Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Manipulating disorder within cathodes of alkali-ion batteries

Subjects

Abstract

The fact that ordered materials are rarely perfectly crystalline is widely acknowledged among materials scientists, but its impact is often overlooked or underestimated when studying how structure relates to properties. Various investigations demonstrate that intrinsic and extrinsic defects, and disorder generated by physicochemical reactions, are responsible for unexpectedly detrimental or beneficial functionalities. The task remains to modulate the disorder to produce desired properties in materials. As disorder is often correlated with local interactions, it is controllable. In this Review, we explore the structural disorder in cathode materials as a novel approach for improving their electrochemical performance. We revisit cathode materials for alkali-ion batteries and outline the origins and beneficial consequences of disorder. Focusing on layered, cubic rocksalt and other metal oxides, we discuss how disorder improves electrochemical properties of cathode materials and which interactions generate the disorder. We also present the potential pitfalls of disorder that must be considered. We conclude with perspectives for enhancing the electrochemical performance of cathode materials by using disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic summarizing the types of disorder in metal oxide cathode materials and their chemical origins.
Fig. 2: Examples of correlated disorder.
Fig. 3: Chemical origins of disorder in metal oxide cathode materials.
Fig. 4: Chemical origins of the disorder of metal oxide cathode materials in response to electrochemical stimuli.
Fig. 5: Disorder improves energy density by modulating cationic and anionic redox mechanisms.
Fig. 6: Disorder facilitating ion diffusion.
Fig. 7: Disorder improving TM reversibility.
Fig. 8: Impact of disorder on the reversibility of oxygen redox reactions.
Fig. 9: Challenges in establishing relationships between disorder and properties.

Similar content being viewed by others

References

  1. Bragg, W. L. The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. A 89, 248–277 (1913).

    CAS  Google Scholar 

  2. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

  3. Reynaud, M., Serrano-Sevillano, J. & Casas-Cabanas, M. Imperfect battery materials: a closer look at the role of defects in electrochemical performance. Chem. Mater. 35, 3345–3363 (2023). This paper categorizes various defects in battery materials.

    Article  CAS  Google Scholar 

  4. Simonov, A. & Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 4, 657–673 (2020). This paper highlights the design principles to control the correlated disorder in a wide range of materials.

    Article  CAS  PubMed  Google Scholar 

  5. Yu, S., Qiu, C.-W., Chong, Y., Torquato, S. & Park, N. Engineered disorder in photonics. Nat. Rev. Mater. 6, 226–243 (2021).

    Article  CAS  Google Scholar 

  6. Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F.-X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2017).

    Article  CAS  Google Scholar 

  7. He, Z., Taniyama, T., Kyômen, T. & Itoh, M. Field-induced order-disorder transition in the quasi-one-dimensional anisotropic antiferromagnet BaCo2V2O8. Phys. Rev. B 72, 172403 (2005).

    Article  Google Scholar 

  8. Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832–837 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, Z. et al. Pressure effect on order–disorder ferroelectric transition in a hydrogen-bonded metal–organic framework. J. Phys. Chem. Lett. 11, 9566–9571 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Maier, J. Review — battery materials: why defect chemistry? J. Electrochem. Soc. 162, A2380–A2386 (2015).

    Article  CAS  Google Scholar 

  11. Shan, X. et al. Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nat. Commun. 10, 4975 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gao, A. et al. In operando visualization of cation disorder unravels voltage decay in Ni‐rich cathodes. Small Methods 5, 2000730 (2021).

    Article  CAS  Google Scholar 

  13. Ashton, T. E. et al. Stoichiometrically driven disorder and local diffusion in NMC cathodes. J. Mater. Chem. A 9, 10477–10486 (2021).

    Article  CAS  Google Scholar 

  14. Zhu, H. et al. Bridging structural inhomogeneity to functionality: pair distribution function methods for functional materials development. Adv. Sci. 8, 2003534 (2021).

    Article  CAS  Google Scholar 

  15. Huang, W. et al. Elastic lattice enabling reversible tetrahedral Li storage sites in a high‐capacity manganese oxide cathode. Adv. Mater. 34, 2202745 (2022).

    Article  CAS  Google Scholar 

  16. Szymanski, N. J. et al. Modeling short-range order in disordered rocksalt cathodes by pair distribution function analysis. Chem. Mater. 35, 4922–4934 (2023).

    Article  CAS  Google Scholar 

  17. Bragg, W. L. & Williams, E. J. The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. A 145, 699–730 (1934).

    CAS  Google Scholar 

  18. Bethe, H. A. Statistical theory of superlattices. Proc. R. Soc. A 150, 552–575 (1935).

    CAS  Google Scholar 

  19. Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944).

    Article  CAS  Google Scholar 

  20. Cowley, J. M. An approximate theory of order in alloys. Phys. Rev. 77, 669–675 (1950).

    Article  CAS  Google Scholar 

  21. Welberry, T. R. & Butler, B. D. Diffuse X-ray scattering from disordered crystals. Chem. Rev. 95, 2369–2403 (1995).

    Article  CAS  Google Scholar 

  22. Keen, D. A. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015). This paper first introduces the concept of correlated disorder of solid-state materials.

    Article  CAS  PubMed  Google Scholar 

  23. Moessner, R. & Ramirez, A. P. Geometrical frustration. Phys. Today 59, 24–29 (2006).

    Article  CAS  Google Scholar 

  24. Snyder, J., Slusky, J. S., Cava, R. J. & Schiffer, P. How ‘spin ice’ freezes. Nature 413, 48–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Fennell, T. et al. Magnetic Coulomb phase in the spin ice Ho2Ti2O7. Science 326, 415–417 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Fabrèges, X. et al. Spin-lattice coupling, frustration, and magnetic order in multiferroic R MnO3. Phys. Rev. Lett. 103, 067204 (2009).

    Article  PubMed  Google Scholar 

  27. Wen, J.-J. et al. Disordered route to the Coulomb quantum spin liquid: random transverse fields on spin ice in Pr2Zr2O7. Phys. Rev. Lett. 118, 107206 (2017).

    Article  PubMed  Google Scholar 

  28. Salzmann, C. G., Radaelli, P. G., Slater, B. & Finney, J. L. The polymorphism of ice: five unresolved questions. Phys. Chem. Chem. Phys. 13, 18468–18480 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Playford, H. Y., Whale, T. F., Murray, B. J., Tucker, M. G. & Salzmann, C. G. Analysis of stacking disorder in ice I using pair distribution functions. J. Appl. Crystallogr. 51, 1211–1220 (2018).

    Article  CAS  Google Scholar 

  30. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Düvel, A. et al. Is geometric frustration-induced disorder a recipe for high ionic conductivity? J. Am. Chem. Soc. 139, 5842–5848 (2017).

    Article  PubMed  Google Scholar 

  32. Di Stefano, D. et al. Superionic diffusion through frustrated energy landscape. Chem 5, 2450–2460 (2019).

    Article  Google Scholar 

  33. Wang, S., Liu, Y. & Mo, Y. Frustration in super‐ionic conductors unraveled by the density of atomistic states. Angew. Chem. 135, e202215544 (2023).

    Article  Google Scholar 

  34. Hsu, W.-L., Tsai, C.-W., Yeh, A.-C. & Yeh, J.-W. Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8, 471–485 (2024).

    Article  PubMed  Google Scholar 

  35. Aubry, S. & Hughes, D. A. Reductions in stacking fault widths in fcc crystals: semiempirical calculations. Phys. Rev. B 73, 224116 (2006).

    Article  Google Scholar 

  36. Baruffi, C., Ghazisaeidi, M., Rodney, D. & Curtin, W. A. Equilibrium versus non-equilibrium stacking fault widths in NiCoCr. Scr. Mater. 235, 115536 (2023).

    Article  CAS  Google Scholar 

  37. Coles, S. W. et al. Anion-polarisation-directed short-range-order in antiperovskite Li2FeSO. J. Mater. Chem. A 11, 13016–13026 (2023).

    Article  CAS  Google Scholar 

  38. Uemura, N., Shirai, K., Eckert, H. & Kunstmann, J. Structure, nonstoichiometry, and geometrical frustration of α-tetragonal boron. Phys. Rev. B 93, 104101 (2016).

    Article  Google Scholar 

  39. Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926).

    Article  CAS  Google Scholar 

  40. Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929).

    Article  CAS  Google Scholar 

  41. George, J. et al. The limited predictive power of the Pauling rules. Angew. Chem. Int. Ed. 59, 7569–7575 (2020).

    Article  CAS  Google Scholar 

  42. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Physica B+C 99, 81–85 (1980).

    Article  CAS  Google Scholar 

  43. Brunel, M., De Bergevin, F. & Gondrand, M. Determination theorique et domaines d’existence des differentes surstructures dans les composes A3+B1+X22− de type NaCl. J. Phys. Chem. Solids 33, 1927–1941 (1972).

    Article  CAS  Google Scholar 

  44. Hauck, J. Short-range order and superstructures of ternary oxides AMO2, A2MO3 and A5MO6 of monovalent A and multivalent M metals related to the NaCl structure. Acta Crystallogr. A 36, 228–237 (1980).

    Article  Google Scholar 

  45. Jacquet, Q. et al. Electrostatic interactions versus second order Jahn–Teller distortion as the source of structural diversity in Li3MO4 compounds (M = Ru, Nb, Sb and Ta). Chem. Mater. 30, 392–402 (2018). This paper compares the effect of electrostatic interactions and pseudo Jahn–Teller (second order Jahn–Teller) distortions on the stability of rocksalt-type structures.

    Article  CAS  Google Scholar 

  46. Mather, G. C., Dussarrat, C., Etourneau, J. & West, A. R. A review of cation-ordered rock salt superstructure oxides. J. Mater. Chem. 10, 2219–2230 (2000).

    Article  CAS  Google Scholar 

  47. Yang, R. et al. Intercalation in 2D materials and in-situ studies. Nat. Rev. Chem. 8, 410–432 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Clément, R. J., Lun, Z. & Ceder, G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy Environ. Sci. 13, 345–373 (2020).

    Article  Google Scholar 

  49. Hewston, T. A. & Chamberland, B. L. A Survey of first-row ternary oxides LiMO2 (M = Sc-Cu). J. Phys. Chem. Solids 48, 97–108 (1987).

    Article  CAS  Google Scholar 

  50. Wu, E. J., Tepesch, P. D. & Ceder, G. Size and charge effects on the structural stability of LiMO2 (M = transition metal) compounds. Philos. Mag. B 77, 1039–1047 (1998).

    Article  CAS  Google Scholar 

  51. Dutta, G., Manthiram, A., Goodenough, J. B. & Grenier, J.-C. Chemical synthesis and properties of Li1−δxNi1+δO2 and Li[Ni2]O4. J. Solid State Chem. 96, 123–131 (1992).

    Article  CAS  Google Scholar 

  52. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, K.-S., Myung, S.-T., Amine, K., Yashiro, H. & Sun, Y.-K. Structural and electrochemical properties of layered Li[Ni1−2xCoxMnx]O2 (x = 0.1–0.3) positive electrode materials for Li-Ion batteries. J. Electrochem. Soc. 154, A971 (2007).

    Article  CAS  Google Scholar 

  54. Lee, W. et al. New insight into Ni‐Rich layered structure for next‐generation li rechargeable batteries. Adv. Energy Mater. 8, 1701788 (2018).

    Article  Google Scholar 

  55. Liang, C. et al. Unraveling the origin of instability in Ni-Rich LiNi1–2xCoxMnxO2 (NCM) cathode materials. J. Phys. Chem. C 120, 6383–6393 (2016).

    Article  CAS  Google Scholar 

  56. Hahn, B. P., Long, J. W. & Rolison, D. R. Something from nothing: enhancing electrochemical charge storage with cation vacancies. Acc. Chem. Res. 46, 1181–1191 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Ruetschi, P. Cation‐vacancy model for MnO2. J. Electrochem. Soc. 131, 2737–2744 (1984).

    Article  CAS  Google Scholar 

  58. Bouet, L., Tailhades, P., Rousset, A., Domenichini, B. & Gillot, B. Mixed valence states of iron and molybdenum ions in MoxFe3−xO4 magnetites and related cation deficient ferrites. Solid State Ion. 52, 285–286 (1992).

    Article  CAS  Google Scholar 

  59. Bach, S. et al. Electrochemical proton insertion in Mn2.2Co0.27O4 from aqueous borate solution. Electrochim. Acta 45, 931–934 (1999).

    Article  CAS  Google Scholar 

  60. Ménétrier, M., Shao-Horn, Y., Wattiaux, A., Fournès, L. & Delmas, C. Iron substitution in lithium-overstoichiometric “Li1.1CoO2”: combined 57Fe Mössbauer and 7Li NMR spectroscopies studies. Chem. Mater. 17, 4653–4659 (2005).

    Article  Google Scholar 

  61. Li, W. et al. High substitution rate in TiO2 anatase nanoparticles with cationic vacancies for fast lithium storage. Chem. Mater. 27, 5014–5019 (2015).

    Article  CAS  Google Scholar 

  62. Ma, J. et al. Layered lepidocrocite type structure isolated by revisiting the sol–gel chemistry of anatase TiO2: a new anode material for batteries. Chem. Mater. 29, 8313–8324 (2017).

    Article  CAS  Google Scholar 

  63. Miyamoto, N. & Yamamoto, S. in Supra-Materials Nanoarchitectonics Ch. 7 (eds Ariga, K. & Aono, M.) 173–192 (Elsevier, 2017).

  64. Nam, K. W. et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15, 4071–4079 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Ferrage, E. Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations: a review of methodology, applications, and perspectives. Clays Clay Miner. 64, 348–373 (2016).

    Article  CAS  Google Scholar 

  66. Yang, J. et al. Size‐independent fast ion intercalation in two‐dimensional titania nanosheets for alkali‐metal‐ion batteries. Angew. Chem. Int. Ed. 58, 8740–8745 (2019).

    Article  CAS  Google Scholar 

  67. Zheng, J. et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Acc. Chem. Res. 52, 2201–2209 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).

    Article  CAS  Google Scholar 

  69. Goodenough, J. B. Magnetism and the Chemical Bond (R. E. Krieger, 1976).

  70. Zheng, J. et al. Role of superexchange interaction on tuning of Ni/Li disordering in layered Li(NixMnyCoz)O2. J. Phys. Chem. Lett. 8, 5537–5542 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Bersuker, I. B. Jahn–Teller and pseudo-Jahn–Teller effects: from particular features to general tools in exploring molecular and solid state properties. Chem. Rev. 121, 1463–1512 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Freitag, R. & Conradie, J. Understanding the Jahn–Teller effect in octahedral transition-metal complexes: a molecular orbital view of the Mn(β-diketonato)3 complex. J. Chem. Educ. 90, 1692–1696 (2013).

    Article  CAS  Google Scholar 

  73. Armstrong, A. R. & Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996).

    Article  CAS  Google Scholar 

  74. Manzi, J. et al. Monoclinic and orthorhombic NaMnO2 for secondary batteries: a comparative study. Energies 14, 1230 (2021).

    Article  CAS  Google Scholar 

  75. Liu, T. et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 10, 4721 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Asl, H. Y. & Manthiram, A. Reining in dissolved transition-metal ions. Science 369, 140–141 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Yaghoobnejad Asl, H. & Manthiram, A. Proton-induced disproportionation of Jahn–Teller-active transition-metal ions in oxides due to electronically driven lattice instability. J. Am. Chem. Soc. 142, 21122–21130 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Bersuker, I. B. Pseudo Jahn-Teller origin of perovskite multiferroics, magnetic-ferroelectric crossover, and magnetoelectric effects: the d0d10 problem. Phys. Rev. Lett. 108, 137202 (2012).

    Article  PubMed  Google Scholar 

  79. Urban, A., Abdellahi, A., Dacek, S., Artrith, N. & Ceder, G. Electronic-structure origin of cation disorder in transition-metal oxides. Phys. Rev. Lett. 119, 176402 (2017).

    Article  PubMed  Google Scholar 

  80. Zhang, J. et al. Regulating pseudo-Jahn–Teller effect and superstructure in layered cathode materials for reversible alkali-ion intercalation. J. Am. Chem. Soc. 144, 7929–7938 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Delmas, C., Carlier, D. & Guignard, M. The layered oxides in lithium and sodium‐ion batteries: a solid‐state chemistry approach. Adv. Energy Mater. 11, 2001201 (2021).

    Article  CAS  Google Scholar 

  82. Reed, J. & Ceder, G. Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O2. Electrochem. Solid-State Lett. 5, A145–A148 (2002).

    Article  CAS  Google Scholar 

  83. Reed, J. & Ceder, G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104, 4513–4534 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Ma, X., Kang, K., Ceder, G. & Meng, Y. S. Synthesis and electrochemical properties of layered LiNi2/3Sb1/3O2. J. Power Sources 173, 550–555 (2007).

    Article  CAS  Google Scholar 

  85. Vinckevičiūtė, J., Radin, M. D., Faenza, N. V., Amatucci, G. G. & Van Der Ven, A. Fundamental insights about interlayer cation migration in Li-ion electrodes at high states of charge. J. Mater. Chem. A 7, 11996–12007 (2019).

    Article  Google Scholar 

  86. Radin, M. D. et al. Narrowing the gap between theoretical and practical capacities in Li‐ion layered oxide cathode materials. Adv. Energy Mater. 7, 1602888 (2017).

    Article  Google Scholar 

  87. Okubo, M. & Yamada, A. Molecular orbital principles of oxygen-redox battery electrodes. ACS Appl. Mater. Interfaces 9, 36463–36472 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Abakumov, A. M., Fedotov, S. S., Antipov, E. V. & Tarascon, J.-M. Solid state chemistry for developing better metal-ion batteries. Nat. Commun. 11, 4976 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, B. & Tarascon, J.-M. in Comprehensive Inorganic Chemistry III (eds Reedijk, J. & Poeppelmeier, K. R.) 6–45 (Elsevier, 2023).

  90. Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019).

    Article  PubMed  Google Scholar 

  91. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0 < x < −1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  CAS  Google Scholar 

  92. Rozier, P. & Tarascon, J. M. Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J. Electrochem. Soc. 162, A2490–A2499 (2015).

    Article  CAS  Google Scholar 

  93. Molenda, J., Wilk, P. & Marzec, J. Structural, electrical and electrochemical properties of LiNiO2. Solid State Ion. 146, 73–79 (2002).

    Article  CAS  Google Scholar 

  94. Huang, Z.-F., Meng, X., Wang, C.-Z., Sun, Y. & Chen, G. First-principles calculations on the Jahn–Teller distortion in layered LiMnO2. J. Power Sources 158, 1394–1400 (2006).

    Article  CAS  Google Scholar 

  95. Yabuuchi, N. & Ohzuku, T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Power Sources 119–121, 171–174 (2003).

    Article  Google Scholar 

  96. Yoon, C. S. et al. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries. J. Mater. Chem. A 6, 4126–4132 (2018).

    Article  CAS  Google Scholar 

  97. Thackeray, M. M., Johnson, C. S., Vaughey, J. T., Li, N. & Hackney, S. A. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257 (2005).

    Article  CAS  Google Scholar 

  98. Strobel, P. & Lambert-Andron, B. Crystallographic and magnetic structure of Li2MnO3. J. Solid State Chem. 75, 90–98 (1988).

    Article  CAS  Google Scholar 

  99. Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4 -based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kobayashi, T. et al. Nanosize cation‐disordered rocksalt oxides: Na2TiO3–NaMnO2 binary system. Small 16, 1902462 (2020).

    Article  CAS  Google Scholar 

  101. Koketsu, T. et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16, 1142–1148 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Boyd, S. et al. Effects of interlayer confinement and hydration on capacitive charge storage in birnessite. Nat. Mater. 20, 1689–1694 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Stiles, J. W., McClure, E. T., Bashian, N. H., Tappan, B. A. & Melot, B. C. Reversible intercalation of Li ions in an earth-abundant phyllosilicate clay. Inorg. Chem. 61, 5757–5761 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Wu, V. C. et al. Unlocking new redox activity in alluaudite cathodes through compositional design. Chem. Mater. 34, 4088–4103 (2022).

    Article  CAS  Google Scholar 

  105. Van Der Ven, A., Bhattacharya, J. & Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013).

    Article  PubMed  Google Scholar 

  106. Abdellahi, A., Urban, A., Dacek, S. & Ceder, G. The effect of cation disorder on the average Li intercalation voltage of transition-metal oxides. Chem. Mater. 28, 3659–3665 (2016).

    Article  CAS  Google Scholar 

  107. Abdellahi, A., Urban, A., Dacek, S. & Ceder, G. Understanding the effect of cation disorder on the voltage profile of lithium transition-metal oxides. Chem. Mater. 28, 5373–5383 (2016). This paper clarifies the causal relationship between cation disorder and the voltage profile based on Li–vacancy interactions.

    Article  CAS  Google Scholar 

  108. Kitchaev, D. A. et al. Design principles for high transition metal capacity in disordered rocksalt Li-ion cathodes. Energy Environ. Sci. 11, 2159–2171 (2018).

    Article  CAS  Google Scholar 

  109. Lee, G., Lau, V. W., Yang, W. & Kang, Y. Utilizing oxygen redox in layered cathode materials from multiscale perspective. Adv. Energy Mater. 11, 2003227 (2021).

    Article  CAS  Google Scholar 

  110. Lin, T., Seaby, T., Huang, X. & Wang, L. On the disparity in reporting Li-rich layered oxide cathode materials. Chem. Commun. 59, 2888–2902 (2023).

    Article  CAS  Google Scholar 

  111. Zhang, M. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 7, 522–540 (2022).

    Article  Google Scholar 

  112. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Perez, A. J. et al. Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4. Nat. Energy 2, 954–962 (2017).

    Article  CAS  Google Scholar 

  115. Song, J. et al. A high‐performance Li–Mn–O Li‐rich cathode material with rhombohedral symmetry via intralayer Li/Mn disordering. Adv. Mater. 32, 2000190 (2020).

    Article  CAS  Google Scholar 

  116. Ning, F. et al. Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability. Nat. Commun. 11, 4973 (2020). This paper demonstrates that intralayer Li/Ru mixing suppresses oxygen dimerization and subsequent oxygen loss.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. McColl, K. et al. Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes. Nat. Commun. 13, 5275 (2022). This paper elucidates that TM migration is necessary for the formation of O2 trapped in the bulk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cao, X. et al. Stabilizing anionic redox chemistry in a Mn‐based layered oxide cathode constructed by Li‐deficient pristine state. Adv. Mater. 33, 2004280 (2021).

    Article  CAS  Google Scholar 

  119. Yabuuchi, N. et al. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2, 16851–16855 (2014).

    Article  CAS  Google Scholar 

  120. Maitra, U. et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Dai, K. et al. High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions. Joule 3, 518–541 (2019).

    Article  CAS  Google Scholar 

  122. Wang, Y. et al. Ultralow‐strain Zn‐substituted layered oxide cathode with suppressed P2–O2 transition for stable sodium ion storage. Adv. Funct. Mater. 30, 1910327 (2020).

    Article  CAS  Google Scholar 

  123. Zheng, W. et al. Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries. Energy Storage Mater. 28, 300–306 (2020).

    Article  Google Scholar 

  124. Song, B. et al. Understanding the low-voltage hysteresis of anionic redox in Na2Mn3O7. Chem. Mater. 31, 3756–3765 (2019).

    Article  CAS  Google Scholar 

  125. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lai, Y. et al. Ion‐migration mechanism: an overall understanding of anionic redox activity in metal oxide cathodes of Li/Na‐ion batteries. Adv. Mater. 34, 2206039 (2022).

    Article  CAS  Google Scholar 

  127. Li, N. et al. Unraveling the cationic and anionic redox reactions in a conventional layered oxide cathode. ACS Energy Lett. 4, 2836–2842 (2019).

    Article  CAS  Google Scholar 

  128. Lebens-Higgins, Z. W. et al. Revisiting the charge compensation mechanisms in LiNi0.8Co0.2−yAlyO2 systems. Mater. Horiz. 6, 2112–2123 (2019).

    Article  CAS  Google Scholar 

  129. Lee, G. et al. Reversible anionic redox activities in conventional LiNi1/3Co1/3Mn1/3O2 cathodes. Angew. Chem. Int. Ed. 59, 8681–8688 (2020).

    Article  CAS  Google Scholar 

  130. Zhuo, Z. et al. Cycling mechanism of Li2MnO3: Li–CO2 batteries and commonality on oxygen redox in cathode materials. Joule 5, 975–997 (2021).

    Article  CAS  Google Scholar 

  131. Lee, H. J., Shin, J. & Choi, J. W. Intercalated water and organic molecules for electrode materials of rechargeable batteries. Adv. Mater. 30, 1705851 (2018).

    Article  Google Scholar 

  132. Mitchell, J. B., Chagnot, M. & Augustyn, V. Hydrous transition metal oxides for electrochemical energy and environmental applications. Annu. Rev. Mater. Res. 53, 1–23 (2023).

    Article  CAS  Google Scholar 

  133. Yang, J. H., Kim, H. & Ceder, G. Insights into layered oxide cathodes for rechargeable batteries. Molecules 26, 3173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhao, F. et al. Synergistically controlled mechanism of sodium birnessite with a larger interlayer distance for fast ion intercalation toward sodium-ion batteries. J. Phys. Chem. C 124, 28431–28436 (2020).

    Article  CAS  Google Scholar 

  135. Kundu, D., Adams, B. D., Duffort, V., Vajargah, S. H. & Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).

    Article  CAS  Google Scholar 

  136. Charles, D. S. et al. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage. Nat. Commun. 8, 15520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nam, K. W., Kim, H., Choi, J. H. & Choi, J. W. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 12, 1999–2009 (2019).

    Article  CAS  Google Scholar 

  138. Levi, E., Gofer, Y. & Aurbach, D. On the way to rechargeable Mg batteries: the challenge of new cathode materials. Chem. Mater. 22, 860–868 (2010).

    Article  CAS  Google Scholar 

  139. Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    Article  CAS  Google Scholar 

  140. Zhang, K. et al. Pseudocapacitive behavior and ultrafast kinetics from solvated ion cointercalation into MoS2 for its alkali ion storage. ACS Appl. Energy Mater. 2, 3726–3735 (2019).

    Article  CAS  Google Scholar 

  141. Park, J., Kim, S. J., Lim, K., Cho, J. & Kang, K. Reconfiguring sodium intercalation process of TiS2 electrode for sodium-ion batteries by a partial solvent cointercalation. ACS Energy Lett. 7, 3718–3726 (2022).

    Article  CAS  Google Scholar 

  142. Reimers, J. N., Rossen, E., Jones, C. D. & Dahn, J. R. Structure and electrochemistry of LixFeyNi1-yO2. Solid State Ion. 61, 335–344 (1993).

    Article  CAS  Google Scholar 

  143. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014). This paper explores possible local Li diffusion and long-range percolation paths in rocksalt materials.

    Article  CAS  PubMed  Google Scholar 

  144. Ruetschi, P. & Giovanoli, R. Cation vacancies in MnO2 and their influence on electrochemical reactivity. J. Electrochem. Soc. 135, 2663–2669 (1988).

    Article  CAS  Google Scholar 

  145. Powell, M. J. Site percolation in randomly packed spheres. Phys. Rev. B 20, 4194–4198 (1979).

    Article  Google Scholar 

  146. Reimers, J. N. & Dahn, J. R. Electrochemical and in situ x‐ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).

    Article  CAS  Google Scholar 

  147. Shao-Horn, Y., Levasseur, S., Weill, F. & Delmas, C. Probing lithium and vacancy ordering in O3 layered LixCoO2  ( x ≈ 0.5 ) : an electron diffraction study. J. Electrochem. Soc. 150, A366–A373 (2003).

    Article  CAS  Google Scholar 

  148. Marianetti, C. A., Kotliar, G. & Ceder, G. A first-order Mott transition in LixCoO2. Nat. Mater. 3, 627–631 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Wolverton, C. & Zunger, A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys. Rev. Lett. 81, 606–609 (1998).

    Article  CAS  Google Scholar 

  150. Van Der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998).

    Article  Google Scholar 

  151. Lee, W. et al. Advances in the cathode materials for lithium rechargeable batteries. Angew. Chem. Int. Ed. 59, 2578–2605 (2020).

    Article  CAS  Google Scholar 

  152. Zou, L. et al. Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials. ACS Energy Lett. 3, 2433–2440 (2018).

    Article  CAS  Google Scholar 

  153. Zhang, H. et al. Layered oxide cathodes for Li-ion batteries: oxygen loss and vacancy evolution. Chem. Mater. 31, 7790–7798 (2019).

    Article  CAS  Google Scholar 

  154. Zhao, R. et al. The origin of heavy element doping to relieve the lattice thermal vibration of layered materials for high energy density Li ion cathodes. J. Mater. Chem. A 8, 12424–12435 (2020).

    Article  CAS  Google Scholar 

  155. Oh, P. et al. New ion substitution method to enhance electrochemical reversibility of co‐rich layered materials for Li‐ion batteries. Adv. Energy Mater. 13, 2202237 (2023).

    Article  CAS  Google Scholar 

  156. Chen, J. et al. Structure/interface coupling effect for high‐voltage LiCoO2 cathodes. Adv. Mater. 34, 2204845 (2022).

    Article  CAS  Google Scholar 

  157. Zhao, W. et al. Optimized Al doping improves both interphase stability and bulk structural integrity of Ni-Rich NMC cathode materials. ACS Appl. Energy Mater. 3, 3369–3377 (2020).

    Article  CAS  Google Scholar 

  158. Nayak, P. K. et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv. Energy Mater. 6, 1502398 (2016).

    Article  Google Scholar 

  159. Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Huang, J. et al. Inhibiting collective cation migration in Li-rich cathode materials as a strategy to mitigate voltage hysteresis. Nat. Mater. 22, 353–361 (2023). This paper proposes cation-disordered structures to enhance reversibility, effectively constraining the collective effects of cation migration.

    Article  CAS  PubMed  Google Scholar 

  161. Zhai, X.-Z. et al. Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries. Nanomicro Lett. 12, 56 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Nam, K. W. et al. Critical role of crystal water for a layered cathode material in sodium ion batteries. Chem. Mater. 27, 3721–3725 (2015).

    Article  CAS  Google Scholar 

  163. Jo, M. R. et al. Triggered reversible phase transformation between layered and spinel structure in manganese-based layered compounds. Nat. Commun. 10, 3385 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, J. et al. Tuning oxygen redox chemistry in li‐rich Mn‐based layered oxide cathodes by modulating cation arrangement. Adv. Mater. 31, 1901808 (2019).

    Article  CAS  Google Scholar 

  166. Yamamoto, K. et al. Charge compensation mechanism of lithium-excess metal oxides with different covalent and ionic characters revealed by operando soft and hard X-ray absorption spectroscopy. Chem. Mater. 32, 139–147 (2020). This paper establishes the effect of bond character on the stability of oxygen redox.

    Article  CAS  Google Scholar 

  167. Myeong, S. et al. Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement. Nat. Commun. 9, 3285 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wang, Q. et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nat. Mater. 20, 353–361 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Zhao, C. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Ma, J. et al. Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: honeycomb-ordered cathodes for Na-ion batteries. Chem. Mater. 27, 2387–2399 (2015).

    Article  CAS  Google Scholar 

  171. Susanto, D. et al. Anionic redox activity as a key factor in the performance degradation of NaFeO2 cathodes for sodium ion batteries. Chem. Mater. 31, 3644–3651 (2019).

    Article  CAS  Google Scholar 

  172. Yu, Y. et al. Triggering reversible anion redox chemistry in O3-type cathodes by tuning Na/Mn anti-site defects. Energy Environ. Sci. 16, 584–597 (2023).

    Article  CAS  Google Scholar 

  173. Kang, K. & Ceder, G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 74, 094105 (2006).

    Article  Google Scholar 

  174. Yu, H. et al. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations. Energy Environ. Sci. 7, 1068 (2014).

    Article  CAS  Google Scholar 

  175. Sun, G. et al. The effect of cation mixing controlled by thermal treatment duration on the electrochemical stability of lithium transition-metal oxides. Phys. Chem. Chem. Phys. 19, 29886–29894 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Xiao, Y. et al. Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials. Nano Energy 49, 77–85 (2018). This paper investigates the advantageous effects of Ni2+/Li+ mixing to alleviate magnetic frustration, thereby enhancing structural stability.

    Article  CAS  Google Scholar 

  177. Ménétrier, M. et al. NMR evidence of LiF coating rather than fluorine substitution in Li(Ni0.425Mn0.425Co0.15)O2. J. Solid State Chem. 181, 3303–3307 (2008).

    Article  Google Scholar 

  178. Richards, W. D., Dacek, S. T., Kitchaev, D. A. & Ceder, G. Fluorination of lithium‐excess transition metal oxide cathode materials. Adv. Energy Mater. 8, 1701533 (2018).

    Article  Google Scholar 

  179. Chen, R. et al. Li+ intercalation in isostructural Li2VO3 and Li2VO2F with O2− and mixed O2−/F anions. Phys. Chem. Chem. Phys. 17, 17288–17295 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Takeda, N. et al. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2x LiF (0≤x≤2) binary system. J. Power Sources 367, 122–129 (2017).

    Article  CAS  Google Scholar 

  181. Lee, J. et al. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. Nat. Commun. 8, 981 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Lun, Z. et al. Improved cycling performance of Li‐excess cation‐disordered cathode materials upon fluorine substitution. Adv. Energy Mater. 9, 1802959 (2019).

    Article  Google Scholar 

  183. Clément, R. J., Kitchaev, D. & Lee, J. & Ceder, G. Short-range order and unusual modes of nickel redox in a fluorine-substituted disordered rocksalt oxide lithium-ion cathode. Chem. Mater. 30, 6945–6956 (2018).

    Article  Google Scholar 

  184. Jiao, S. et al. The mechanism of fluorine doping for the enhanced lithium storage behavior in cation‐disordered cathode oxide. Adv. Energy Mater. 13, 2301636 (2023).

    Article  CAS  Google Scholar 

  185. Lun, Z. et al. Design principles for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153–168 (2020).

    Article  CAS  Google Scholar 

  186. Sun, Y. et al. Expandable Li percolation network: the effects of site distortion in cation-disordered rock-salt cathode material. J. Am. Chem. Soc. 145, 11717–11726 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Urban, A., Lee, J. & Ceder, G. The configurational space of rocksalt-type oxides for high-capacity lithium battery electrodes. Adv. Energy Mater. 4, 1400478 (2014).

    Article  Google Scholar 

  188. Ji, H. et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. Nat. Commun. 10, 592 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lun, Z. et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Squires, A. G. & Scanlon, D. O. Understanding the limits to short-range order suppression in many-component disordered rock salt lithium-ion cathode materials. J. Mater. Chem. A 11, 13765–13773 (2023).

    Article  CAS  Google Scholar 

  191. Wang, Y. et al. Unraveling the nature and role of layered cation ordering in cation-disordered rock-salt cathodes. J. Am. Chem. Soc. 144, 19838–19848 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Yang, J. H. & Ceder, G. Activated internetwork pathways in partially‐disordered spinel cathode materials with ultrahigh rate performance. Adv. Energy Mater. 13, 2202955 (2023).

    Article  CAS  Google Scholar 

  193. Rutt, A. et al. Novel structural motif to promote Mg-ion mobility: investigating ABO4 zircons as magnesium intercalation cathodes. ACS Appl. Mater. Interfaces 15, 34983–34991 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Flores, E., Mozhzhukhina, N., Aschauer, U. & Berg, E. J. Operando monitoring the insulator–metal transition of LiCoO2. ACS Appl. Mater. Interfaces 13, 22540–22548 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Chen, Q. et al. Zircon structure as a prototype host for fast monovalent and divalent ionic conduction. Chem. Mater. 35, 6313–6322 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government Ministry of Science and ICT (MSIT) (NRF-2022R1A2B5B03001781) and the Nano & Material Technology Development Program through the NRF funded by the MSIT (RS-2023-00282389). Y.-M.K acknowledges the partial financial support from LG Energy Solution.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and S.L. contributed equally. All authors contributed to the discussion of the content and the writing of the manuscript.

Corresponding author

Correspondence to Yong-Mook Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Lee, S., Lee, H. et al. Manipulating disorder within cathodes of alkali-ion batteries. Nat Rev Chem 8, 587–604 (2024). https://doi.org/10.1038/s41570-024-00622-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-024-00622-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing