Abstract
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)–B or C(sp3)–B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)–B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
References
Hall, D. G. Boronic acid catalysis. Chem. Soc. Rev. 48, 3475–3496 (2019).
Madayanad Suresh, S., Hall, D., Beljonne, D., Olivier, Y. & Zysman-Colman, E. Multiresonant thermally activated delayed fluorescence emitters based on heteroatom-doped nanographenes: recent advances and prospects for organic light-emitting diodes. Adv. Funct. Mater. 30, 1908677 (2020).
Fernandes, G. F. S., Denny, W. A. & Dos Santos, J. L. Boron in drug design: recent advances in the development of new therapeutic agents. Eur. J. Med. Chem. 179, 791–804 (2019).
Das, B. C. et al. Boron chemicals in drug discovery and development: synthesis and medicinal perspective. Molecules 27, 2615 (2022).
Lennox, A. J. J. & Lloyd-Jones, G. C. Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev. 43, 412–443 (2013).
Molander, G. A. & Ellis, N. Organotrifluoroborates: protected boronic acids that expand the versatility of the Suzuki coupling reaction. Acc. Chem. Res. 40, 275–286 (2007).
Tse, E. G. et al. Nonclassical phenyl bioisosteres as effective replacements in a series of novel open-source antimalarials. J. Med. Chem. 63, 11585–11601 (2020).
Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).
Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011).
Meanwell, N. A. Applications of bioisosteres in the design of biologically active compounds. J. Agric. Food Chem. 71, 18087–18122 (2023).
Yoshida, H. Borylation of alkynes under base/coinage metal catalysis: some recent developments. ACS Catal. 6, 1799–1811 (2016).
Fyfe, J. W. B. & Watson, A. J. B. Recent developments in organoboron chemistry: old dogs, new tricks. Chem 3, 31–55 (2017).
Šterman, A., Sosič, I., Gobec, S. & Časar, Z. Recent advances in the synthesis of acylboranes and their widening applicability. ACS Omega 5, 17868–17875 (2020).
Wu, D., Taguchi, J., Tanriver, M. & Bode, J. W. Synthesis of acylboron compounds. Angew. Chem. Int. Ed. Engl. 59, 16847–16858 (2020).
Grafstein, D. et al. Carboranes. III. Reactions of the carboranes. Inorg. Chem. 2, 1120–1125 (1963).
Wang, H., Zhang, J. & Xie, Z. Ring-opening and ring-expansion reactions of carborane-fused borirane. Chem. Sci. 12, 13187–13192 (2021).
Marfavi, A., Kavianpour, P. & Rendina, L. M. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem. 6, 486–504 (2022).
Rygus, J. P. G. & Crudden, C. M. Enantiospecific and iterative Suzuki–Miyaura cross-couplings. J. Am. Chem. Soc. 139, 18124–18137 (2017).
Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).
Viso, A., Fernández de la Pradilla, R. & Tortosa, M. Site-selective functionalization of C(sp3) vicinal boronic esters. ACS Catal. 12, 10603–10620 (2022).
Emsley, J. Elements 1–112, 114, 116 and 117 (Clarendon Press, 1998).
Frankland, E. & Duppa, B. On boric ethide. Proc. R. Soc. Lond. 10, 568–570 (1859).
Kuivila, H. G. & Nahabedian, K. V. Electrophilic displacement reactions. XI. Solvent isotope effects in the protodeboronation of areneboronic acids 1–3. J. Am. Chem. Soc. 83, 2164–2166 (1961).
Nahabedian, K. V. & Kuivila, H. G. Electrophilic displacement reactions. XII. Substituent effects in the protodeboronation of areneboronic acids 1–3. J. Am. Chem. Soc. 83, 2167–2174 (1961).
Kuivila, H. G., Reuwer, J. F. & Mangravite, J. A. Electrophilic displacement reactions. XVI. Metal ion catalysis in the protodeboronation of areneboronic acids 1–3. J. Am. Chem. Soc. 86, 2666–2670 (1964).
Ainley, A. D. & Challenger, F. CCLXXX. — Studies of the boron–carbon linkage. Part I. The oxidation and nitration of phenylboric acid. J. Chem. Soc. 0, 2171–2180 (1930).
Challenger, F. & Richards, O. V. 94. Organo-derivatives of bismuth and thallium. J. Chem. Soc. https://doi.org/10.1039/jr9340000405 (1934).
Kuivila, H. G., Keough, A. H. & Soboczenski, E. J. Areneboronates from diols and polyols. J. Org. Chem. 19, 780–783 (1954).
Brown, H. C. From little acorns to tall oaks: from boranes through organoboranes. Science 210, 485–492 (1980).
Adams, R. M. Preparation of diborane. Adv. Chem. 32, 60–68 (1961).
Lane, C. F. Reduction of organic compounds with diborane. Chem. Rev. 76, 773–799 (1976).
Brown, H. C. & Rao, B. C. S. A new technique for the conversion of olefins into organoboranes and related alcohols. J. Am. Chem. Soc. 78, 5694–5695 (1956).
Miyaura, N. & Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc. Chem. Commun. 19, 866–867 (1979).
Miyaura, N., Yamada, K. & Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett. 20, 3437–3440 (1979).
Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. Engl. 51, 5062–5085 (2012).
Matteson, D. S. & Shdo, J. G. gem-dimetallic compounds. ethane-1,1-diboronic acid and ethylidenedimercuric chloride1. J. Org. Chem. 29, 2742–2746 (1964).
Matteson, D. S. & Shdo, J. G. Ethane-1,1-diboronic Acid. J. Am. Chem. Soc. 85, 2684–2684 (1963).
Neeve, E. C., Geier, S. J., Mkhalid, I. A. I., Westcott, S. A. & Marder, T. B. Diboron(4) compounds: from structural curiosity to synthetic workhorse. Chem. Rev. 116, 9091–9161 (2016).
Endo, K., Ohkubo, T., Hirokami, M. & Shibata, T. Chemoselective and regiospecific Suzuki coupling on a multisubstituted sp3-carbon in 1,1-diborylalkanes at room temperature. J. Am. Chem. Soc. 132, 11033–11035 (2010).
Endo, K., Ishioka, T., Ohkubo, T. & Shibata, T. One-pot synthesis of symmetrical and unsymmetrical diarylmethanes via diborylmethane. J. Org. Chem. 77, 7223–7231 (2012).
Mancilla, T., Contreras, R. & Wrackmeyer, B. New bicyclic organylboronic esters derived from iminodiacetic acids. J. Organomet. Chem. 307, 1–6 (1986).
Gillis, E. P. & Burke, M. D. A simple and modular strategy for small molecule synthesis: iterative Suzuki−Miyaura coupling of b-protected haloboronic acid building blocks. J. Am. Chem. Soc. 129, 6716–6717 (2007).
Blair, D. J. et al. Automated iterative Csp3–C bond formation. Nature 604, 92–97 (2022).
Mutoh, Y., Yamamoto, K. & Saito, S. Suzuki–Miyaura cross-coupling of 1,8-diaminonaphthalene (dan)-protected arylboronic acids. ACS Catal. 10, 352–357 (2020).
Koishi, M., Tomota, K., Nakamoto, M. & Yoshida, H. Direct Suzuki–Miyaura coupling of naphthalene-1,8-diaminato (dan)-substituted cyclopropylboron compounds. Adv. Synth. Catal. 365, 682–686 (2023).
Yoshida, H. et al. Direct Suzuki–Miyaura coupling with naphthalene-1,8-diaminato (dan)-substituted organoborons. ACS Catal. 10, 346–351 (2020).
Noguchi, H., Hojo, K. & Suginome, M. Boron-masking strategy for the selective synthesis of oligoarenes via iterative Suzuki−Miyaura coupling. J. Am. Chem. Soc. 129, 758–759 (2007).
Vedejs, E., Chapman, R. W., Fields, S. C., Lin, S. & Schrimpf, M. R. Conversion of arylboronic acids into potassium aryltrifluoroborates: convenient precursors of arylboron difluoride Lewis acids. J. Org. Chem. 60, 3020–3027 (1995).
Darses, S., Genêt, J.-P., Brayer, J.-L. & Demoute, J.-P. Cross-coupling reactions of arenediazonium tetrafluoroborates with potassium aryl- or alkenyltrifluoroborates catalyzed by palladium. Tetrahedron Lett. 38, 4393–4396 (1997).
Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).
Tellis, J. C., Amani, J. & Molander, G. A. Single-electron transmetalation: photoredox/nickel dual catalytic cross-coupling of secondary alkyl β-trifluoroboratoketones and -esters with aryl bromides. Org. Lett. 18, 2994–2997 (2016).
Karimi-Nami, R., Tellis, J. C. & Molander, G. A. Single-electron transmetalation: protecting-group-independent synthesis of secondary benzylic alcohol derivatives via photoredox/nickel dual catalysis. Org. Lett. 18, 2572–2575 (2016).
Fiorito, D. et al. Stereocontrolled total synthesis of bastimolide B using iterative homologation of boronic esters. J. Am. Chem. Soc. 144, 7995–8001 (2022).
Aiken, S. G. et al. Iterative synthesis of 1,3-polyboronic esters with high stereocontrol and application to the synthesis of bahamaolide A. Nat. Chem. 15, 248–256 (2023).
Mita, T., Ikeda, Y., Michigami, K. & Sato, Y. Iridium-catalyzed triple C(sp3)–H borylations: construction of triborylated sp3-carbon centers. Chem. Commun. 49, 5601 (2013).
Palmer, W. N., Zarate, C. & Chirik, P. J. Benzyltriboronates: building blocks for diastereoselective carbon–carbon bond formation. J. Am. Chem. Soc. 139, 2589–2592 (2017).
Coombs, J. R., Zhang, L. & Morken, J. P. Enantiomerically enriched tris(boronates): readily accessible conjunctive reagents for asymmetric synthesis. J. Am. Chem. Soc. 136, 16140–16143 (2014).
Davenport, E. & Fernandez, E. Transition-metal-free synthesis of vicinal triborated compounds and selective functionalisation of the internal C–B bond. Chem. Commun. 54, 10104–10107 (2018).
Hu, J., Zhao, Y. & Shi, Z. Highly tunable multi-borylation of gem-difluoroalkenes via copper catalysis. Nat. Catal. 1, 860–869 (2018).
Yukimori, D., Nagashima, Y., Wang, C., Muranaka, A. & Uchiyama, M. Quadruple borylation of terminal alkynes. J. Am. Chem. Soc. 141, 9819–9822 (2019).
Obligacion, J. V. & Chirik, P. J. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nat. Rev. Chem. 2, 15–34 (2018).
Meng, F., Jung, B., Haeffner, F. & Hoveyda, A. H. NHC–Cu-catalyzed protoboration of monosubstituted allenes. ligand-controlled site selectivity, application to synthesis and mechanism. Org. Lett. 15, 1414–1417 (2013).
Bismuto, A., Cowley, M. J. & Thomas, S. P. Aluminum-catalyzed hydroboration of alkenes. ACS Catal. 8, 2001–2005 (2018).
Yu, S., Wu, C. & Ge, S. Cobalt-catalyzed asymmetric hydroboration/cyclization of 1,6-enynes with pinacolborane. J. Am. Chem. Soc. 139, 6526–6529 (2017).
Guo, J., Cheng, B., Shen, X. & Zhan, L. Cobalt-catalyzed asymmetric sequential hydroboration/hydrogenation of internal alkynes. J. Am. Chem. Soc. 139, 15316–15319 (2017).
Li, C. et al. Selective hydroboration of unsaturated bonds by an easily accessible heterotopic cobalt catalyst. Nat. Commun. 12, 3813 (2021).
Obligacion, J. V. & Chirik, P. J. Bis(imino)pyridine cobalt-catalyzed alkene isomerization–hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity. J. Am. Chem. Soc. 135, 19107–19110 (2013).
Zhang, L., Zuo, Z., Leng, X. & Huang, Z. A cobalt-catalyzed alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed. Engl. 53, 2696–2700 (2014).
Jang, W. J., Song, S. M., Moon, J. H., Lee, J. Y. & Yun, J. Copper-catalyzed enantioselective hydroboration of unactivated 1,1-disubstituted alkenes. J. Am. Chem. Soc. 139, 13660–13663 (2017).
Medina, J. M. et al. Cu-catalyzed hydroboration of benzylidenecyclopropanes: reaction optimization, (hetero)aryl scope, and origins of pathway selectivity. ACS Catal. 9, 11130–11136 (2019).
Zhong, M. et al. Copper-photocatalyzed hydroboration of alkynes and alkenes. Angew. Chem. Int. Ed. Engl. 60, 14498–14503 (2021).
Cui, M., Zhao, Z.-Y. & Oestreich, M. Boosting the enantioselectivity of conjugate borylation of α,β-disubstituted cyclobutenones with monooxides of chiral C2-symmetric bis(phosphine) ligands. Chem. Eur. J. 28, e202202163 (2022).
Lee, J. & Yun, J. Catalytic asymmetric boration of acyclic α,β-unsaturated esters and nitriles. Angew. Chem. Int. Ed. Engl. 47, 145–147 (2007).
Noh, D., Chea, H., Ju, J. & Yun, J. Highly regio- and enantioselective copper-catalyzed hydroboration of styrenes. Angew. Chem. Int. Ed. Engl. 48, 6062–6064 (2009).
Lee, Y. & Hoveyda, A. H. Efficient boron–copper additions to aryl-substituted alkenes promoted by NHC-based catalysts. Enantioselective cu-catalyzed hydroboration reactions. J. Am. Chem. Soc. 131, 3160–3161 (2009).
Evans, D. A. & Fu, G. C. Amide-directed, iridium-catalyzed hydroboration of olefins: documentation of regio- and stereochemical control in cyclic and acyclic systems. J. Am. Chem. Soc. 113, 4042–4043 (1991).
Wang, G. et al. Iridium-catalyzed distal hydroboration of aliphatic internal alkenes. Angew. Chem. Int. Ed. Engl. 58, 8187–8191 (2019).
Zhao, H., Gao, Q., Zhang, Y., Zhang, P. & Xu, S. Iridium-catalyzed γ-selective hydroboration of γ-substituted allylic amides. Org. Lett. 22, 2861–2866 (2020).
Liu, R., Zhang, Y. & Xu, J. Selective hydroboration of equilibrating allylic azides. Chem. Commun. 57, 8913–8916 (2021).
Wu, Y. J., Moreau, B. & Ritter, T. Iron-catalyzed 1,4-hydroboration of 1,3-dienes. J. Am. Chem. Soc. 131, 12915–12917 (2009).
Zhang, L., Peng, D., Leng, X. & Huang, Z. Iron-catalyzed, atom-economical, chemo- and regioselective alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed. Engl. 52, 3676–3680 (2013).
Obligacion, J. V. & Chirik, P. J. Highly selective bis(imino)pyridine iron-catalyzed alkene hydroboration. Org. Lett. 15, 2680–2683 (2013).
Macnair, A. J., Millet, C. R. P., Nichol, G. S., Ironmonger, A. & Thomas, S. P. Markovnikov-selective, activator-free iron-catalyzed vinylarene hydroboration. ACS Catal. 6, 7217–7221 (2016).
Männig, D. & Nöth, H. Catalytic hydroboration with rhodium complexes. Angew. Chem. Int. Ed. Engl. Engl. 24, 878–879 (1985).
Evans, D. A., Fu, G. C. & Hoveyda, A. H. Rhodium(I)- and iridium(I)-catalyzed hydroboration reactions: scope and synthetic applications. J. Am. Chem. Soc. 114, 6671–6679 (1992).
Zhang, B., Xu, X., Tao, L., Lin, Z. & Zhao, W. Rhodium-catalyzed regiodivergent synthesis of alkylboronates via deoxygenative hydroboration of aryl ketones: mechanism and origin of selectivities. ACS Catal. 11, 9495–9505 (2021).
Zhao, W., Chen, K.-Z., Li, A.-Z. & Li, B.-J. Remote stereocenter through amide-directed, rhodium-catalyzed enantioselective hydroboration of unactivated internal alkenes. J. Am. Chem. Soc. 144, 13071–13078 (2022).
Hu, J., Ferger, M., Shi, Z. & Marder, T. B. Recent advances in asymmetric borylation by transition metal catalysis. Chem. Soc. Rev. 50, 13129–13188 (2021).
Gao, T.-T., Lu, H.-X., Gao, P.-C. & Li, B.-J. Enantioselective synthesis of tertiary boronic esters through catalytic asymmetric reversed hydroboration. Nat. Commun. 12, 3776 (2021).
He, X. & Hartwig, J. F. True metal-catalyzed hydroboration with titanium. J. Am. Chem. Soc. 118, 1696–1702 (1996).
Hartwig, J. F. & Muhoro, C. N. Mechanistic studies of titanocene-catalyzed alkene and alkyne hydroboration: borane complexes as catalytic intermediates. Organometallics 19, 30–38 (2000).
Pereira, S. & Srebnik, M. Transition metal-catalyzed hydroboration of and CCl4 addition to alkenes. J. Am. Chem. Soc. 118, 909–910 (1996).
Bage, A. D., Hunt, T. A. & Thomas, S. P. Hidden boron catalysis: nucleophile-promoted decomposition of HBpin. Org. Lett. 22, 4107–4112 (2020).
Bage, A. D., Nicholson, K., Hunt, T. A., Langer, T. & Thomas, S. P. The hidden role of boranes and borohydrides in hydroboration catalysis. ACS Catal. 10, 13479–13486 (2020).
Westcott, S. A., Blom, H. P., Marder, T. B. & Baker, R. T. New homogeneous rhodium catalysts for the regioselective hydroboration of alkenes. J. Am. Chem. Soc. 114, 8863–8869 (1992).
Westcott, S. A., Blom, H. P. & Marder, T. B. Nucleophile promoted degradation of catecholborane: consequences for transition metal-catalyzed hydroborations. Inorg. Chem. 32, 2175–2182 (1993).
Ishiyama, T., Murata, M. & Miyaura, N. Palladium(0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes: a direct procedure for arylboronic esters. J. Org. Chem. 60, 7508–7510 (1995).
Verma, P. K., Prasad, K. S., Varghese, D. & Geetharani, K. Cobalt(I)-catalyzed borylation of unactivated alkyl bromides and chlorides. Org. Lett. 22, 1431–1436 (2020).
Zhang, M., Ye, Z. & Zhao, W. Cobalt-catalyzed asymmetric remote borylation of alkyl halides. Angew. Chem. Int. Ed. Engl. 62, e202306248 (2023).
Takale, B. S., Thakore, R. R., Etemadi-Davan, E. & Lipshutz, B. H. Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation. Beilstein J. Org. Chem. 16, 691–737 (2020).
Yang, C.-T. et al. Alkylboronic esters from copper-catalyzed borylation of primary and secondary alkyl halides and pseudohalides. Angew. Chem. Int. Ed. Engl. 51, 528–532 (2012).
Bose, S. K. et al. Highly efficient synthesis of alkylboronate esters via Cu(II)-catalyzed borylation of unactivated alkyl bromides and chlorides in air. ACS Catal. 6, 8332–8335 (2016).
Lou, X., Zhang, Z.-Q., Liu, J.-H. & Lu, X.-Y. Copper-catalyzed borylation of primary and secondary alkyl halides with bis(neopentyl glycolate) diboron at room temperature. Chem. Lett. 45, 200–202 (2016).
Yoshida, H., Takemoto, Y., Kamio, S., Osaka, I. & Takaki, K. Copper-catalyzed direct borylation of alkyl, alkenyl and aryl halides with B(dan). Org. Chem. Front. 4, 1215–1219 (2017).
Ito, H. & Kubota, K. Copper(I)-catalyzed boryl substitution of unactivated alkyl halides. Org. Lett. 14, 890–893 (2012).
Dudnik, A. S. & Fu, G. C. Nickel-catalyzed coupling reactions of alkyl electrophiles, including unactivated tertiary halides, to generate carbon–boron bonds. J. Am. Chem. Soc. 134, 10693–10697 (2012).
Yi, J. et al. Alkylboronic esters from palladium- and nickel-catalyzed borylation of primary and secondary alkyl bromides. Adv. Synth. Catal. 354, 1685–1691 (2012).
Atack, T. C., Lecker, R. M. & Cook, S. P. Iron-catalyzed borylation of alkyl electrophiles. J. Am. Chem. Soc. 136, 9521–9523 (2014).
Wang, S. et al. Iron-catalyzed borylation and silylation of unactivated tertiary, secondary, and primary alkyl chlorides. CCS Chem. 3, 2164–2173 (2020).
Siddiqui, S., Bhawar, R. & Geetharani, K. Iron-based catalyst for borylation of unactivated alkyl halides without using highly basic organometallic reagents. J. Org. Chem. 86, 1948–1954 (2021).
Zhao, J.-H. et al. Visible-light-mediated borylation of aryl and alkyl halides with a palladium complex. Org. Biomol. Chem. 18, 4390–4394 (2020).
Shi, Y., Gao, Q. & Xu, S. Chiral bidentate boryl ligand enabled iridium-catalyzed enantioselective C(sp3)–H borylation of cyclopropanes. J. Am. Chem. Soc. 141, 10599–10604 (2019).
Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000).
He, J. et al. Ligand-promoted borylation of C(sp3)–H bonds with palladium(II) catalysts. Angew. Chem. Int. Ed. Engl. 55, 785–789 (2016).
He, J., Shao, Q., Wu, Q. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp3)–H borylation. J. Am. Chem. Soc. 139, 3344–3347 (2017).
Sang, R. et al. Copper-mediated dehydrogenative C(sp3)–H borylation of alkanes. J. Am. Chem. Soc. 145, 15207–15217 (2023).
Palmer, W. N., Obligacion, J. V., Pappas, I. & Chirik, P. J. Cobalt-catalyzed benzylic borylation: enabling polyborylation and functionalization of remote, unactivated C(sp3)–H bonds. J. Am. Chem. Soc. 138, 766–769 (2016).
Jayasundara, C. R. K. et al. Cobalt-catalyzed C–H borylation of alkyl arenes and heteroarenes including the first selective borylations of secondary benzylic C–H bonds. Organometallics 37, 1567–1574 (2018).
Yoshii, D., Yatabe, T., Yabe, T. & Yamaguchi, K. C(sp3)–H selective benzylic borylation by in situ reduced ultrasmall Ni species on CeO2. ACS Catal. 11, 2150–2155 (2021).
Zhong, P. et al. Photoelectrochemical oxidative C(sp3)−H borylation of unactivated hydrocarbons. Nat. Commun. 14, 6530 (2023).
Hupe, E., Marek, I. & Knochel, P. Diastereoselective reduction of alkenylboronic esters as a new method for controlling the stereochemistry of up to three adjacent centers in cyclic and acyclic molecules. Org. Lett. 4, 2861–2863 (2002).
Gazić Smilović, I. et al. Iridium-catalyzed chemoselective and enantioselective hydrogenation of (1-chloro-1-alkenyl) boronic esters. Angew. Chem. Int. Ed. Engl. 51, 1014–1018 (2012).
Roseblade, S. J. et al. A practical synthetic approach to chiral (α-chloroalkyl)boronic esters via iridium-catalyzed chemoselective hydrogenation of chloro-substituted alkenyl boronates. Synthesis 45, 2824–2831 (2013).
Han, J. T., Jang, W. J., Kim, N. & Yun, J. Asymmetric synthesis of borylalkanes via copper-catalyzed enantioselective hydroallylation. J. Am. Chem. Soc. 138, 15146–15149 (2016).
Lee, J., Torker, S. & Hoveyda, A. H. Versatile homoallylic boronates by chemo-, SN2′-, diastereo- and enantioselective catalytic sequence of Cu−H addition to vinyl-B(pin)/allylic substitution. Angew. Chem. Int. Ed. Engl. 56, 821–826 (2017).
Jang, W. J. & Yun, J. Copper-catalyzed tandem hydrocupration and diastereo- and enantioselective borylalkyl addition to aldehydes. Angew. Chem. Int. Ed. Engl. 57, 12116–12120 (2018).
Jang, W. J., Woo, J. & Yun, J. Asymmetric conjugate addition of chiral secondary borylalkyl copper species. Angew. Chem. Int. Ed. Engl. 60, 4614–4618 (2021).
Matteson, D. S. & Mah, R. W. H. Neighboring boron in nucleophilic displacement. J. Am. Chem. Soc. 85, 2599–2603 (1963).
Matteson, D. S. & Ray, R. Directed chiral synthesis with pinanediol boronic esters. J. Am. Chem. Soc. 102, 7590–7591 (1980).
Matteson, D. S. Asymmetric synthesis with boronic esters. Acc. Chem. Res. 21, 294–300 (1988).
Matteson, D. S., Collins, B. S. L., Aggarwal, V. K. & Ciganek, E. The Matteson reaction. in Organic Reactions 427–860 (John Wiley & Sons, Ltd, 2021).
Beckmann, E., Desai, V. & Hoppe, D. Stereospecific reaction of α-carbamoyloxy-2-alkenylboronates and α-carbamoyloxy-alkylboronates with Grignard reagents — synthesis of highly enantioenriched secondary alcohols. Synlett 2004, 2275–2280 (2004).
Beak, P. & Carter, L. G. Dipole-stabilized carbanions from esters: alpha-oxo lithiations of 2,6-substituted benzoates of primary alcohols. J. Org. Chem. 46, 2363–2373 (1981).
Wu, S., Lee, S. & Beak, P. Asymmetric deprotonation by BuLi/(−)-sparteine: convenient and highly enantioselective syntheses of (S)-2-aryl-boc-pyrrolidines. J. Am. Chem. Soc. 118, 715–721 (1996).
Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).
Balieu, S. et al. Toward ideality: the synthesis of (+)-kalkitoxin and (+)-hydroxyphthioceranic acid by assembly-line synthesis. J. Am. Chem. Soc. 137, 4398–4403 (2015).
Watson, C. G. et al. Construction of multiple, contiguous quaternary stereocenters in acyclic molecules by lithiation–borylation. J. Am. Chem. Soc. 136, 17370–17373 (2014).
Yeung, K., Mykura, R. C. & Aggarwal, V. K. Lithiation–borylation methodology in the total synthesis of natural products. Nat. Synth. 1, 117–126 (2022).
Wu, J. et al. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 547, 436–440 (2017).
Isihida, N., Shimamoto, Y. & Murakami, M. Stereoselective synthesis of (E)-(trisubstituted alkenyl)borinic esters: stereochemistry reversed by ligand in the palladium-catalyzed reaction of alkynylborates with aryl halides. Org. Lett. 11, 5434–5437 (2009).
Zhang, L. et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 351, 70–74 (2016).
Myhill, J. A., Zhang, L., Lovinger, G. J. & Morken, J. P. Enantioselective construction of tertiary boronic esters by conjunctive cross-coupling. Angew. Chem. Int. Ed. Engl. 57, 12799–12803 (2018).
Nelson, H. M., Williams, B. D. & Toste, F. D. Enantioselective 1,1-arylborylation of alkenes: merging chiral anion phase transfer with Pd catalysis. J. Am. Chem. Soc. 137, 3213–3216 (2015).
Matsuda, N., Hirano, K., Satoh, T. & Miura, M. Regioselective and stereospecific copper-catalyzed aminoboration of styrenes with bis(pinacolato)diboron and O-benzoyl-N,N-dialkylhydroxylamines. J. Am. Chem. Soc. 135, 4934–4937 (2013).
Logan, K. M. & Brown, M. K. Catalytic enantioselective arylboration of alkenylarenes. Angew. Chem. Int. Ed. Engl. 56, 851–856 (2017).
Molloy, J. J. et al. Interrogating Pd(II) anion metathesis using a bifunctional chemical probe: a transmetalation switch. J. Am. Chem. Soc. 140, 126–130 (2018).
Zhang, M. et al. Stereocontrolled pericyclic and radical cycloaddition reactions of readily accessible chiral alkenyl diazaborolidines. Angew. Chem. Int. Ed. Engl. 61, e202205454 (2022).
Conner, M. L. & Brown, K. M. Synthesis of 1,3-substituted cyclobutanes by allenoate-alkene [2 + 2] cycloaddition. J. Org. Chem. 81, 8050–8060 (2016).
Parsutkar, M. M., Pagar, V. V. & RajanBabu, T. V. Catalytic enantioselective synthesis of cyclobutenes from alkynes and alkenyl derivatives. J. Am. Chem. Soc. 141, 115367–15377 (2019).
Scholz, S. O. et al. Construction of complex cyclobutane building blocks by photosensitized [2 + 2] cycloaddition of vinyl boronate esters. Org. Lett. 23, 3496–3501 (2021).
Liu, Y. et al. Photosensitized [2+2]-cycloadditions of alkenylboronates and alkenes. Angew. Chem. Int. Ed. Engl. 61, e202200725 (2022).
Liu, Y., Ni, D. & Brown, M. K. Boronic ester enabled [2 + 2]-cycloadditions by temporary coordination: synthesis of artochamin J and piperarborenine B. J. Am. Chem. Soc. 144, 18790–18796 (2022).
Li, J., Wang, H., Qiu, Z., Huang, C. & Li, C. Metal-free direct deoxygenative borylation of aldehydes and ketones. J. Am. Chem. Soc. 142, 13011–13020 (2020).
Li, J., Huang, C., Ataya, M., Khaliullin, R. Z. & Li, C. Direct deoxygenative borylation of carboxylic acids. Nat. Commun. 12, 4970 (2021).
Wang, D., Zhou, J., Hu, Z. & Xu, T. Deoxygenative haloboration and enantioselective chloroboration of carbonyls. J. Am. Chem. Soc. 144, 22870–22876 (2022).
Li, H., Wang, L., Zhang, Y. & Wang, J. Transition-metal-free synthesis of pinacol alkylboronates from tosylhydrazones. Angew. Chem. Int. Ed. Engl. 51, 2943–2946 (2012).
Yang, Y. et al. Practical and modular construction of C(sp3)-rich alkyl boron compounds. J. Am. Chem. Soc. 143, 471–480 (2021).
Marotta, A. et al. Direct light-enabled access to α-boryl radicals: application in the stereodivergent synthesis of allyl boronic esters. Angew. Chem. Int. Ed. 62, e202307540 (2023).
Xie, Q. & Dong, G. Programmable ether synthesis enabled by oxa-Matteson reaction. J. Am. Chem. Soc. 144, 8498–8503 (2022).
Armstrong, R. & Aggarwal, V. 50 years of Zweifel olefination: a transition-metal-free coupling. Synthesis 49, 3323–3336 (2017).
Marotta, A., Adams, C. E. & Molloy, J. J. The impact of boron hybridisation on photocatalytic processes. Angew. Chem. Int. Ed. Engl. 61, e202207067 (2022).
West, M. J., Fyfe, J. W. B., Vantourout, J. C. & Watson, A. J. B. Mechanistic development and recent applications of the Chan–Lam amination. Chem. Rev. 119, 12491–12523 (2019).
Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).
Brown, H. C., Kim, K. W., Cole, T. E. & Singram, B. Chiral synthesis via organoboranes. 8. Synthetic utility of boronic esters of essentially 100% optical purity. Synthesis of primary amines of very high enantiomeric purities. J. Am. Chem. Soc. 108, 6761–6764 (1986).
Mlynarski, S. N., Karns, A. S. & Morken, J. P. Direct stereospecific amination of alkyl and aryl pinacol boronates. J. Am. Chem. Soc. 134, 16449–16451 (2012).
Sueki, S. & Kuninobu, Y. Copper-catalyzed N- and O-alkylation of amines and phenols using alkylborane reagents. Org. Lett. 15, 1544–1547 (2013).
Grayson, J. D., Dennis, F. M., Robertson, C. C. & Partridge, B. M. Chan–Lam amination of secondary and tertiary benzylic boronic esters. J. Org. Chem. 86, 9883–9897 (2021).
Bastick, K. A. C. & Watson, A. J. B. Pd-catalyzed homologation of arylboronic acids as a platform for the diversity-oriented synthesis of benzylic C–X bonds. Synlett 34, 2097–2102 (2023).
Kunetsov, V. V. Reaction of substituted 1,3,2-dioxaborinanes with anhydrous aluminum bromide. Rus. J. Org. Chem. 30, 837–838 (1994).
Larouche-Gauthier, R., Elford, T. G. & Aggarwal, V. K. Ate complexes of secondary boronic esters as chiral organometallic-type nucleophiles for asymmetric synthesis. J. Am. Chem. Soc. 133, 16794–16797 (2011).
Li, Z., Wang, Z., Zhu, L., Tan, X. & Li, C. Silver-catalyzed radical fluorination of alkylboronates in aqueous solution. J. Am. Chem. Soc. 136, 16439–16443 (2014).
Sandford, C., Rasappan, R. & Aggarwal, V. Synthesis of enantioenriched alkylfluorides by the fluorination of boronate complexes. J. Am. Chem. Soc. 137, 10100–10103 (2015).
Chausset-Boissarie, L. et al. Enantiospecific, regioselective cross-coupling reactions of secondary allylic boronic esters. Chem. Eur. J. 19, 17698–17701 (2013).
Partridge, B. M., Chausset-Boissarie, L., Burns, M., Pulis, A. P. & Aggarwal, V. K. Enantioselective synthesis and cross-coupling of tertiary propargylic boronic esters using lithiation–borylation of propargylic carbamates. Angew. Chem. Int. Ed. Engl. 51, 11795–11799 (2012).
LaPorte, A. J., Shi, Y., Hein, J. E. & Burke, M. D. Stereospecific Csp3 Suzuki–Miyaura cross-coupling that evades β-oxygen elimination. ACS Catal. 12, 10905–10912 (2022).
Tran, V. T. et al. Activation of diverse carbon-heteroatom and carbon–carbon bonds via palladium(II)-catalysed β-X elimination. Nat. Chem. 10, 1126–1133 (2018).
Ohmura, T., Awano, T. & Suginome, M. Stereospecific Suzuki–Miyaura coupling of chiral α-(acylamino)benzylboronic esters with inversion of configuration. J. Am. Chem. Soc. 132, 13191–13193 (2010).
Yuan, M., Song, Z., Badir, S. O., Molander, G. A. & Gutierrez, O. On the nature of C(sp3)–C(sp2) bond formation in nickel-catalyzed tertiary radical cross-couplings: a case study of Ni/photoredox catalytic cross-coupling of alkyl radicals and aryl halides. J. Am. Chem. Soc. 142, 7225–7234 (2020).
Milligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. Alkyl carbon–carbon bond formation by nickel/photoredox cross-coupling. Angew. Chem. Int. Ed. Engl. 58, 6152–6163 (2019).
Zweifel, G., Arzoumanian, H. & Whitney, C. C. A convenient stereoselective synthesis of substituted alkenes via hydroboration–iodination of alkynes. J. Am. Chem. Soc. 89, 3652–3653 (1967).
Knochel, P. J. A new approach to boron-stabilized organometallics. J. Am. Chem. Soc. 112, 7431 (1990).
Hong, K., Liu, X. & Morken, J. P. Simple access to elusive α-boryl carbanions and their alkylation: an umpolung construction for organic synthesis. J. Am. Chem. Soc. 136, 10581–10584 (2014).
Maercker, A., Theis, M., Kos, A. J. & von Ragué Schleyer, P. 1,1-Dilithioethane. Angew. Chem. Int. Ed. Engl. 22, 733–734 (1983).
O’Brien, L., Argent, S. P., Kristaps, E. & Lam, H. W. Gold(I)-catalyzed nucleophilic allylation of azinium ions with allylboronates. Angew. Chem. Int. Ed. Engl. 61, e202202305 (2022).
Knochel, P. J. A new approach to boron-stabilized organometallics. Adv. Synth. Catal. 355, 1193–1205 (2013).
Silvi, M. & Aggarwal, V. K. Radical addition to strained σ-bonds enables the stereocontrolled synthesis of cyclobutyl boronic esters. J. Am. Chem. Soc. 141, 9511–9515 (2019).
Fawcett, A., Murtaza, A., Gregson, C. H. U. & Aggarwal, V. K. Strain-release-driven homologation of boronic esters: application to the modular synthesis of azetidines. J. Am. Chem. Soc. 141, 4573–4578 (2019).
Yu, S., Jing, C., Noble, A. & Aggarwal, V. K. 1,3-Difunctionalizations of [1.1.1]propellane via 1,2-metallate rearrangements of boronate complexes. Angew. Chem. Int. Ed. Engl. 59, 3917–3921 (2020).
Shaff, A. B., Yang, L., Lee, M. T. & Lalic, G. Stereospecific and regioselective synthesis of E-allylic alcohols through reductive cross coupling of terminal alkynes. J. Am. Chem. Soc. 145, 24615–24624 (2023).
Sharma, H. A., Essman, J. Z. & Jacobsen, E. N. Enantioselective catalytic 1,2-boronate rearrangements. Science 374, 752–757 (2021).
Silvi, M., Sandford, C. & Aggarwal, V. K. Merging photoredox with 1,2-metallate rearrangements: the photochemical alkylation of vinyl boronate complexes. J. Am. Chem. Soc. 139, 5736–5739 (2017).
Lima, F. et al. Organic photocatalysis for the radical couplings of boronic acid derivatives in batch and flow. Chem. Commun. 54, 5606–5609 (2018).
Kaiser, D., Noble, A., Fasano, V. & Aggarwal, V. K. 1,2-Boron shifts of β-boryl radicals generated from bis-boronic esters using photoredox catalysis. J. Am. Chem. Soc. 141, 14104–14109 (2019).
Ranjan, P. et al. Unlocking the accessibility of alkyl radicals from boronic acids through solvent-assisted organophotoredox activation. ACS Catal. 11, 10862–10870 (2021).
Shu, C., Noble, A. & Aggarwal, V. K. Photoredox-catalyzed cyclobutane synthesis by a deboronative radical addition–polar cyclization cascade. Angew. Chem. Int. Ed. Engl. 58, 3870–3874 (2019).
Shi, D., Xia, C. & Liu, C. Photoinduced transition-metal-free alkynylation of alkyl pinacol boronates. CCS Chem. 3, 1718–1728 (2020).
Li, C. et al. Photo-induced trifunctionalization of bromostyrenes via remote radical migration reactions of tetracoordinate boron species. Nat. Commun. 13, 1784 (2022).
Campbell, M. W., Compton, J. S., Kelly, C. B. & Molander, G. A. Three-component olefin dicarbofunctionalization enabled by nickel/photoredox dual catalysis. J. Am. Chem. Soc. 141, 20069–20078 (2019).
Sun, S., Duan, Y., Mega, R. S., Somerville, R. J. & Martin, R. Site-selective 1,2-dicarbofunctionalization of vinyl boronates through dual catalysis. Angew. Chem. Int. Ed. Engl. 59, 4370–4374 (2020).
Mega, S. R., Duong, V. K., Noble, A. & Aggarwal, V. K. Decarboxylative conjunctive cross-coupling of vinyl boronic esters using metallaphotoredox catalysis. Angew. Chem. Int. Ed. Engl. 59, 4375–4379 (2020).
Constantin, T., Zanani, M., Sheikh, N., Julia, F. & Leonori, D. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 367, 1021–1026 (2020).
Campbell, M. W., Yuan, M., Polites, V. C., Guitierrez, O. & Molander, G. M. Photochemical C–H activation enables nickel-catalyzed olefin dicarbofunctionalization. J. Am. Chem. Soc. 143, 3901–3910 (2021).
Schmidt, J., Choi, J., Liu, A. T., Slusarczyk, M. & Fu, G. C. A general, modular method for the catalytic asymmetric synthesis of alkylboronate esters. Science 354, 1265–1269 (2016).
Li, Y. et al. β-boron effect enables regioselective and stereospecific electrophilic addition to alkenes. J. Am. Chem. Soc. 145, 7548–7558 (2023).
Fyfe, J. W. B., Seath, C. P. & Watson, A. J. B. Chemoselective boronic ester synthesis by controlled speciation. Angew. Chem. Int. Ed. Engl. 53, 12077–12080 (2014).
Muir, C. W., Vantourout, J. C., Isidro-Llobet, A., Macdonald, S. J. F. & Watson, A. J. B. One-pot homologation of boronic acids: a platform for diversity-oriented synthesis. Org. Lett. 17, 6030–6033 (2015).
Lv, W. et al. Hypervalent iodine-mediated β-difluoroalkylboron synthesis via an unusual 1,2-hydrogen shift enabled by boron substitution. Chem. Sci. 13, 2981–2984 (2022).
Guo, L. et al. General method for enantioselective three-component carboarylation of alkenes enabled by visible-light dual photoredox/nickel catalysis. J. Am. Chem. Soc. 142, 20390–20399 (2020).
Zhu, C., Yue, H., Chu, L. & Rueping, M. Recent advances in photoredox and nickel dual-catalyzed cascade reactions: pushing the boundaries of complexity. Chem. Sci. 11, 4051–4604 (2020).
Huang, W., Keess, S. & Molander, G. M. One step synthesis of unsymmetrical 1,3-disubstituted BCP ketones via nickel/photoredox-catalyzed [1.1.1]propellane multicomponent dicarbofunctionalization. Chem. Sci. 13, 11936–11942 (2022).
Zhao, S. et al. Enantiodivergent Pd-catalyzed C–C bond formation enabled through ligand parameterization. Science 362, 670–674 (2018).
Zhang, L., Si, X., Rominger, F. & Hashmi, A. S. K. Visible-light-induced radical carbo-cyclization/gem-diborylation through triplet energy transfer between a gold catalyst and aryl iodides. J. Am. Chem. Soc. 142, 10485–10493 (2020).
Teo, W. J. & Ge, S. Cobalt-catalyzed diborylation of 1,1-disubstituted vinylarenes: a practical route to branched gem-bis(boryl)alkanes. Angew. Chem. Int. Ed. Engl. 57, 1654–1658 (2018).
Hu, M. & Ge, S. Versatile cobalt-catalyzed regioselective chain-walking double hydroboration of 1,n-dienes to access gem-bis(boryl)alkanes. Nat. Commun. 11, 765 (2020).
Shin, M. et al. Facile synthesis of α-boryl-substituted allylboronate esters using stable bis[(pinacolato)boryl]methylzinc reagents. Org. Lett. 22, 2476–2480 (2020).
Jin, S. et al. Enantioselective Cu-catalyzed double hydroboration of alkynes to access chiral gem-diborylalkanes. Nat. Commun. 13, 3524 (2022).
Li, L., Gong, T., Lu, X., Xiao, B. & Fu, Y. Nickel-catalyzed synthesis of 1,1-diborylalkanes from terminal alkenes. Nat. Commun. 8, 345 (2017).
Sun, S.-Z., Talavera, L., Spieß, P., Day, C. S. & Martin, R. sp3 bis-organometallic reagents via catalytic 1,1-difunctionalization of unactivated olefins. Angew. Chem. Int. Ed. Engl. 60, 11740–11744 (2021).
Mlynarski, S. N., Schuster, C. H. & Morken, J. P. Asymmetric synthesis from terminal alkenes by cascades of diboration and cross-coupling. Nature 505, 386–390 (2014).
Blaisdell, T. P. & Morken, J. P. Hydroxyl-directed cross-coupling: a scalable synthesis of debromohamigeran E and other targets of interest. J. Am. Chem. Soc. 137, 8712–8715 (2015).
Liu, X., Sun, C., Mlynarski, S. & Morken, J. P. Synthesis and stereochemical assignment of arenolide. Org. Lett. 20, 1898–1901 (2018).
Kliman, L. T., Mlynarski, S. N., Ferris, G. E. & Morken, J. P. Catalytic enantioselective 1,2-diboration of 1,3-dienes: versatile reagents for stereoselective allylation. Angew. Chem. Int. Ed. Engl. 51, 521–524 (2012).
von Hahmann, C. N., Talavera, M., Xu, C. & Braun, T. Reactivity of 3,3,3-trifluoropropyne at rhodium complexes: development of hydroboration reactions. Chem. Eur. J. 24, 11131–11138 (2018).
Wang, X. et al. Zirconium‐catalyzed atom‐economical synthesis of 1,1‐diborylalkanes from terminal and internal alkenes. Angew. Chem. Int. Ed. Engl. 59, 13608–13612 (2020).
Gao, G., Kuang, Z. & Song, Q. Functionalized geminal-diborylalkanes from various electron-deficient alkynes and B2pin2. Org. Chem. Front. 5, 2249–2253 (2018).
Kuang, Z. et al. Cu-catalyzed regio- and stereodivergent chemoselective sp2/sp3 1,3- and 1,4-diborylations of CF3-containing 1,3-enynes. Chem 6, 2347–2363 (2020).
Ishiyama, T., Matsuda, N., Miyaura, N. & Suzuki, A. Platinum(0)-catalyzed diboration of alkynes. J. Am. Chem. Soc. 115, 11018–11019 (1993).
Toribatake, K. & Nishiyama, H. Asymmetric diboration of terminal alkenes with a rhodium catalyst and subsequent oxidation: enantioselective synthesis of optically active 1,2-diols. Angew. Chem. Int. Ed. Engl. 52, 11011–11015 (2013).
Ishiyama, T., Yamamoto, M. & Miyaura, N. Diboration of alkenes with bis(pinacolato)diboron catalysed by a platinum(0) complex. Chem. Commun. 689, 690 (1997).
Larsen, M. A., Cho, S. H. & Hartwig, J. Iridium-catalyzed, hydrosilyl-directed borylation of unactivated alkyl C−H bonds. J. Am. Chem. Soc. 138, 762–765 (2016).
Viereck, P., Krautwald, S., Pabst, T. P. & Chirik, P. J. A boron activating effect enables cobalt-catalyzed asymmetric hydrogenation of sterically hindered alkenes. J. Am. Chem. Soc. 142, 3923–3930 (2020).
Wu, F. & Wu, X. Copper‐catalyzed borylative methylation of alkyl iodides with CO as the C1 source: advantaged by faster reaction of CuH over CuBpin. Angew. Chem. Int. Ed. Engl. 60, 11730–11734 (2021).
Eghbarieh, N. et al. Stereoselective Diels–Alder reactions of gem-diborylalkenes: toward the synthesis of gem-diboron-based polymers. J. Am. Chem. Soc. 143, 6211–6220 (2021).
Mali, M. et al. Simmons–Smith cyclopropanation of alkenyl 1,2-bis(boronates): stereoselective access to functionalized cyclopropyl derivatives. J. Org. Chem. 87, 7649–7657 (2022).
Salvado, O., Dominguez-Molano, P. & Fernández, E. Stereoselective cyclopropanation of 1,1-diborylalkenes via palladium-catalyzed (trimethylsilyl)diazomethane insertion. Org. Lett. 24, 4949–4953 (2022).
Ma, X. & Jiang, Y. Synthesis of gem-diboromethyl-substituted bicyclo[1.1.1]pentanes and their application in palladium-catalyzed cross-couplings. J. Org. Chem. 88, 1665–1694 (2023).
Ma, X. & Yeung, C. S. Achieving C(sp2)–C(sp3) coupling with BCP-F2 building blocks via Barluenga coupling: a comparative approach. J. Org. Chem. 86, 10672–10698 (2021).
Nallagonda, R., Padala, K. & Masarwa, A. gem-Diborylalkanes: recent advances in their preparation, transformation and application. Org. Biomol. Chem. 16, 1050–1064 (2018).
Paul, S., Das, K. K., Aich, D., Manna, S. & Panda, S. Recent developments in the asymmetric synthesis and functionalization of symmetrical and unsymmetrical gem-diborylalkanes. Org. Chem. Front. 9, 838–852 (2022).
Bedford, R. B. et al. Iron-catalyzed borylation of alkyl, allyl, and aryl halides: isolation of an iron(I) boryl complex. Organometallics 33, 5940–5943 (2014).
Zhou, S. et al. Iron-catalyzed diborylation of unactivated aliphatic gem-dihalogenoalkenes: synthesis of 1,2-bis(boryl)alkanes. Org. Lett. 23, 5565–5570 (2021).
Wang, S., Kaga, A. & Yorimitsu, H. Reductive ring-opening 1,3-difunctionalizations of arylcyclopropanes with sodium metal. Synlett 32, 219–223 (2021).
Wang, D., Mück-Lichtenfeld, C. & Studer, A. 1,n-bisborylalkanes via radical boron migration. J. Am. Chem. Soc. 142, 9119–9123 (2020).
Zhao, B. et al. An olefinic 1,2-boryl-migration enabled by radical addition: construction of gem-bis(boryl)alkanes. Angew. Chem. Int. Ed. Engl. 58, 9448–9452 (2019).
Hemming, D., Fritzemeier, R., Westcott, S. A., Santos, W. L. & Steel, P. G. Copper-boryl mediated organic synthesis. Chem. Soc. Rev. 47, 7477–7494 (2018).
Lee, J., McDonald, R. & Hall, D. Enantioselective preparation and chemoselective cross-coupling of 1,1-diboron compounds. Nat. Chem. 3, 894–899 (2011).
Lee, J. C. H., Sun, H. & Hall, D. G. Optimization of reaction and substrate activation in the stereoselective cross-coupling of chiral 3,3-diboronyl amides. J. Org. Chem. 80, 7134–7143 (2015).
Fang, T., Wang, L., Wu, M., Qi, X. & Liu, C. Diborodichloromethane as versatile reagent for chemodivergent synthesis of gem-diborylalkanes. Angew. Chem. Int. Ed. Engl. 63, e202315227 (2024).
Nishino, S., Hirano, K. & Miura, M. Copper-catalyzed electrophilic amination of gem-diborylalkanes with hydroxylamines providing α-aminoboronic acid derivatives. Org. Lett. 21, 4759–4762 (2019).
Sun, C., Potter, B. & Morken, J. P. A catalytic enantiotopic-group-selective Suzuki reaction for the construction of chiral organoboronates. J. Am. Chem. Soc. 136, 6534–6537 (2014).
Li, X. & Hall, D. G. Diastereocontrolled monoprotodeboronation of β-sulfinimido gem-bis(boronates): a general and stereoselective route to α,β-disubstituted β-aminoalkylboronates. Angew. Chem. Int. Ed. Engl. 57, 10304–10308 (2018).
Endo, K., Hirokami, M. & Shibata, T. Synthesis of 1,1-organodiboronates via Rh(I)Cl-catalyzed sequential regioselective hydroboration of 1-alkynes. Synlett 2009, 1331–1335 (2009).
Park, J., Choi, S., Lee, Y. & Cho, S. H. Chemo- and stereoselective crotylation of aldehydes and cyclic aldimines with allylic gem-diboronate ester. Org. Lett. 19, 4054–4057 (2017).
Gao, S., Chen, J. & Chen, M. Z. α-Boryl-crotylboron reagents via Z-selective alkene isomerization and application to stereoselective syntheses of (E)-δ-boryl-syn-aomoallylic alcohols. Chem. Sci. 10, 3637–3642 (2019).
Zhang, Z.-Q. et al. Copper-catalyzed SN2′-selective allylic substitution reaction of gem-diborylalkanes. Org. Lett. 18, 952–955 (2016).
Shi, Y. & Hoveyda, A. H. Catalytic SN2′- and enantioselective allylic substitution with a diborylmethane reagent and application in synthesis. Angew. Chem. Int. Ed. Engl. 55, 3455–3458 (2016).
Green, J. C., Zanghi, J. M. & Meek, S. J. Diastereo- and enantioselective synthesis of homoallylic amines bearing quaternary carbon centers. J. Am. Chem. Soc. 142, 1704–1709 (2020).
Kim, M. et al. Copper-catalyzed enantiotopic-group-selective allylation of gem-diborylalkanes. J. Am. Chem. Soc. 143, 1069–1077 (2021).
Miura, T., Nakahashi, J. & Murakami, M. Enantioselective synthesis of (E)-δ-boryl-substituted anti-homoallylic alcohols using palladium and a chiral phosphoric acid. Angew. Chem. Int. Ed. Engl. 56, 6989–6993 (2017).
Lee, Y., Park, J. & Cho, S. H. Generation and application of (diborylmethyl)zinc(II) species: access to enantioenriched gem-diborylalkanes by an asymmetric allylic substitution. Angew. Chem. Int. Ed. Engl. 57, 12930–12934 (2018).
Miura, T., Oku, N., Shiratori, Y., Nagata, Y. & Murakami, M. Stereo‐ and enantioselective synthesis of propionate‐derived trisubstituted alkene motifs. Chem. Eur. J. 27, 3861–3868 (2021).
Park, J., Lee, Y., Kim, J. & Cho, S. H. Copper-catalyzed diastereoselective addition of diborylmethane to N-tert-butanesulfinyl aldimines: synthesis of β-aminoboronates. Org. Lett. 18, 1210–1213 (2016).
Joannou, M. V., Moyer, B. S. & Meek, S. J. Enantio- and diastereoselective synthesis of 1,2-hydroxyboronates through Cu-catalyzed additions of alkylboronates to aldehydes. J. Am. Chem. Soc. 137, 6176–6179 (2015).
Sun, W., Xu, L., Qin, Y. & Liu, C. Alkyne synthesis through coupling of gem-diborylalkanes with carboxylic acid esters. Nat. Synth. 2, 413–222 (2023).
Nóvoa, L., Trulli, L., Parra, A. & Tortosa, M. Stereoselective diboration of spirocyclobutenes: a platform for the synthesis of spirocycles with orthogonal exit vectors. Angew. Chem. Int. Ed. Engl. 60, 11763–11768 (2021).
Wang, H., Han, W., Noble, A. & Aggarwal, V. K. Dual nickel/photoredox‐catalyzed site‐selective cross‐coupling of 1,2‐bis‐boronic esters enabled by 1,2‐boron shifts. Angew. Chem. Int. Ed. Engl. 61, e202207988 (2022).
Yoshida, H., Murashige, Y. & Osaka, I. Copper-catalyzed B(dan)-installing allylic borylation of allylic phosphates. Adv. Synth. Catal. 361, 2286–2290 (2019).
Nallagonda, R. & Karimov, R. R. Copper-catalyzed regio- and diastereoselective additions of boron-stabilized carbanions to heteroarenium salts: synthesis of azaheterocycles containing contiguous stereocenters. ACS Catal. 11, 248–254 (2021).
Castle, R. B. & Matteson, D. S. Methanetetraboronic and methanetriboronic esters. J. Organomet. Chem. 20, 19–28 (1969).
Baker, R. T., Nguyen, P., Marder, T. B. & Wescott, S. A. Transition metal catalyzed diboration of vinyiarenes. Angew. Chem. Int. Ed. Engl. 34, 1336–1338 (1995).
Zhang, L. & Huang, Z. Synthesis of 1,1,1-tris(boronates) from vinylarenes by co-catalyzed dehydrogenative borylations–hydroboration. J. Am. Chem. Soc. 137, 15600–15603 (2015).
Liu, X., Ming, W., Zhang, Y., Friedrich, A. & Marder, T. B. Copper‐catalyzed triboration: straightforward, atom‐economical synthesis of 1,1,1‐triborylalkanes from terminal alkynes and HBpin. Angew. Chem. Int. Ed. Engl. 58, 18923–18927 (2019).
Yang, X. & Ge, S. Cobalt-catalyzed 1,1,3-triborylation of terminal alkynes. Organometallics 41, 1823–1828 (2022).
Zhao, Y. & Ge, S. Synergistic hydrocobaltation and borylcobaltation enable regioselective migratory triborylation of unactivated alkenes. Angew. Chem. Int. Ed. Engl. 61, e202116133 (2022).
Wang, L. et al. Boron-promoted deprotonative conjugate addition: geminal diborons as soft pronucleophiles and acyl anion equivalent. J. Org. Chem. 87, 9896–9906 (2022).
Ishida, N., Masuda, Y., Imamura, Y., Yamakazi, K. & Murakami, M. Carboxylation of benzylic and aliphatic C–H bonds with CO2 induced by light/ketone/nickel. J. Am. Chem. Soc. 141, 19611–19615 (2019).
Bastick, K. A. C. & Watson, A. J. B. W. Pd-catalyzed organometallic-free homologation of arylboronic acids enabled by chemoselective transmetalation. ACS Catal. 13, 7013–7018 (2023).
Matteson, D. S., Moody, R. J. & Jesthi, P. K. Reaction of aldehydes and ketones with a boron-substituted carbanion, bis(ethylenedioxyboryl)methide. Simple aldehyde homologation. J. Am. Chem. Soc. 97, 5608–5609 (1975).
Liang, M. Z. & Meek, S. J. Synthesis of quaternary carbon stereogenic centers by diastereoselective conjugate addition of boron-stabilized allylic nucleophiles to enones. J. Am. Chem. Soc. 142, 9925–9931 (2020).
Rogova, T., Ahrweiler, E., Schoetz, M. D. & Schoenebeck, F. Recent developments with organogermanes: their preparation and application in synthesis and catalysis. Angew. Chem. Int. Ed. Engl. 63, e202314709 (2024).
McGhie, L., Marotta, A., Loftus, P. O., Seeberger, P. H., Funes-Ardoiz, I. & Molloy, J. J. Photogeneration of α-bimetalloid radicals via selective activation of multifunctional C1 units. J. Am. Chem. Soc. 146, 15850–15859 (2024).
Batsanov, A. S. et al. Fully borylated methane and ethane by ruthenium-mediated cleavage and coupling of CO. Angew. Chem. Int. Ed. Engl. 55, 4707–4710 (2016).
Yamamoto, T., Ishibashi, A. & Suginome, M. Boryl-directed, Ir-catalyzed C(sp3)–H borylation of alkylboronic acids leading to site-selective synthesis of polyborylalkanes. Org. Lett. 21, 6235–6240 (2019).
Li, J. & Ge, S. Copper-catalyzed quadruple borylation of terminal alkynes to access sp3-tetra-organometallic reagents. Angew. Chem. Int. Ed. Engl. 61, e202213057 (2022).
Wang, X., Wang, Y., Huang, W., Xia, C. & Wu, L. Direct synthesis of multi(boronate) esters from alkenes and alkynes via hydroboration and boration reactions. ACS Catal. 11, 1–18 (2021).
Maciel, G. E., McIver, J. W., Ostlund, N. S. & Pople, J. A. Approximate self-consistent molecular orbital theory of nuclear spin coupling. I. Directly bonded carbon–hydrogen coupling constants. J. Am. Chem. Soc. 92, 231–232 (1970).
Mattesson, D. S. & Wilcsek, R. J. Tetrametallomethanes containing one, two, or three group IV metal atoms and boron. J. Organomet. Chem. 57, 231–242 (1973).
Matteson, D. S. & Furue, M. Observations on the reactivity of tris(tetramethylethylenedioxyboryl)methide ion. J. Organomet. Chem. 69, 63–67 (1974).
Scherbaum, F., Grohmann, A., Huber, B., Kruger, C. & Schmidbaur, H. ‘Aurophilicity’ as a consequence of relativistic effects: the hexakis(triphenylphosphaneaurio)methane dication. Angew. Chem. Ed. Engl. 27, 1544–1546 (1988).
Ogawa, N., Yamaoka, Y., Takikawa, H., Yamada, K. & Takasu, K. Helical nanographenes embedded with contiguous azulene units. J. Am. Chem. Soc. 142, 13322–13327 (2020).
Yoshii, D., Jin, X., Mizuno, N. & Yamaguchi, K. Selective dehydrogenative mono- or diborylation of styrenes by supported copper catalysts. ACS Catal. 9, 3011–3016 (2019).
Matteson, D. S., Davis, R. A. & Hagelee, L. A. A bromomethanetriboronic ester. J. Organomet. Chem. 69, 45–51 (1974).
Castle, R. B. & Matteson, D. S. Methanetetraboronic ester. J. Am. Chem. Soc. 90, 2194–2194 (1968).
Matteson, D. S. & Thomas, J. R. C-alkylation of methanetetraboronic and methanetriboronic esters. J. Organomet. Chem. 24, 263–271 (1970).
Hanania, N., Eghbarieh, N. & Masarwa, A. Polyborylated alkenes as energy-transfer reactive groups: access to multi-borylated cyclobutanes combined with hydrogen atom transfer event. Angew. Chem. Int. Ed. 63, e202405898 (2024).
Nishikawa, T. & Ouchi, M. An alkenyl boronate as a monomer for radical polymerizations: boron as a guide for chain growth and as a replaceable side chain for post-polymerization. Angew. Chem. Int. Ed. Engl. 58, 12435–12439 (2019).
Buskes, M. J. & Blanco, M.-J. Impact of cross-coupling reactions in drug discovery and development. Molecules 25, 3493 (2020).
Arentsen, K., Caddick, S., Cloke, F. G. N., Herring, A. P. & Hitchcock, P. B. Suzuki–Miyaura cross-coupling of aryl and alkyl halides using palladium/imidazolium salt protocols. Tetrahedron Lett. 45, 3511–3515 (2004).
Li, Z. et al. Palladium-catalyzed Suzuki reactions in water with no added ligand: effects of reaction scale, temperature, pH of aqueous phase, and substrate structure. Org. Process Res. Dev. 20, 1489–1499 (2016).
Mailyan, A. K. et al. Development of a robust and scalable synthetic route for a potent and selective isoindolinone PI3Kγ inhibitor. Org. Process Res. Dev. 26, 2915–2925 (2022).
Rubina, M., Rubin, M. & Gevorgyan, V. Catalytic enantioselective hydroboration of cyclopropenes. J. Am. Chem. Soc. 125, 7198–7199 (2003).
Imao, D., Glasspoole, B. W., Laberge, V. S. & Crudden, C. M. Cross-coupling reactions of chiral secondary organoboronic esters with retention of configuration. J. Am. Chem. Soc. 131, 5024–5025 (2009).
Chakrabarty, S., Palencia, H., Morton, M. D., Carr, R. O. & Takacs, J. M. Facile access to functionalized chiral secondary benzylic boronic esters via catalytic asymmetric hydroboration. Chem. Sci. 10, 4854–4861 (2019).
Dreher, S. D., Dormer, P. G., Sandrock, D. L. & Molander, G. A. Efficient cross-coupling of secondary alkyltrifluoroborates with aryl chlorides — reaction discovery using parallel microscale experimentation. J. Am. Chem. Soc. 130, 9257–9259 (2008).
Acknowledgements
K.A.C.B. thanks the EPSRC for a PhD studentship. A.J.B.W. thanks the Leverhulme Trust for a Research Fellowship (RF-2022-014). D.D.R. and A.J.B.W. thank the EPSRC Programme Grant ‘Boron: beyond the reagent’ (EP/W007517/1) for support.
Author information
Authors and Affiliations
Contributions
Conceptualization, K.A.C.B. and A.J.B.W.; Literature and data searches, K.A.C.B.; Writing — original draft, K.A.C.B.; Writing — review and editing, K.A.C.B, D.D.R. and A.J.B.W.; Funding acquisition, A.J.B.W.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Qiuling Song, Won Jun Jang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bastick, K.A.C., Roberts, D.D. & Watson, A.J.B. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 8, 741–761 (2024). https://doi.org/10.1038/s41570-024-00650-x
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41570-024-00650-x
This article is cited by
-
Synthesis of chiral germanium center enabled by poly-deborylative alkylation and desymmetrization
Nature Communications (2025)
-
Two distinct electrophiles enabled sequential dual migrations of alkynyl tetracoordinate borons
Science China Chemistry (2025)


