wang, H. Accessing organonitrogen compounds via C−N coupling in electrocatalytic CO2 reduction. J. Am. Chem. Soc. 143, 19630–19642 (2021).

    CAS  PubMed  Google Scholar 

  42. vom Stein, T. et al. Highly versatile catalytic hydrogenation of carboxylic and carbonic acid derivatives using a Ru-triphos complex: molecular control over selectivity and substrate scope. J. Am. Chem. Soc. 136, 13217–13225 (2014). This article demonstrates the hydrogenolysis of 1,3-diphenylurea to formanilide and aniline by a Ru catalyst.

    CAS  PubMed  Google Scholar 

  43. Zhu, J. et al. Highly efficient ruthenium-catalyzed semi-hydrogenation of urea derivatives to formamides. Chem. Eur. J. 29, e202300106 (2023).

    CAS  PubMed  Google Scholar 

  44. Zhu, J., Wang, Y., Yao, J. & Li, H. Switching the hydrogenation selectivity of urea derivatives via subtly tuning the amount and type of additive in the catalyst system. Chem. Sci. 15, 2089–2099 (2024).

    CAS  PubMed  Google Scholar 

  45. Iwasaki, T., Tsuge, K., Naito, N. & Nozaki, K. Chemoselectivity change in catalytic hydrogenolysis enabling urea-reduction to formamide/amine over more reactive carbonyl compounds. Nat. Commun. 14, 3279 (2023). This article demonstrates Ir-catalysed hydrogenolysis of ureas to formamides and amines even in the presence of ester, carbamate and amide, and its application to the chemical degradation of polyurea resins.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Khusnutdinova, J. R. & Milstein, D. Metal–ligand cooperation. Angew. Chem. Int. Ed. 54, 12236–12273 (2015).

    CAS  Google Scholar 

  47. Higashi, T., Kusumoto, S. & Nozaki, K. Cleavage of Si–H, B–H, and C–H bonds by metal–ligand cooperation. Chem. Rev. 119, 10393–10402 (2019).

    CAS  PubMed  Google Scholar 

  48. Ignatyev, I. A., Thielemans, W. & Beke, B. V. Recycling of polymers: a review. ChemSusChem 7, 1579–1593 (2014).

    CAS  PubMed  Google Scholar 

  49. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    CAS  Google Scholar 

  50. Langsted, C. R. et al. Isocyanate-free synthesis of ureas and polyureas via ruthenium catalyzed dehydrogenation of amines and formamides. J. Appl. Polym. Sci. 139, 52088 (2022).

    CAS  Google Scholar 

  51. Larizza, A., Brancaccio, G. & Lettieri, G. The reaction of substituted ureas with lithium aluminum hydride. I. A new synthesis of three-substituted formamidines. J. Org. Chem. 29, 3697–3700 (1964).

    CAS  Google Scholar 

  52. Kikugawa, Y., Yamada, S.-I., Nagashima, H. & Kaji, K. The reaction of substituted ureas with sodium borohydride in pyridine. Tetrahedron Lett. 10, 699–702 (1969).

    Google Scholar 

  53. Pouessel, J., Jacquet, O. & Cantat, T. Pushing back the limits of hydrosilylation: unprecedented catalytic reduction of organic ureas to formamidines. ChemCatChem 5, 3552–3556 (2013).

    CAS  Google Scholar 

  54. Chardon, A., Morisset, E., Rouden, J. & Blanchet, J. Recent advances in amide reductions. Synthesis 50, 984–997 (2018).

    CAS  Google Scholar 

  55. Wojcik, B. & Adkins, H. Catalytic hydrogenation of amides to amines. J. Am. Chem. Soc. 56, 2419–2424 (1934).

    CAS  Google Scholar 

  56. Arnott, G. E. in Comprehensive Organic Synthesis 2nd edn, Vol. 8 (ed. Knochel, P.) 410–445 (Elsevier, 2014).

  57. Nahm, S. & Weinreb, S. M. N-methoxy-N-methylamides as effective acylating agents. Tetrahedron Lett. 22, 3815–3818 (1981).

    CAS  Google Scholar 

  58. Douat, C., Heitz, A., Martinez, J. & Fehrentz, J.-A. Synthesis of N-protected α-amino aldehydes from their morpholine amide derivatives. Tetrahedron Lett. 41, 37–40 (2000).

    CAS  Google Scholar 

  59. Comins, D. L. & Brown, J. D. Directed lithiation of tertiary β-amino benzamides. J. Org. Chem. 51, 3566–3572 (1986).

    CAS  Google Scholar 

  60. Ried, W. & Königstein, F. J. Eine neue Aldehyd-Synthese Die hydrogenolytische Spaltung von N-Acyl-pyrazolen [in German]. Angew. Chem. 70, 165 (1958).

    CAS  Google Scholar 

  61. Ramegowda, N. S. et al. A new synthesis of aldehydes from acids via reduction of N-acyl saccharins using sodium dihydro bis-(2-methoxy-ethoxyl)aluminate. Tetrahedron 29, 3985–3986 (1973).

    CAS  Google Scholar 

  62. Liu, H. et al. An efficient multigram synthesis of the potent histamine H3 antagonist GT-2331 and the reassessment of the absolute configuration. J. Org. Chem. 69, 192–194 (2004).

    CAS  PubMed  Google Scholar 

  63. Nagao, Y., Kawabata, K., Seno, K. & Fujita, E. Utilisation of sulphur-containing leaving groups. Part 2. Monitored reduction of carboxylic acids into alcohols or aldehydes via 3-acyl-thiazolidine-2-thiones by sodium borohydride or di-isobutylaluminium hydride. J. Chem. Soc. Perkin Trans. 1, 2470–2473 (1980).

    Google Scholar 

  64. Izawa, T. & Mukaiyama, T. The partial reduction of carboxylic acids to aldehyde via 3-acylthiazolidine-2-thiones with diisobutylaluminum hydride. Chem. Lett. 6, 1443–1446 (1977).

    Google Scholar 

  65. Izawa, T. & Mukaiyama, T. The partial reduction of carboxylic acids to aldehydes via 3-acylthiazolidine-2-thiones with diisobutylaluminum hydride and with lithium tri-t-butoxyaluminum hydride. Bull. Chem. Soc. Jpn. 52, 555–558 (1979).

    CAS  Google Scholar 

  66. Brown, H. C. & Tsukamoto, A. The reaction of 1-acylaziridines with lithium aluminum hydride—a new aldehyde synthesis. J. Am. Chem. Soc. 83, 2016–2017 (1961).

    CAS  Google Scholar 

  67. Brown, H. C. & Tsukamoto, A. Selective reductions. I. The partial reduction of tertiary amides with lithium aluminum hydride. A new aldehyde synthesis via the 1-acylaziridines. J. Am. Chem. Soc. 83, 4549–4552 (1961).

    CAS  Google Scholar 

  68. Weygand, F. & Eberhardt, G. Darstellung von Aldehyden durch Reduktion von Carbonsäure-N-methylaniliden mit Lithiumaluminiumhydrid [in German]. Angew. Chem. 64, 458 (1952).

    Google Scholar 

  69. Weygand, F., Eberhardt, G., Linden, H., Schäfer, F. & Eigen, I. Darstellung von Aldehyden aus Carbonsäuren [in German]. Angew. Chem. 65, 525–531 (1953).

    CAS  Google Scholar 

  70. Weygand, F. & Linden, H. Darstellung von Aldehyden aus Carbonsäuren [in German]. Angew. Chem. 66, 174–175 (1954).

    CAS  Google Scholar 

  71. Weygand, F. & Mitgau, R. Aromatische Aldehyde aus Kohlenwasserstoffon über die Carbonsäure-N-methylanilide. Aldehyde aus Carbonsäuren. VI. Mitteil [in German]. Chem. Ber. 88, 301–308 (1955).

    CAS  Google Scholar 

  72. Weygand, F. & Bestmann, H. J. Homologe Aldehyde aus Carbonsäuren [in German]. Chem. Ber. 92, 528–529 (1959).

    CAS  Google Scholar 

  73. Wittig, G. & Hornberger, P. Über die Reduktion ungesättigter Säureamide zu ungesättigten Aldehyden; ein Beitrag zum Aufbau von Polyenketten [in German]. Liebigs Ann. 577, 11–25 (1952).

    CAS  Google Scholar 

  74. Brown, H. C. & Tsukamoto, A. Lithium diethoxyaluminohydride as a selective reducing agent—the reduction of dimethylamides to aldehydes. J. Am. Chem. Soc. 81, 502–503 (1959).

    CAS  Google Scholar 

  75. Brown, H. C. & Tsukamoto, A. Selective reductions. V. The partial reduction of tertiary amides by lithium di- and triethoxyaluminohydrides—a new aldehyde synthesis via the dimethylamides. J. Am. Chem. Soc. 86, 1089–1095 (1964).

    CAS  Google Scholar 

  76. Woo, S.-M., Kim, M.-E. & An, D.-K. New synthetic method of aldehydes from tertiary amides by lithium diisobutylpiperidinohydroaluminate (LDBPA). Bull. Korean Chem. Soc. 27, 1913–1914 (2006).

    CAS  Google Scholar 

  77. Im, S. H., Shin, W. K., Jaladi, A. K. & An, D. K. Copper diisobutyl-t-butoxyaluminum hydride: a novel reagent for chemoselective reduction of tertiary amides over esters. Tetrahedron Lett. 59, 2335–2340 (2018).

    CAS  Google Scholar 

  78. Cha, J. S. et al. Selective reduction with lithium bis- or tris(dialkylamino)aluminum hydrides. III. Reduction of primary carboxamides to aldehydes by lithium tris(diethylamino)aluminum hydride. Tetrahedron Lett. 32, 6903–6904 (1991).

    CAS  Google Scholar 

  79. Muraki, M. & Mukaiyama, T. Aminoaluminum hydride as new reducing agents. III. Selective reduction of carboxamides to aldehydes. Chem. Lett. 4, 878 (1975).

    Google Scholar 

  80. Yoon, N. M., Ahn, J. H., An, D. K. & Shon, Y. S. Sodium diethylpiperidinohydroaluminate, a new selective reducing agent. J. Org. Chem. 58, 1941–1944 (1993).

    CAS  Google Scholar 

  81. Zakharkin, L. I., Maslin, D. N. & Gavrilenko, V. V. The preparation of aldehydes by reduction of dimethylamides of carboxylic acids with sodium aluminohydride. Tetrahedron 25, 5555–5569 (1969).

    CAS  Google Scholar 

  82. Bailey, C. L., Joh, A. Y., Hurley, Z. Q., Anderson, C. L. & Singaram, B. Controlled reduction of tertiary amides to the corresponding alcohols, aldehydes, or amines using dialkylboranes and aminoborohydride reagents. J. Org. Chem. 81, 3619–3628 (2016).

    CAS  PubMed  Google Scholar 

  83. White, J. M., Tunoori, A. R. & Georg, G. I. A novel and expeditious reduction of tertiary amides to aldehydes using Cp2Zr(H)Cl. J. Am. Chem. Soc. 122, 11995–11996 (2000).

    CAS  Google Scholar 

  84. Spletstoser, J. T., White, J. M., Tunoori, A. R. & Georg, G. I. Mild and selective hydrozirconation of amides to aldehydes using Cp2Zr(H)Cl: scope and mechanistic insight. J. Am. Chem. Soc. 129, 3408–3419 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao, Y. & Snieckus, V. A practical in situ generation of the Schwartz reagent. Reduction of tertiary amides to aldehydes and hydrozirconation. Org. Lett. 16, 390–393 (2014).

    CAS  PubMed  Google Scholar 

  86. Ganem, B. & Franke, R. R. Paclitaxel from primary taxanes: a perspective on creative invention in organozirconium chemistry. J. Org. Chem. 72, 3981–3987 (2007).

    CAS  PubMed  Google Scholar 

  87. Bower, S., Kreutzer, K. A. & Buchwald, S. L. A mild general procedure for the one-pot conversion of amides to aldehydes. Angew. Chem. Int. Ed. 35, 1515–1516 (1996).

    CAS  Google Scholar 

  88. Tinnis, F., Volkov, A., Slagbrand, T. & Adolfsson, H. Chemoselective reduction of tertiary amides under thermal control: formation of either aldehydes or amines. Angew. Chem. Int. Ed. 55, 4562–4566 (2016). This article describes the Mo-catalysed reduction of amides to aldehydes over aldehydes, ketones and esters using hydrosilane as reducing reagent.

    CAS  Google Scholar 

  89. Chan, G. H., Ong, D. Y., Yen, Z. & Chiba, S. Reduction of N,N-dimethylcarboxamides to aldehydes by sodium hydride–iodide composite. Helv. Chim. Acta 101, e1800049 (2018).

    Google Scholar 

  90. Xiao, P. et al. Chemoselective reduction of sterically demanding N,N-diisopropylamides to aldehydes. J. Org. Chem. 83, 1687–1700 (2018).

    CAS  PubMed  Google Scholar 

  91. Gausas, L., Jackstell, R., Skrydstrup, T. & Beller, M. Toward a practical catalyst for convenient deaminative hydrogenation of amides under mild conditions. ACS Sustain. Chem. Eng. 10, 16046–16054 (2022).

    CAS  Google Scholar 

  92. Arnott, G. E. in Comprehensive Organic Synthesis 2nd edn, Vol. 8 (ed. Knochel, P.) 368–409 (Elsevier, 2014).

  93. Ohta, T., Kamiya, M., Nobutomo, M., Kusui, K. & Furukawa, I. Reduction of carboxylic acid derivatives using diphenylsilanein the presence of a Rh–PPh3 complex. Bull. Chem. Soc. Jpn. 78, 1856–1861 (2005).

    CAS  Google Scholar 

  94. Cheng, C. & Brookhart, M. Iridium-catalyzed reduction of secondary amides to secondary amines and imines by diethylsilane. J. Am. Chem. Soc. 134, 11304–11307 (2012). This article describes the reduction of secondary amides to imines using an Ir catalyst and hydrosilane as reducing reagent.

    CAS  PubMed  Google Scholar 

  95. Schedler, D. J. A., Godfrey, A. G. & Ganem, B. Reductive deoxygenation by Cp2ZrHCl: selective formation of imines via zirconation/hydrozirconation of amides. Tetrahedron Lett. 34, 5035–5038 (1993).

    CAS  Google Scholar 

  96. Schedler, D. J. A., Li, J. & Ganem, B. Reduction of secondary carboxamides to imines. J. Org. Chem. 61, 4115–4119 (1996).

    CAS  PubMed  Google Scholar 

  97. Donnelly, L. J., Berthet, J.-C. & Cantat, T. Selective reduction of secondary amides to imines catalysed by Schwartz’s reagent. Angew. Chem. Int. Ed. 61, e202206170 (2022).

    CAS  Google Scholar 

  98. Kehner, R. A., Zhang, G. & Bayeh-Romero, L. Mild divergent semireductive transformations of secondary and tertiary amides via zirconocene hydride catalysis. J. Am. Chem. Soc. 145, 4921–4927 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Motoyama, Y., Aoki, M., Takaoka, N., Aoto, R. & Nagashima, H. Highly efficient synthesis of aldenamines from carboxamides by iridium-catalyzed silane-reduction/dehydration under mild conditions. Chem. Commun. 45, 1574–1576 (2009).

    Google Scholar 

  100. Matheau-Raven, D. et al. Catalytic reductive functionalization of tertiary amides using Vaska’s complex: synthesis of complex tertiary amine building blocks and natural products. ACS Catal. 10, 8880–8897 (2020).

    CAS  Google Scholar 

  101. Pelletier, G., Bechara, W. S. & Charette, A. B. Controlled and chemoselective reduction of secondary amides. J. Am. Chem. Soc. 132, 12817–12819 (2010).

    CAS  PubMed  Google Scholar 

  102. Yuan, M.-L., Xie, J.-H. & Zhou, Q.-L. Boron Lewis acid promoted ruthenium-catalyzed hydrogenation of amides: an efficient approach to secondary amines. ChemCatChem 8, 3036–3040 (2016). This article describes the fact that the combined use of a catalytic amount of a Ru complex, a boron Lewis acid and a Brønsted acid enables the selective reduction of amide to amine over ester.

    CAS  Google Scholar 

  103. Pan, Y. et al. Ru-catalyzed deoxygenative transfer hydrogenation of amides to amines with formic acid/triethylamine. Adv. Synth. Catal. 361, 3800–3806 (2019).

    CAS  Google Scholar 

  104. Ravn, A. K. & Rezayee, N. M. The investigation of a switchable iridium catalyst for the hydrogenation of amides: a case study of C−O versus C−N bond scission. ACS Catal. 12, 11927–11933 (2022). This article demonstrates the selective hydrogenation of formamides to N-methylated amines in the presence of esters by a cationic Ir complex.

    CAS  Google Scholar 

  105. Sitte, N. A., Bursch, M., Grimme, S. & Paradies, J. Frustrated Lewis pair catalyzed hydrogenation of amides: halides as active Lewis base in the metal-free hydrogen activation. J. Am. Chem. Soc. 141, 159–162 (2019).

    CAS  PubMed  Google Scholar 

  106. Stephan, D. W. Frustrated Lewis pairs: from concept to catalysis. Acc. Chem. Res. 48, 306–316 (2015).

    CAS  PubMed  Google Scholar 

  107. Köring, L., Sitte, N. A., Bursch, M., Grimme, S. & Paradies, J. Hydrogenation of secondary amides using phosphane oxide and frustrated Lewis pair catalysis. Chem. Eur. J. 27, 14179–14183 (2021).

    PubMed  Google Scholar 

  108. Kadyrov, R. Hydrogenolysis of amide acetals and iminium esters. ChemCatChem 10, 170–172 (2018).

    CAS  Google Scholar 

  109. Kadyrov, R. Reduction of amides to amines under mild conditions via catalytic hydrogenation of amide acetals and imidates. Adv. Synth. Catal. 361, 185–191 (2019).

    CAS  Google Scholar 

  110. Barbe, G. & Charette, A. B. Highly chemoselective metal-free reduction of tertiary amides. J. Am. Chem. Soc. 130, 18–19 (2008).

    CAS  PubMed  Google Scholar 

  111. Kuwano, R., Takahashi, M. & Ito, Y. Reduction of amides to amines via catalytic hydrosilylation by a rhodium complex. Tetrahedron Lett. 39, 1017–1020 (1998).

    CAS  Google Scholar 

  112. Gerona-Navarro, G. et al. Simple access to novel azetidine-containing conformationally restricted amino acids by chemoselective reduction of β-lactams. Tetrahedron Lett. 45, 2193–2196 (2004).

    CAS  Google Scholar 

  113. Das, S. et al. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides. Angew. Chem. Int. Ed. 54, 12389–12393 (2015).

    CAS  Google Scholar 

  114. Das, S., Li, Y., Lu, L.-Q., Junge, K. & Beller, M. A general and selective rhodium-catalyzed reduction of amides, N-acyl amino esters, and dipeptides using phenylsilane. Chem. Eur. J. 22, 7050–7053 (2016).

    CAS  PubMed  Google Scholar 

  115. Sunada, Y., Kawakami, H., Imaoka, T., Motoyama, Y. & Nagashima, H. Hydrosilane reduction of tertiary carboxamides by iron carbonyl catalysts. Angew. Chem. Int. Ed. 48, 9511–9514 (2009).

    CAS  Google Scholar 

  116. Dombray, T., Helleu, C., Darcel, C. & Sortais, J.-B. Cobalt carbonyl-based catalyst for hydrosilylation of carboxamides. Adv. Synth. Catal. 355, 3358–3362 (2013).

    CAS  Google Scholar 

  117. Sasakuma, H., Motoyama, Y. & Nagashima, H. Functional group-selective poisoning of molecular catalysts: a ruthenium cluster-catalysed highly amide-selective silane reduction that does not affect ketones or esters. Chem. Commun. 43, 4916–4918 (2007).

    Google Scholar 

  118. Han, F., Lu, G.-S., Wu, D.-P. & Huang, P.-Q. Iridium and B(C6F5)3 co-catalyzed chemoselective deoxygenative reduction of tertiary amides: application to the efficient synthesis and late-stage modification of pharmaceuticals. Sci. China Chem. 66, 1094–1100 (2023).

    CAS  Google Scholar 

  119. Simmons, B. J., Hoffmann, M., Hwang, J., Jackl, M. K. & Garg, N. K. Nickel-catalyzed reduction of secondary and tertiary amides. Org. Lett. 19, 1910–1913 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Pandey, P. & Bera, J. K. Hydrosilylative reduction of primary amides to primary amines catalyzed by a terminal [Ni–OH] complex. Chem. Commun. 57, 9204–9207 (2021).

    CAS  Google Scholar 

  121. Vinayagam, V., Kumar, T. V. H., Nune, R., Karre, S. K. & Sadhukhan, S. K. Visible-light-promoted dual photoredox/nickel-catalyzed chemoselective reduction of secondary and tertiary amides with hydrosilanes in the presence of an ester. J. Org. Chem. 88, 2122–2131 (2023).

    CAS  PubMed  Google Scholar 

  122. Hanada, S., Tsutsumi, E., Motoyama, Y. & Nagashima, H. Practical access to amines by platinum-catalyzed reduction of carboxamides with hydrosilanes: synergy of dual Si–H groups leads to high efficiency and selectivity. J. Am. Chem. Soc. 131, 15032–15040 (2009).

    CAS  PubMed  Google Scholar 

  123. Das, S., Join, B., Junge, K. & Beller, M. A general and selective copper-catalyzed reduction of secondary amides. Chem. Commun. 48, 2683–2685 (2012).

    CAS  Google Scholar 

  124. Mikami, Y. et al. Highly efficient gold nanoparticle catalyzed deoxygenation of amides, sulfoxides, and pyridine N-oxides. Chem. Eur. J. 17, 1768–1772 (2011).

    CAS  PubMed  Google Scholar 

  125. Das, S., Addis, D., Zhou, S., Junge, K. & Beller, M. Zinc-catalyzed reduction of amides: unprecedented selectivity and functional group tolerance. J. Am. Chem. Soc. 132, 1770–1771 (2010).

    CAS  PubMed  Google Scholar 

  126. Hammerstad, T. A., Hegde, P. V., Wang, K. J. & Aldrich, C. C. Chemoselective reduction of tertiary amides by 1,3-diphenyldisiloxane (DPDS). Synthesis 54, 2205–2212 (2022).

    CAS  Google Scholar 

  127. Das, S., Addis, D., Junge, K. & Beller, M. Zinc-catalyzed chemoselective reduction of tertiary and secondary amides to amines. Chem. Eur. J. 17, 12186–12192 (2011).

    CAS  PubMed  Google Scholar 

  128. Kornet, M. J., Thio, P. A. & Tan, S. I. The borane reduction of amido esters. J. Org. Chem. 33, 3637–3639 (1968).

    CAS  Google Scholar 

  129. Li, Y. et al. Selective reduction of amides to amines by boronic acid catalyzed hydrosilylation. Angew. Chem. Int. Ed. 52, 11577–11580 (2013).

    CAS  Google Scholar 

  130. Mukherjee, D., Shirase, S., Mashima, K. & Okuda, J. Chemoselective reduction of tertiary amides to amines catalyzed by triphenylborane. Angew. Chem. Int. Ed. 55, 13326–13329 (2016).

    CAS  Google Scholar 

  131. Lucas, K. M. et al. Versatile, mild, and selective reduction of various carbonyl groups using an electron-deficient boron catalyst. Org. Biomol. Chem. 14, 5774–5778 (2016).

    CAS  PubMed  Google Scholar 

  132. Chardon, A. et al. Borinic acid catalysed reduction of tertiary amides with hydrosilanes: a mild and chemoselective synthesis of amines. Chem. Eur. J. 23, 2005–2009 (2017).

    CAS  PubMed  Google Scholar 

  133. Peruzzi, M. T., Mei, Q. Q., Lee, S. J. & Gagné, M. R. Chemoselective amide reductions by heteroleptic fluoroaryl boron Lewis acids. Chem. Commun. 54, 5855–5858 (2018).

    CAS  Google Scholar 

  134. Ni, J., Oguro, T., Sawazaki, T., Sohma, Y. & Kanai, M. Hydroxy group directed catalytic hydrosilylation of amides. Org. Lett. 20, 7371–7374 (2018).

    CAS  PubMed  Google Scholar 

  135. Huang, P.-Q., Lang, Q.-W. & Wang, Y.-R. Mild metal-free hydrosilylation of secondary amides to amines. J. Org. Chem. 81, 4235–4243 (2016).

    CAS  PubMed  Google Scholar 

  136. Fukuyama, T., Lin, S.-C. & Li, L. Facile reduction of ethyl thiol esters to aldehydes: application to a total synthesis of (+)-neothramycin A methyl ether. J. Am. Chem. Soc. 112, 7050–7051 (1990).

    CAS  Google Scholar 

  137. Nakanishi, J., Tatamidani, H., Fukumoto, Y. & Chatani, N. A new synthesis of aldehydes by the palladium-catalyzed reaction of 2-pyridinyl esters with hydrosilanes. Synlett 2006, 869–872 (2006).

    Google Scholar 

  138. Parks, D. J. & Piers, W. E. Tris(pentafluorophenyl)boron-catalyzed hydrosilation of aromatic aldehydes, ketones, and esters. J. Am. Chem. Soc. 118, 9440–9441 (1996). This article demonstrates the conversion of esters to aldehydes by boron-catalysed hydrosilylation.

    CAS  Google Scholar 

  139. Parks, D. J., Blackwell, J. M. & Piers, W. E. Studies on the mechanism of B(C6F5)3-catalyzed hydrosilation of carbonyl functions. J. Org. Chem. 65, 3090–3098 (2000).

    CAS  PubMed  Google Scholar 

  140. Igarashi, M., Mizuno, R. & Fuchikami, T. Ruthenium complex catalyzed hydrosilylation of esters: a facile transformation of esters to alkyl silyl acetals and aldehydes. Tetrahedron Lett. 42, 2149–2151 (2001).

    CAS  Google Scholar 

  141. Cheng, C. & Brookhart, M. Efficient reduction of esters to aldehydes through iridium-catalyzed hydrosilylation. Angew. Chem. Int. Ed. 51, 9422–9424 (2012).

    CAS  Google Scholar 

  142. Li, H. et al. Selective reduction of esters to aldehydes under the catalysis of well-defined NHC–iron complexes. Angew. Chem. Int. Ed. 52, 8045–8049 (2013).

    CAS  Google Scholar 

  143. Xu, P., Liu, S. & Huang, Z. Desymmetric partial reduction of malonic esters. J. Am. Chem. Soc. 144, 6918–6927 (2022).

    CAS  PubMed  Google Scholar 

  144. Zakharkin, L. I. & Khorlina, I. M. Reduction of esters of carboxylic acids into aldehydes with diisobutylaluminium hydride. Tetrahedron Lett. 3, 619–620 (1962).

    Google Scholar 

  145. Zakharkin, L. I., Gavrilenko, V. V., Maslin, D. N. & Khorlina, I. M. The preparation of aldehydes by reduction of esters of carboxylic acids with sodium aluminium hydride. Tetrahedron Lett. 4, 2087–2090 (1963).

    Google Scholar 

  146. Weissman, P. M. & Brown, H. C. Selective reductions. VI. The reaction of lithium tri-t-butoxyaluminohydride with phenolic esters. A new aldehyde synthesis. J. Org. Chem. 31, 283–287 (1966).

    CAS  Google Scholar 

  147. Muraki, M. & Mukaiyama, T. Aminoaluminum hydride as new reducing agents. II. Selective reduction of esters of carboxylic acids to aldehydes. Chem. Lett. 4, 215–218 (1975).

    Google Scholar 

  148. Kanazawa, R. & Tokoroyama, T. Modified sodium bis[2-methoxyethoxy]aluminum hydride reagents for the partial reduction of lactones and esters. Synthesis 1976, 526–527 (1976).

    Google Scholar 

  149. Abe, T. et al. Large scale synthesis of N-benzyl-4-formylpiperidine through partial reduction of esters using aluminum hydride reagents modified with pyrrolidine. Tetrahedron 57, 2701–2710 (2001).

    CAS  Google Scholar 

  150. Song, J. I. & An, D. K. New method for synthesis of aldehydes from esters by sodium diisobutyl-t-butoxyaluminum hydride. Chem. Lett. 36, 886–887 (2007).

    CAS  Google Scholar 

  151. Otsuka, T., Ishii, A., Dub, P. A. & Ikariya, T. Practical selective hydrogenation of α-fluorinated esters with bifunctional pincer-type ruthenium(II) catalysts leading to fluorinated alcohols or fluoral hemiacetals. J. Am. Chem. Soc. 135, 9600–9603 (2013).

    CAS  PubMed  Google Scholar 

  152. Luche, J.-L. & Gemal, A. L. Lanthanoids in organic synthesis. 5. Selective reductions of ketones in the presence of aldehydes. J. Am. Chem. Soc. 101, 5848–5849 (1979).

    CAS  Google Scholar 

  153. Paradisi, M. P., Zecchini, G. P. & Ortar, G. A convenient one-pot procedure for the selective reduction of ketones in the presence of aldehydes. Tetrahedron Lett. 21, 5085–5088 (1980).

    Google Scholar 

  154. Bastug, G., Dierick, S., Lebreux, F. & Markó, I. E. Highly chemoselective reduction of carbonyl groups in the presence of aldehydes. Org. Lett. 14, 1306–1309 (2012).

    CAS  PubMed  Google Scholar 

  155. Fujioka, H. et al. Reversing the reactivity of carbonyl functions with phosphonium salts: enantioselective total synthesis of (+)-centrolobine. Angew. Chem. Int. Ed. 50, 12232–12235 (2011).

    CAS  Google Scholar 

  156. Yahata, K., Minami, M., Yoshikawa, Y., Watanabe, K. & Fujioka, H. Methodology for in situ protection of aldehydes and ketones using trimethylsilyl trifluoromethanesulfonate and phosphines: selective alkylation and reduction of ketones, esters, amides, and nitriles. Chem. Pharm. Bull. 61, 1298–1307 (2013).

    CAS  Google Scholar 

  157. Fujioka, H., Morita, K., Murai, K. & Arisawa, M. Selective reduction and dihydroxylation of α,β-unsaturated esters in the presence of enals: one-pot synthesis of a 2,5-disubstituted tetrahydrofuran. Heterocycles 103, 311–321 (2021).

    Google Scholar 

  158. Maruoka, K., Saito, S., Concepcion, A. B. & Yamamoto, H. Chemo-selective functionalization of more hindered aldehyde carbonyls with the methylaluminum bis(2,6-diphenylphenoxide)/alkyllithium system. J. Am. Chem. Soc. 115, 1183–1184 (1993).

    CAS  Google Scholar 

  159. Takahashi, Y., Mitsudome, T., Mizugaki, T., Jitsukawa, K. & Kaneda, K. Highly atom-efficient and chemoselective reduction of ketones in the presence of aldehydes using heterogeneous catalysts. Green Chem. 15, 2695–2698 (2013).

    CAS  Google Scholar 

  160. Deutsch, C. & Krause, N. CuH-catalyzed reactions. Chem. Rev. 108, 2916–2927 (2008).

    CAS  PubMed  Google Scholar 

  161. Fujihara, T., Semba, K., Terao, J. & Tsuji, Y. Copper-catalyzed hydrosilylation with a bowl-shaped phosphane ligand: preferential reduction of a bulky ketone in the presence of an aldehyde. Angew. Chem. Int. Ed. 49, 1472–1476 (2010). This article demonstrates a unique ligand effect of a bowl-shaped phosphine on the selective reduction of sterically bulky ketones over aldehydes.

    CAS  Google Scholar 

  162. Call, A., Casadevall, C., Acuña-Parés, F., Casitas, A. & Lloret-Fillol, J. Dual cobalt–copper light-driven catalytic reduction of aldehydes and aromatic ketones in aqueous media. Chem. Sci. 8, 4739–4749 (2017). This article describes the selective photoinduced reduction of ketones over aldehydes using a Co and Cu binary catalyst, water as hydride and proton source, and a tertiary amine as terminal reductant.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Roth, H. G., Romero, N. A. & Nicewicz, D. A. Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry. Synlett 27, 714–723 (2016).

    CAS  Google Scholar 

  164. Fokin, I., Kuessner, K.-T. & Siewert, I. Transition metal complex catalyzed photo- and electrochemical (de)hydrogenations involving C=O and C=N bonds. Synthesis 54, 295–314 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant-in-Aid for Scientific Research(B) (Nos. JP23H01955 and JP23K26648) from the Japan Society for the Promotion of Science; the Grant-in-Aid for Transformative Research Areas (A) JP21A204 in Digitalization-driven Transformative Organic Synthesis (Digi-TOS) (Nos. JP22H05340 and JP24H01061) from the Ministry of Education, Culture, Sports, Science and Technology; JST ERATO (No. JPMJER2103) from the Japan Science and Technology Agency; Sumitomo Foundation; and Fujimori Science and Technology Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.I. contributed to writing and editing this manuscript. K.N. contributed to reviewing and editing this manuscript before submission.

Corresponding author

Correspondence to Takanori Iwasaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Jianliang Xiao, Rosa Adam Ortiz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Hydrogenation

Reaction involving the addition of hydrogen gas (H2) to multiple bonds.

Hydrogenolysis

Bond cleavage reaction via addition of hydrogen gas (H2) to a carbon–heteroatom single bond.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasaki, T., Nozaki, K. Counterintuitive chemoselectivity in the reduction of carbonyl compounds. Nat Rev Chem 8, 518–534 (2024). https://doi.org/10.1038/s41570-024-00608-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-024-00608-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing