Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The current utility and future potential of multiborylated alkanes

Abstract

Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)–B or C(sp3)–B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)–B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Review inspiration and overview.
Fig. 2: Methods to prepare monoborylated alkanes.
Fig. 3: Methods to use monoborylated alkanes.
Fig. 4: Methods to prepare diborylated alkanes.
Fig. 5: Methods to use diborylated alkanes.
Fig. 6: Synthesis of triborylated and tetraborylated alkanes.
Fig. 7: Reactions of triborylated and tetraborylated alkanes.
Fig. 8: A critical assessment of multiborylated alkanes.

Similar content being viewed by others

References

  1. Hall, D. G. Boronic acid catalysis. Chem. Soc. Rev. 48, 3475–3496 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Madayanad Suresh, S., Hall, D., Beljonne, D., Olivier, Y. & Zysman-Colman, E. Multiresonant thermally activated delayed fluorescence emitters based on heteroatom-doped nanographenes: recent advances and prospects for organic light-emitting diodes. Adv. Funct. Mater. 30, 1908677 (2020).

    Article  CAS  Google Scholar 

  3. Fernandes, G. F. S., Denny, W. A. & Dos Santos, J. L. Boron in drug design: recent advances in the development of new therapeutic agents. Eur. J. Med. Chem. 179, 791–804 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Das, B. C. et al. Boron chemicals in drug discovery and development: synthesis and medicinal perspective. Molecules 27, 2615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lennox, A. J. J. & Lloyd-Jones, G. C. Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev. 43, 412–443 (2013).

    Article  PubMed  Google Scholar 

  6. Molander, G. A. & Ellis, N. Organotrifluoroborates: protected boronic acids that expand the versatility of the Suzuki coupling reaction. Acc. Chem. Res. 40, 275–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Tse, E. G. et al. Nonclassical phenyl bioisosteres as effective replacements in a series of novel open-source antimalarials. J. Med. Chem. 63, 11585–11601 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Meanwell, N. A. Applications of bioisosteres in the design of biologically active compounds. J. Agric. Food Chem. 71, 18087–18122 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Yoshida, H. Borylation of alkynes under base/coinage metal catalysis: some recent developments. ACS Catal. 6, 1799–1811 (2016).

    Article  CAS  Google Scholar 

  12. Fyfe, J. W. B. & Watson, A. J. B. Recent developments in organoboron chemistry: old dogs, new tricks. Chem 3, 31–55 (2017).

    Article  CAS  Google Scholar 

  13. Šterman, A., Sosič, I., Gobec, S. & Časar, Z. Recent advances in the synthesis of acylboranes and their widening applicability. ACS Omega 5, 17868–17875 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wu, D., Taguchi, J., Tanriver, M. & Bode, J. W. Synthesis of acylboron compounds. Angew. Chem. Int. Ed. Engl. 59, 16847–16858 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Grafstein, D. et al. Carboranes. III. Reactions of the carboranes. Inorg. Chem. 2, 1120–1125 (1963).

    Article  CAS  Google Scholar 

  16. Wang, H., Zhang, J. & Xie, Z. Ring-opening and ring-expansion reactions of carborane-fused borirane. Chem. Sci. 12, 13187–13192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marfavi, A., Kavianpour, P. & Rendina, L. M. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem. 6, 486–504 (2022).

    Article  PubMed  Google Scholar 

  18. Rygus, J. P. G. & Crudden, C. M. Enantiospecific and iterative Suzuki–Miyaura cross-couplings. J. Am. Chem. Soc. 139, 18124–18137 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Viso, A., Fernández de la Pradilla, R. & Tortosa, M. Site-selective functionalization of C(sp3) vicinal boronic esters. ACS Catal. 12, 10603–10620 (2022).

    Article  CAS  Google Scholar 

  21. Emsley, J. Elements 1–112, 114, 116 and 117 (Clarendon Press, 1998).

  22. Frankland, E. & Duppa, B. On boric ethide. Proc. R. Soc. Lond. 10, 568–570 (1859).

    Google Scholar 

  23. Kuivila, H. G. & Nahabedian, K. V. Electrophilic displacement reactions. XI. Solvent isotope effects in the protodeboronation of areneboronic acids 1–3. J. Am. Chem. Soc. 83, 2164–2166 (1961).

    Article  CAS  Google Scholar 

  24. Nahabedian, K. V. & Kuivila, H. G. Electrophilic displacement reactions. XII. Substituent effects in the protodeboronation of areneboronic acids 1–3. J. Am. Chem. Soc. 83, 2167–2174 (1961).

    Article  CAS  Google Scholar 

  25. Kuivila, H. G., Reuwer, J. F. & Mangravite, J. A. Electrophilic displacement reactions. XVI. Metal ion catalysis in the protodeboronation of areneboronic acids 1–3. J. Am. Chem. Soc. 86, 2666–2670 (1964).

    Article  CAS  Google Scholar 

  26. Ainley, A. D. & Challenger, F. CCLXXX. — Studies of the boron–carbon linkage. Part I. The oxidation and nitration of phenylboric acid. J. Chem. Soc. 0, 2171–2180 (1930).

    Article  CAS  Google Scholar 

  27. Challenger, F. & Richards, O. V. 94. Organo-derivatives of bismuth and thallium. J. Chem. Soc. https://doi.org/10.1039/jr9340000405 (1934).

  28. Kuivila, H. G., Keough, A. H. & Soboczenski, E. J. Areneboronates from diols and polyols. J. Org. Chem. 19, 780–783 (1954).

    Article  CAS  Google Scholar 

  29. Brown, H. C. From little acorns to tall oaks: from boranes through organoboranes. Science 210, 485–492 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Adams, R. M. Preparation of diborane. Adv. Chem. 32, 60–68 (1961).

    Article  Google Scholar 

  31. Lane, C. F. Reduction of organic compounds with diborane. Chem. Rev. 76, 773–799 (1976).

    Article  CAS  Google Scholar 

  32. Brown, H. C. & Rao, B. C. S. A new technique for the conversion of olefins into organoboranes and related alcohols. J. Am. Chem. Soc. 78, 5694–5695 (1956).

    Article  CAS  Google Scholar 

  33. Miyaura, N. & Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc. Chem. Commun. 19, 866–867 (1979).

    Article  Google Scholar 

  34. Miyaura, N., Yamada, K. & Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett. 20, 3437–3440 (1979).

    Article  Google Scholar 

  35. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. Engl. 51, 5062–5085 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Matteson, D. S. & Shdo, J. G. gem-dimetallic compounds. ethane-1,1-diboronic acid and ethylidenedimercuric chloride1. J. Org. Chem. 29, 2742–2746 (1964).

    Article  CAS  Google Scholar 

  37. Matteson, D. S. & Shdo, J. G. Ethane-1,1-diboronic Acid. J. Am. Chem. Soc. 85, 2684–2684 (1963).

    Article  CAS  Google Scholar 

  38. Neeve, E. C., Geier, S. J., Mkhalid, I. A. I., Westcott, S. A. & Marder, T. B. Diboron(4) compounds: from structural curiosity to synthetic workhorse. Chem. Rev. 116, 9091–9161 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Endo, K., Ohkubo, T., Hirokami, M. & Shibata, T. Chemoselective and regiospecific Suzuki coupling on a multisubstituted sp3-carbon in 1,1-diborylalkanes at room temperature. J. Am. Chem. Soc. 132, 11033–11035 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Endo, K., Ishioka, T., Ohkubo, T. & Shibata, T. One-pot synthesis of symmetrical and unsymmetrical diarylmethanes via diborylmethane. J. Org. Chem. 77, 7223–7231 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Mancilla, T., Contreras, R. & Wrackmeyer, B. New bicyclic organylboronic esters derived from iminodiacetic acids. J. Organomet. Chem. 307, 1–6 (1986).

    Article  CAS  Google Scholar 

  42. Gillis, E. P. & Burke, M. D. A simple and modular strategy for small molecule synthesis: iterative Suzuki−Miyaura coupling of b-protected haloboronic acid building blocks. J. Am. Chem. Soc. 129, 6716–6717 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Blair, D. J. et al. Automated iterative Csp3–C bond formation. Nature 604, 92–97 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mutoh, Y., Yamamoto, K. & Saito, S. Suzuki–Miyaura cross-coupling of 1,8-diaminonaphthalene (dan)-protected arylboronic acids. ACS Catal. 10, 352–357 (2020).

    Article  CAS  Google Scholar 

  45. Koishi, M., Tomota, K., Nakamoto, M. & Yoshida, H. Direct Suzuki–Miyaura coupling of naphthalene-1,8-diaminato (dan)-substituted cyclopropylboron compounds. Adv. Synth. Catal. 365, 682–686 (2023).

    Article  CAS  Google Scholar 

  46. Yoshida, H. et al. Direct Suzuki–Miyaura coupling with naphthalene-1,8-diaminato (dan)-substituted organoborons. ACS Catal. 10, 346–351 (2020).

    Article  CAS  Google Scholar 

  47. Noguchi, H., Hojo, K. & Suginome, M. Boron-masking strategy for the selective synthesis of oligoarenes via iterative Suzuki−Miyaura coupling. J. Am. Chem. Soc. 129, 758–759 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Vedejs, E., Chapman, R. W., Fields, S. C., Lin, S. & Schrimpf, M. R. Conversion of arylboronic acids into potassium aryltrifluoroborates: convenient precursors of arylboron difluoride Lewis acids. J. Org. Chem. 60, 3020–3027 (1995).

    Article  CAS  Google Scholar 

  49. Darses, S., Genêt, J.-P., Brayer, J.-L. & Demoute, J.-P. Cross-coupling reactions of arenediazonium tetrafluoroborates with potassium aryl- or alkenyltrifluoroborates catalyzed by palladium. Tetrahedron Lett. 38, 4393–4396 (1997).

    Article  CAS  Google Scholar 

  50. Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tellis, J. C., Amani, J. & Molander, G. A. Single-electron transmetalation: photoredox/nickel dual catalytic cross-coupling of secondary alkyl β-trifluoroboratoketones and -esters with aryl bromides. Org. Lett. 18, 2994–2997 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Karimi-Nami, R., Tellis, J. C. & Molander, G. A. Single-electron transmetalation: protecting-group-independent synthesis of secondary benzylic alcohol derivatives via photoredox/nickel dual catalysis. Org. Lett. 18, 2572–2575 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fiorito, D. et al. Stereocontrolled total synthesis of bastimolide B using iterative homologation of boronic esters. J. Am. Chem. Soc. 144, 7995–8001 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aiken, S. G. et al. Iterative synthesis of 1,3-polyboronic esters with high stereocontrol and application to the synthesis of bahamaolide A. Nat. Chem. 15, 248–256 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Mita, T., Ikeda, Y., Michigami, K. & Sato, Y. Iridium-catalyzed triple C(sp3)–H borylations: construction of triborylated sp3-carbon centers. Chem. Commun. 49, 5601 (2013).

    Article  CAS  Google Scholar 

  56. Palmer, W. N., Zarate, C. & Chirik, P. J. Benzyltriboronates: building blocks for diastereoselective carbon–carbon bond formation. J. Am. Chem. Soc. 139, 2589–2592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Coombs, J. R., Zhang, L. & Morken, J. P. Enantiomerically enriched tris(boronates): readily accessible conjunctive reagents for asymmetric synthesis. J. Am. Chem. Soc. 136, 16140–16143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davenport, E. & Fernandez, E. Transition-metal-free synthesis of vicinal triborated compounds and selective functionalisation of the internal C–B bond. Chem. Commun. 54, 10104–10107 (2018).

    Article  CAS  Google Scholar 

  59. Hu, J., Zhao, Y. & Shi, Z. Highly tunable multi-borylation of gem-difluoroalkenes via copper catalysis. Nat. Catal. 1, 860–869 (2018).

    Article  CAS  Google Scholar 

  60. Yukimori, D., Nagashima, Y., Wang, C., Muranaka, A. & Uchiyama, M. Quadruple borylation of terminal alkynes. J. Am. Chem. Soc. 141, 9819–9822 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Obligacion, J. V. & Chirik, P. J. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nat. Rev. Chem. 2, 15–34 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meng, F., Jung, B., Haeffner, F. & Hoveyda, A. H. NHC–Cu-catalyzed protoboration of monosubstituted allenes. ligand-controlled site selectivity, application to synthesis and mechanism. Org. Lett. 15, 1414–1417 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bismuto, A., Cowley, M. J. & Thomas, S. P. Aluminum-catalyzed hydroboration of alkenes. ACS Catal. 8, 2001–2005 (2018).

    Article  CAS  Google Scholar 

  64. Yu, S., Wu, C. & Ge, S. Cobalt-catalyzed asymmetric hydroboration/cyclization of 1,6-enynes with pinacolborane. J. Am. Chem. Soc. 139, 6526–6529 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Guo, J., Cheng, B., Shen, X. & Zhan, L. Cobalt-catalyzed asymmetric sequential hydroboration/hydrogenation of internal alkynes. J. Am. Chem. Soc. 139, 15316–15319 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Li, C. et al. Selective hydroboration of unsaturated bonds by an easily accessible heterotopic cobalt catalyst. Nat. Commun. 12, 3813 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Obligacion, J. V. & Chirik, P. J. Bis(imino)pyridine cobalt-catalyzed alkene isomerization–hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity. J. Am. Chem. Soc. 135, 19107–19110 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, L., Zuo, Z., Leng, X. & Huang, Z. A cobalt-catalyzed alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed. Engl. 53, 2696–2700 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Jang, W. J., Song, S. M., Moon, J. H., Lee, J. Y. & Yun, J. Copper-catalyzed enantioselective hydroboration of unactivated 1,1-disubstituted alkenes. J. Am. Chem. Soc. 139, 13660–13663 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Medina, J. M. et al. Cu-catalyzed hydroboration of benzylidenecyclopropanes: reaction optimization, (hetero)aryl scope, and origins of pathway selectivity. ACS Catal. 9, 11130–11136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhong, M. et al. Copper-photocatalyzed hydroboration of alkynes and alkenes. Angew. Chem. Int. Ed. Engl. 60, 14498–14503 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cui, M., Zhao, Z.-Y. & Oestreich, M. Boosting the enantioselectivity of conjugate borylation of α,β-disubstituted cyclobutenones with monooxides of chiral C2-symmetric bis(phosphine) ligands. Chem. Eur. J. 28, e202202163 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Lee, J. & Yun, J. Catalytic asymmetric boration of acyclic α,β-unsaturated esters and nitriles. Angew. Chem. Int. Ed. Engl. 47, 145–147 (2007).

    Article  Google Scholar 

  74. Noh, D., Chea, H., Ju, J. & Yun, J. Highly regio- and enantioselective copper-catalyzed hydroboration of styrenes. Angew. Chem. Int. Ed. Engl. 48, 6062–6064 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Lee, Y. & Hoveyda, A. H. Efficient boron–copper additions to aryl-substituted alkenes promoted by NHC-based catalysts. Enantioselective cu-catalyzed hydroboration reactions. J. Am. Chem. Soc. 131, 3160–3161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Evans, D. A. & Fu, G. C. Amide-directed, iridium-catalyzed hydroboration of olefins: documentation of regio- and stereochemical control in cyclic and acyclic systems. J. Am. Chem. Soc. 113, 4042–4043 (1991).

    Article  CAS  Google Scholar 

  77. Wang, G. et al. Iridium-catalyzed distal hydroboration of aliphatic internal alkenes. Angew. Chem. Int. Ed. Engl. 58, 8187–8191 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, H., Gao, Q., Zhang, Y., Zhang, P. & Xu, S. Iridium-catalyzed γ-selective hydroboration of γ-substituted allylic amides. Org. Lett. 22, 2861–2866 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Liu, R., Zhang, Y. & Xu, J. Selective hydroboration of equilibrating allylic azides. Chem. Commun. 57, 8913–8916 (2021).

    Article  CAS  Google Scholar 

  80. Wu, Y. J., Moreau, B. & Ritter, T. Iron-catalyzed 1,4-hydroboration of 1,3-dienes. J. Am. Chem. Soc. 131, 12915–12917 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, L., Peng, D., Leng, X. & Huang, Z. Iron-catalyzed, atom-economical, chemo- and regioselective alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed. Engl. 52, 3676–3680 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Obligacion, J. V. & Chirik, P. J. Highly selective bis(imino)pyridine iron-catalyzed alkene hydroboration. Org. Lett. 15, 2680–2683 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Macnair, A. J., Millet, C. R. P., Nichol, G. S., Ironmonger, A. & Thomas, S. P. Markovnikov-selective, activator-free iron-catalyzed vinylarene hydroboration. ACS Catal. 6, 7217–7221 (2016).

    Article  CAS  Google Scholar 

  84. Männig, D. & Nöth, H. Catalytic hydroboration with rhodium complexes. Angew. Chem. Int. Ed. Engl. Engl. 24, 878–879 (1985).

    Article  Google Scholar 

  85. Evans, D. A., Fu, G. C. & Hoveyda, A. H. Rhodium(I)- and iridium(I)-catalyzed hydroboration reactions: scope and synthetic applications. J. Am. Chem. Soc. 114, 6671–6679 (1992).

    Article  CAS  Google Scholar 

  86. Zhang, B., Xu, X., Tao, L., Lin, Z. & Zhao, W. Rhodium-catalyzed regiodivergent synthesis of alkylboronates via deoxygenative hydroboration of aryl ketones: mechanism and origin of selectivities. ACS Catal. 11, 9495–9505 (2021).

    Article  CAS  Google Scholar 

  87. Zhao, W., Chen, K.-Z., Li, A.-Z. & Li, B.-J. Remote stereocenter through amide-directed, rhodium-catalyzed enantioselective hydroboration of unactivated internal alkenes. J. Am. Chem. Soc. 144, 13071–13078 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Hu, J., Ferger, M., Shi, Z. & Marder, T. B. Recent advances in asymmetric borylation by transition metal catalysis. Chem. Soc. Rev. 50, 13129–13188 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Gao, T.-T., Lu, H.-X., Gao, P.-C. & Li, B.-J. Enantioselective synthesis of tertiary boronic esters through catalytic asymmetric reversed hydroboration. Nat. Commun. 12, 3776 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. He, X. & Hartwig, J. F. True metal-catalyzed hydroboration with titanium. J. Am. Chem. Soc. 118, 1696–1702 (1996).

    Article  CAS  Google Scholar 

  91. Hartwig, J. F. & Muhoro, C. N. Mechanistic studies of titanocene-catalyzed alkene and alkyne hydroboration: borane complexes as catalytic intermediates. Organometallics 19, 30–38 (2000).

    Article  CAS  Google Scholar 

  92. Pereira, S. & Srebnik, M. Transition metal-catalyzed hydroboration of and CCl4 addition to alkenes. J. Am. Chem. Soc. 118, 909–910 (1996).

    Article  CAS  Google Scholar 

  93. Bage, A. D., Hunt, T. A. & Thomas, S. P. Hidden boron catalysis: nucleophile-promoted decomposition of HBpin. Org. Lett. 22, 4107–4112 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Bage, A. D., Nicholson, K., Hunt, T. A., Langer, T. & Thomas, S. P. The hidden role of boranes and borohydrides in hydroboration catalysis. ACS Catal. 10, 13479–13486 (2020).

    Article  CAS  Google Scholar 

  95. Westcott, S. A., Blom, H. P., Marder, T. B. & Baker, R. T. New homogeneous rhodium catalysts for the regioselective hydroboration of alkenes. J. Am. Chem. Soc. 114, 8863–8869 (1992).

    Article  CAS  Google Scholar 

  96. Westcott, S. A., Blom, H. P. & Marder, T. B. Nucleophile promoted degradation of catecholborane: consequences for transition metal-catalyzed hydroborations. Inorg. Chem. 32, 2175–2182 (1993).

    Article  CAS  Google Scholar 

  97. Ishiyama, T., Murata, M. & Miyaura, N. Palladium(0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes: a direct procedure for arylboronic esters. J. Org. Chem. 60, 7508–7510 (1995).

    Article  CAS  Google Scholar 

  98. Verma, P. K., Prasad, K. S., Varghese, D. & Geetharani, K. Cobalt(I)-catalyzed borylation of unactivated alkyl bromides and chlorides. Org. Lett. 22, 1431–1436 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, M., Ye, Z. & Zhao, W. Cobalt-catalyzed asymmetric remote borylation of alkyl halides. Angew. Chem. Int. Ed. Engl. 62, e202306248 (2023).

    Article  PubMed  Google Scholar 

  100. Takale, B. S., Thakore, R. R., Etemadi-Davan, E. & Lipshutz, B. H. Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation. Beilstein J. Org. Chem. 16, 691–737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang, C.-T. et al. Alkylboronic esters from copper-catalyzed borylation of primary and secondary alkyl halides and pseudohalides. Angew. Chem. Int. Ed. Engl. 51, 528–532 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Bose, S. K. et al. Highly efficient synthesis of alkylboronate esters via Cu(II)-catalyzed borylation of unactivated alkyl bromides and chlorides in air. ACS Catal. 6, 8332–8335 (2016).

    Article  CAS  Google Scholar 

  103. Lou, X., Zhang, Z.-Q., Liu, J.-H. & Lu, X.-Y. Copper-catalyzed borylation of primary and secondary alkyl halides with bis(neopentyl glycolate) diboron at room temperature. Chem. Lett. 45, 200–202 (2016).

    Article  CAS  Google Scholar 

  104. Yoshida, H., Takemoto, Y., Kamio, S., Osaka, I. & Takaki, K. Copper-catalyzed direct borylation of alkyl, alkenyl and aryl halides with B(dan). Org. Chem. Front. 4, 1215–1219 (2017).

    Article  CAS  Google Scholar 

  105. Ito, H. & Kubota, K. Copper(I)-catalyzed boryl substitution of unactivated alkyl halides. Org. Lett. 14, 890–893 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Dudnik, A. S. & Fu, G. C. Nickel-catalyzed coupling reactions of alkyl electrophiles, including unactivated tertiary halides, to generate carbon–boron bonds. J. Am. Chem. Soc. 134, 10693–10697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yi, J. et al. Alkylboronic esters from palladium- and nickel-catalyzed borylation of primary and secondary alkyl bromides. Adv. Synth. Catal. 354, 1685–1691 (2012).

    Article  CAS  Google Scholar 

  108. Atack, T. C., Lecker, R. M. & Cook, S. P. Iron-catalyzed borylation of alkyl electrophiles. J. Am. Chem. Soc. 136, 9521–9523 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, S. et al. Iron-catalyzed borylation and silylation of unactivated tertiary, secondary, and primary alkyl chlorides. CCS Chem. 3, 2164–2173 (2020).

    Article  Google Scholar 

  110. Siddiqui, S., Bhawar, R. & Geetharani, K. Iron-based catalyst for borylation of unactivated alkyl halides without using highly basic organometallic reagents. J. Org. Chem. 86, 1948–1954 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Zhao, J.-H. et al. Visible-light-mediated borylation of aryl and alkyl halides with a palladium complex. Org. Biomol. Chem. 18, 4390–4394 (2020).

    Article  CAS  Google Scholar 

  112. Shi, Y., Gao, Q. & Xu, S. Chiral bidentate boryl ligand enabled iridium-catalyzed enantioselective C(sp3)–H borylation of cyclopropanes. J. Am. Chem. Soc. 141, 10599–10604 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. He, J. et al. Ligand-promoted borylation of C(sp3)–H bonds with palladium(II) catalysts. Angew. Chem. Int. Ed. Engl. 55, 785–789 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. He, J., Shao, Q., Wu, Q. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp3)–H borylation. J. Am. Chem. Soc. 139, 3344–3347 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Sang, R. et al. Copper-mediated dehydrogenative C(sp3)–H borylation of alkanes. J. Am. Chem. Soc. 145, 15207–15217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Palmer, W. N., Obligacion, J. V., Pappas, I. & Chirik, P. J. Cobalt-catalyzed benzylic borylation: enabling polyborylation and functionalization of remote, unactivated C(sp3)–H bonds. J. Am. Chem. Soc. 138, 766–769 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Jayasundara, C. R. K. et al. Cobalt-catalyzed C–H borylation of alkyl arenes and heteroarenes including the first selective borylations of secondary benzylic C–H bonds. Organometallics 37, 1567–1574 (2018).

    Article  CAS  Google Scholar 

  119. Yoshii, D., Yatabe, T., Yabe, T. & Yamaguchi, K. C(sp3)–H selective benzylic borylation by in situ reduced ultrasmall Ni species on CeO2. ACS Catal. 11, 2150–2155 (2021).

    Article  CAS  Google Scholar 

  120. Zhong, P. et al. Photoelectrochemical oxidative C(sp3)−H borylation of unactivated hydrocarbons. Nat. Commun. 14, 6530 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hupe, E., Marek, I. & Knochel, P. Diastereoselective reduction of alkenylboronic esters as a new method for controlling the stereochemistry of up to three adjacent centers in cyclic and acyclic molecules. Org. Lett. 4, 2861–2863 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Gazić Smilović, I. et al. Iridium-catalyzed chemoselective and enantioselective hydrogenation of (1-chloro-1-alkenyl) boronic esters. Angew. Chem. Int. Ed. Engl. 51, 1014–1018 (2012).

    Article  Google Scholar 

  123. Roseblade, S. J. et al. A practical synthetic approach to chiral (α-chloroalkyl)boronic esters via iridium-catalyzed chemoselective hydrogenation of chloro-substituted alkenyl boronates. Synthesis 45, 2824–2831 (2013).

    Article  CAS  Google Scholar 

  124. Han, J. T., Jang, W. J., Kim, N. & Yun, J. Asymmetric synthesis of borylalkanes via copper-catalyzed enantioselective hydroallylation. J. Am. Chem. Soc. 138, 15146–15149 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Lee, J., Torker, S. & Hoveyda, A. H. Versatile homoallylic boronates by chemo-, SN2′-, diastereo- and enantioselective catalytic sequence of Cu−H addition to vinyl-B(pin)/allylic substitution. Angew. Chem. Int. Ed. Engl. 56, 821–826 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Jang, W. J. & Yun, J. Copper-catalyzed tandem hydrocupration and diastereo- and enantioselective borylalkyl addition to aldehydes. Angew. Chem. Int. Ed. Engl. 57, 12116–12120 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Jang, W. J., Woo, J. & Yun, J. Asymmetric conjugate addition of chiral secondary borylalkyl copper species. Angew. Chem. Int. Ed. Engl. 60, 4614–4618 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Matteson, D. S. & Mah, R. W. H. Neighboring boron in nucleophilic displacement. J. Am. Chem. Soc. 85, 2599–2603 (1963).

    Article  CAS  Google Scholar 

  129. Matteson, D. S. & Ray, R. Directed chiral synthesis with pinanediol boronic esters. J. Am. Chem. Soc. 102, 7590–7591 (1980).

    Article  CAS  Google Scholar 

  130. Matteson, D. S. Asymmetric synthesis with boronic esters. Acc. Chem. Res. 21, 294–300 (1988).

    Article  CAS  Google Scholar 

  131. Matteson, D. S., Collins, B. S. L., Aggarwal, V. K. & Ciganek, E. The Matteson reaction. in Organic Reactions 427–860 (John Wiley & Sons, Ltd, 2021).

  132. Beckmann, E., Desai, V. & Hoppe, D. Stereospecific reaction of α-carbamoyloxy-2-alkenylboronates and α-carbamoyloxy-alkylboronates with Grignard reagents — synthesis of highly enantioenriched secondary alcohols. Synlett 2004, 2275–2280 (2004).

    Google Scholar 

  133. Beak, P. & Carter, L. G. Dipole-stabilized carbanions from esters: alpha-oxo lithiations of 2,6-substituted benzoates of primary alcohols. J. Org. Chem. 46, 2363–2373 (1981).

    Article  CAS  Google Scholar 

  134. Wu, S., Lee, S. & Beak, P. Asymmetric deprotonation by BuLi/(−)-sparteine: convenient and highly enantioselective syntheses of (S)-2-aryl-boc-pyrrolidines. J. Am. Chem. Soc. 118, 715–721 (1996).

    Article  CAS  Google Scholar 

  135. Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Balieu, S. et al. Toward ideality: the synthesis of (+)-kalkitoxin and (+)-hydroxyphthioceranic acid by assembly-line synthesis. J. Am. Chem. Soc. 137, 4398–4403 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Watson, C. G. et al. Construction of multiple, contiguous quaternary stereocenters in acyclic molecules by lithiation–borylation. J. Am. Chem. Soc. 136, 17370–17373 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Yeung, K., Mykura, R. C. & Aggarwal, V. K. Lithiation–borylation methodology in the total synthesis of natural products. Nat. Synth. 1, 117–126 (2022).

    Article  Google Scholar 

  139. Wu, J. et al. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 547, 436–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Isihida, N., Shimamoto, Y. & Murakami, M. Stereoselective synthesis of (E)-(trisubstituted alkenyl)borinic esters: stereochemistry reversed by ligand in the palladium-catalyzed reaction of alkynylborates with aryl halides. Org. Lett. 11, 5434–5437 (2009).

    Article  Google Scholar 

  141. Zhang, L. et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 351, 70–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Myhill, J. A., Zhang, L., Lovinger, G. J. & Morken, J. P. Enantioselective construction of tertiary boronic esters by conjunctive cross-coupling. Angew. Chem. Int. Ed. Engl. 57, 12799–12803 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nelson, H. M., Williams, B. D. & Toste, F. D. Enantioselective 1,1-arylborylation of alkenes: merging chiral anion phase transfer with Pd catalysis. J. Am. Chem. Soc. 137, 3213–3216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Matsuda, N., Hirano, K., Satoh, T. & Miura, M. Regioselective and stereospecific copper-catalyzed aminoboration of styrenes with bis(pinacolato)diboron and O-benzoyl-N,N-dialkylhydroxylamines. J. Am. Chem. Soc. 135, 4934–4937 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Logan, K. M. & Brown, M. K. Catalytic enantioselective arylboration of alkenylarenes. Angew. Chem. Int. Ed. Engl. 56, 851–856 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Molloy, J. J. et al. Interrogating Pd(II) anion metathesis using a bifunctional chemical probe: a transmetalation switch. J. Am. Chem. Soc. 140, 126–130 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, M. et al. Stereocontrolled pericyclic and radical cycloaddition reactions of readily accessible chiral alkenyl diazaborolidines. Angew. Chem. Int. Ed. Engl. 61, e202205454 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Conner, M. L. & Brown, K. M. Synthesis of 1,3-substituted cyclobutanes by allenoate-alkene [2 + 2] cycloaddition. J. Org. Chem. 81, 8050–8060 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Parsutkar, M. M., Pagar, V. V. & RajanBabu, T. V. Catalytic enantioselective synthesis of cyclobutenes from alkynes and alkenyl derivatives. J. Am. Chem. Soc. 141, 115367–15377 (2019).

    Article  Google Scholar 

  150. Scholz, S. O. et al. Construction of complex cyclobutane building blocks by photosensitized [2 + 2] cycloaddition of vinyl boronate esters. Org. Lett. 23, 3496–3501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu, Y. et al. Photosensitized [2+2]-cycloadditions of alkenylboronates and alkenes. Angew. Chem. Int. Ed. Engl. 61, e202200725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, Y., Ni, D. & Brown, M. K. Boronic ester enabled [2 + 2]-cycloadditions by temporary coordination: synthesis of artochamin J and piperarborenine B. J. Am. Chem. Soc. 144, 18790–18796 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li, J., Wang, H., Qiu, Z., Huang, C. & Li, C. Metal-free direct deoxygenative borylation of aldehydes and ketones. J. Am. Chem. Soc. 142, 13011–13020 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Li, J., Huang, C., Ataya, M., Khaliullin, R. Z. & Li, C. Direct deoxygenative borylation of carboxylic acids. Nat. Commun. 12, 4970 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Wang, D., Zhou, J., Hu, Z. & Xu, T. Deoxygenative haloboration and enantioselective chloroboration of carbonyls. J. Am. Chem. Soc. 144, 22870–22876 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Li, H., Wang, L., Zhang, Y. & Wang, J. Transition-metal-free synthesis of pinacol alkylboronates from tosylhydrazones. Angew. Chem. Int. Ed. Engl. 51, 2943–2946 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Yang, Y. et al. Practical and modular construction of C(sp3)-rich alkyl boron compounds. J. Am. Chem. Soc. 143, 471–480 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Marotta, A. et al. Direct light-enabled access to α-boryl radicals: application in the stereodivergent synthesis of allyl boronic esters. Angew. Chem. Int. Ed. 62, e202307540 (2023).

    Article  CAS  Google Scholar 

  159. Xie, Q. & Dong, G. Programmable ether synthesis enabled by oxa-Matteson reaction. J. Am. Chem. Soc. 144, 8498–8503 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Armstrong, R. & Aggarwal, V. 50 years of Zweifel olefination: a transition-metal-free coupling. Synthesis 49, 3323–3336 (2017).

    Article  CAS  Google Scholar 

  161. Marotta, A., Adams, C. E. & Molloy, J. J. The impact of boron hybridisation on photocatalytic processes. Angew. Chem. Int. Ed. Engl. 61, e202207067 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. West, M. J., Fyfe, J. W. B., Vantourout, J. C. & Watson, A. J. B. Mechanistic development and recent applications of the Chan–Lam amination. Chem. Rev. 119, 12491–12523 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Brown, H. C., Kim, K. W., Cole, T. E. & Singram, B. Chiral synthesis via organoboranes. 8. Synthetic utility of boronic esters of essentially 100% optical purity. Synthesis of primary amines of very high enantiomeric purities. J. Am. Chem. Soc. 108, 6761–6764 (1986).

    Article  CAS  Google Scholar 

  165. Mlynarski, S. N., Karns, A. S. & Morken, J. P. Direct stereospecific amination of alkyl and aryl pinacol boronates. J. Am. Chem. Soc. 134, 16449–16451 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Sueki, S. & Kuninobu, Y. Copper-catalyzed N- and O-alkylation of amines and phenols using alkylborane reagents. Org. Lett. 15, 1544–1547 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Grayson, J. D., Dennis, F. M., Robertson, C. C. & Partridge, B. M. Chan–Lam amination of secondary and tertiary benzylic boronic esters. J. Org. Chem. 86, 9883–9897 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Bastick, K. A. C. & Watson, A. J. B. Pd-catalyzed homologation of arylboronic acids as a platform for the diversity-oriented synthesis of benzylic C–X bonds. Synlett 34, 2097–2102 (2023).

    Article  CAS  Google Scholar 

  169. Kunetsov, V. V. Reaction of substituted 1,3,2-dioxaborinanes with anhydrous aluminum bromide. Rus. J. Org. Chem. 30, 837–838 (1994).

    Google Scholar 

  170. Larouche-Gauthier, R., Elford, T. G. & Aggarwal, V. K. Ate complexes of secondary boronic esters as chiral organometallic-type nucleophiles for asymmetric synthesis. J. Am. Chem. Soc. 133, 16794–16797 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Li, Z., Wang, Z., Zhu, L., Tan, X. & Li, C. Silver-catalyzed radical fluorination of alkylboronates in aqueous solution. J. Am. Chem. Soc. 136, 16439–16443 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Sandford, C., Rasappan, R. & Aggarwal, V. Synthesis of enantioenriched alkylfluorides by the fluorination of boronate complexes. J. Am. Chem. Soc. 137, 10100–10103 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Chausset-Boissarie, L. et al. Enantiospecific, regioselective cross-coupling reactions of secondary allylic boronic esters. Chem. Eur. J. 19, 17698–17701 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Partridge, B. M., Chausset-Boissarie, L., Burns, M., Pulis, A. P. & Aggarwal, V. K. Enantioselective synthesis and cross-coupling of tertiary propargylic boronic esters using lithiation–borylation of propargylic carbamates. Angew. Chem. Int. Ed. Engl. 51, 11795–11799 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. LaPorte, A. J., Shi, Y., Hein, J. E. & Burke, M. D. Stereospecific Csp3 Suzuki–Miyaura cross-coupling that evades β-oxygen elimination. ACS Catal. 12, 10905–10912 (2022).

    Article  CAS  Google Scholar 

  176. Tran, V. T. et al. Activation of diverse carbon-heteroatom and carbon–carbon bonds via palladium(II)-catalysed β-X elimination. Nat. Chem. 10, 1126–1133 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ohmura, T., Awano, T. & Suginome, M. Stereospecific Suzuki–Miyaura coupling of chiral α-(acylamino)benzylboronic esters with inversion of configuration. J. Am. Chem. Soc. 132, 13191–13193 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Yuan, M., Song, Z., Badir, S. O., Molander, G. A. & Gutierrez, O. On the nature of C(sp3)–C(sp2) bond formation in nickel-catalyzed tertiary radical cross-couplings: a case study of Ni/photoredox catalytic cross-coupling of alkyl radicals and aryl halides. J. Am. Chem. Soc. 142, 7225–7234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Milligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. Alkyl carbon–carbon bond formation by nickel/photoredox cross-coupling. Angew. Chem. Int. Ed. Engl. 58, 6152–6163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zweifel, G., Arzoumanian, H. & Whitney, C. C. A convenient stereoselective synthesis of substituted alkenes via hydroboration–iodination of alkynes. J. Am. Chem. Soc. 89, 3652–3653 (1967).

    Article  CAS  Google Scholar 

  181. Knochel, P. J. A new approach to boron-stabilized organometallics. J. Am. Chem. Soc. 112, 7431 (1990).

    Article  CAS  Google Scholar 

  182. Hong, K., Liu, X. & Morken, J. P. Simple access to elusive α-boryl carbanions and their alkylation: an umpolung construction for organic synthesis. J. Am. Chem. Soc. 136, 10581–10584 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Maercker, A., Theis, M., Kos, A. J. & von Ragué Schleyer, P. 1,1-Dilithioethane. Angew. Chem. Int. Ed. Engl. 22, 733–734 (1983).

    Article  Google Scholar 

  184. O’Brien, L., Argent, S. P., Kristaps, E. & Lam, H. W. Gold(I)-catalyzed nucleophilic allylation of azinium ions with allylboronates. Angew. Chem. Int. Ed. Engl. 61, e202202305 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Knochel, P. J. A new approach to boron-stabilized organometallics. Adv. Synth. Catal. 355, 1193–1205 (2013).

    Google Scholar 

  186. Silvi, M. & Aggarwal, V. K. Radical addition to strained σ-bonds enables the stereocontrolled synthesis of cyclobutyl boronic esters. J. Am. Chem. Soc. 141, 9511–9515 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Fawcett, A., Murtaza, A., Gregson, C. H. U. & Aggarwal, V. K. Strain-release-driven homologation of boronic esters: application to the modular synthesis of azetidines. J. Am. Chem. Soc. 141, 4573–4578 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Yu, S., Jing, C., Noble, A. & Aggarwal, V. K. 1,3-Difunctionalizations of [1.1.1]propellane via 1,2-metallate rearrangements of boronate complexes. Angew. Chem. Int. Ed. Engl. 59, 3917–3921 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Shaff, A. B., Yang, L., Lee, M. T. & Lalic, G. Stereospecific and regioselective synthesis of E-allylic alcohols through reductive cross coupling of terminal alkynes. J. Am. Chem. Soc. 145, 24615–24624 (2023).

    CAS  Google Scholar 

  190. Sharma, H. A., Essman, J. Z. & Jacobsen, E. N. Enantioselective catalytic 1,2-boronate rearrangements. Science 374, 752–757 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Silvi, M., Sandford, C. & Aggarwal, V. K. Merging photoredox with 1,2-metallate rearrangements: the photochemical alkylation of vinyl boronate complexes. J. Am. Chem. Soc. 139, 5736–5739 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Lima, F. et al. Organic photocatalysis for the radical couplings of boronic acid derivatives in batch and flow. Chem. Commun. 54, 5606–5609 (2018).

    Article  CAS  Google Scholar 

  193. Kaiser, D., Noble, A., Fasano, V. & Aggarwal, V. K. 1,2-Boron shifts of β-boryl radicals generated from bis-boronic esters using photoredox catalysis. J. Am. Chem. Soc. 141, 14104–14109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ranjan, P. et al. Unlocking the accessibility of alkyl radicals from boronic acids through solvent-assisted organophotoredox activation. ACS Catal. 11, 10862–10870 (2021).

    Article  CAS  Google Scholar 

  195. Shu, C., Noble, A. & Aggarwal, V. K. Photoredox-catalyzed cyclobutane synthesis by a deboronative radical addition–polar cyclization cascade. Angew. Chem. Int. Ed. Engl. 58, 3870–3874 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Shi, D., Xia, C. & Liu, C. Photoinduced transition-metal-free alkynylation of alkyl pinacol boronates. CCS Chem. 3, 1718–1728 (2020).

    Article  Google Scholar 

  197. Li, C. et al. Photo-induced trifunctionalization of bromostyrenes via remote radical migration reactions of tetracoordinate boron species. Nat. Commun. 13, 1784 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Campbell, M. W., Compton, J. S., Kelly, C. B. & Molander, G. A. Three-component olefin dicarbofunctionalization enabled by nickel/photoredox dual catalysis. J. Am. Chem. Soc. 141, 20069–20078 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Sun, S., Duan, Y., Mega, R. S., Somerville, R. J. & Martin, R. Site-selective 1,2-dicarbofunctionalization of vinyl boronates through dual catalysis. Angew. Chem. Int. Ed. Engl. 59, 4370–4374 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Mega, S. R., Duong, V. K., Noble, A. & Aggarwal, V. K. Decarboxylative conjunctive cross-coupling of vinyl boronic esters using metallaphotoredox catalysis. Angew. Chem. Int. Ed. Engl. 59, 4375–4379 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Constantin, T., Zanani, M., Sheikh, N., Julia, F. & Leonori, D. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 367, 1021–1026 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Campbell, M. W., Yuan, M., Polites, V. C., Guitierrez, O. & Molander, G. M. Photochemical C–H activation enables nickel-catalyzed olefin dicarbofunctionalization. J. Am. Chem. Soc. 143, 3901–3910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Schmidt, J., Choi, J., Liu, A. T., Slusarczyk, M. & Fu, G. C. A general, modular method for the catalytic asymmetric synthesis of alkylboronate esters. Science 354, 1265–1269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li, Y. et al. β-boron effect enables regioselective and stereospecific electrophilic addition to alkenes. J. Am. Chem. Soc. 145, 7548–7558 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. Fyfe, J. W. B., Seath, C. P. & Watson, A. J. B. Chemoselective boronic ester synthesis by controlled speciation. Angew. Chem. Int. Ed. Engl. 53, 12077–12080 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Muir, C. W., Vantourout, J. C., Isidro-Llobet, A., Macdonald, S. J. F. & Watson, A. J. B. One-pot homologation of boronic acids: a platform for diversity-oriented synthesis. Org. Lett. 17, 6030–6033 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Lv, W. et al. Hypervalent iodine-mediated β-difluoroalkylboron synthesis via an unusual 1,2-hydrogen shift enabled by boron substitution. Chem. Sci. 13, 2981–2984 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Guo, L. et al. General method for enantioselective three-component carboarylation of alkenes enabled by visible-light dual photoredox/nickel catalysis. J. Am. Chem. Soc. 142, 20390–20399 (2020).

    Article  CAS  Google Scholar 

  209. Zhu, C., Yue, H., Chu, L. & Rueping, M. Recent advances in photoredox and nickel dual-catalyzed cascade reactions: pushing the boundaries of complexity. Chem. Sci. 11, 4051–4604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Huang, W., Keess, S. & Molander, G. M. One step synthesis of unsymmetrical 1,3-disubstituted BCP ketones via nickel/photoredox-catalyzed [1.1.1]propellane multicomponent dicarbofunctionalization. Chem. Sci. 13, 11936–11942 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhao, S. et al. Enantiodivergent Pd-catalyzed C–C bond formation enabled through ligand parameterization. Science 362, 670–674 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhang, L., Si, X., Rominger, F. & Hashmi, A. S. K. Visible-light-induced radical carbo-cyclization/gem-diborylation through triplet energy transfer between a gold catalyst and aryl iodides. J. Am. Chem. Soc. 142, 10485–10493 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Teo, W. J. & Ge, S. Cobalt-catalyzed diborylation of 1,1-disubstituted vinylarenes: a practical route to branched gem-bis(boryl)alkanes. Angew. Chem. Int. Ed. Engl. 57, 1654–1658 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Hu, M. & Ge, S. Versatile cobalt-catalyzed regioselective chain-walking double hydroboration of 1,n-dienes to access gem-bis(boryl)alkanes. Nat. Commun. 11, 765 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Shin, M. et al. Facile synthesis of α-boryl-substituted allylboronate esters using stable bis[(pinacolato)boryl]methylzinc reagents. Org. Lett. 22, 2476–2480 (2020).

    Article  CAS  PubMed  Google Scholar 

  216. Jin, S. et al. Enantioselective Cu-catalyzed double hydroboration of alkynes to access chiral gem-diborylalkanes. Nat. Commun. 13, 3524 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Li, L., Gong, T., Lu, X., Xiao, B. & Fu, Y. Nickel-catalyzed synthesis of 1,1-diborylalkanes from terminal alkenes. Nat. Commun. 8, 345 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Sun, S.-Z., Talavera, L., Spieß, P., Day, C. S. & Martin, R. sp3 bis-organometallic reagents via catalytic 1,1-difunctionalization of unactivated olefins. Angew. Chem. Int. Ed. Engl. 60, 11740–11744 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Mlynarski, S. N., Schuster, C. H. & Morken, J. P. Asymmetric synthesis from terminal alkenes by cascades of diboration and cross-coupling. Nature 505, 386–390 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. Blaisdell, T. P. & Morken, J. P. Hydroxyl-directed cross-coupling: a scalable synthesis of debromohamigeran E and other targets of interest. J. Am. Chem. Soc. 137, 8712–8715 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Liu, X., Sun, C., Mlynarski, S. & Morken, J. P. Synthesis and stereochemical assignment of arenolide. Org. Lett. 20, 1898–1901 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kliman, L. T., Mlynarski, S. N., Ferris, G. E. & Morken, J. P. Catalytic enantioselective 1,2-diboration of 1,3-dienes: versatile reagents for stereoselective allylation. Angew. Chem. Int. Ed. Engl. 51, 521–524 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. von Hahmann, C. N., Talavera, M., Xu, C. & Braun, T. Reactivity of 3,3,3-trifluoropropyne at rhodium complexes: development of hydroboration reactions. Chem. Eur. J. 24, 11131–11138 (2018).

    Article  Google Scholar 

  224. Wang, X. et al. Zirconium‐catalyzed atom‐economical synthesis of 1,1‐diborylalkanes from terminal and internal alkenes. Angew. Chem. Int. Ed. Engl. 59, 13608–13612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Gao, G., Kuang, Z. & Song, Q. Functionalized geminal-diborylalkanes from various electron-deficient alkynes and B2pin2. Org. Chem. Front. 5, 2249–2253 (2018).

    Article  CAS  Google Scholar 

  226. Kuang, Z. et al. Cu-catalyzed regio- and stereodivergent chemoselective sp2/sp3 1,3- and 1,4-diborylations of CF3-containing 1,3-enynes. Chem 6, 2347–2363 (2020).

    Article  CAS  Google Scholar 

  227. Ishiyama, T., Matsuda, N., Miyaura, N. & Suzuki, A. Platinum(0)-catalyzed diboration of alkynes. J. Am. Chem. Soc. 115, 11018–11019 (1993).

    Article  CAS  Google Scholar 

  228. Toribatake, K. & Nishiyama, H. Asymmetric diboration of terminal alkenes with a rhodium catalyst and subsequent oxidation: enantioselective synthesis of optically active 1,2-diols. Angew. Chem. Int. Ed. Engl. 52, 11011–11015 (2013).

    Article  CAS  PubMed  Google Scholar 

  229. Ishiyama, T., Yamamoto, M. & Miyaura, N. Diboration of alkenes with bis(pinacolato)diboron catalysed by a platinum(0) complex. Chem. Commun. 689, 690 (1997).

    Google Scholar 

  230. Larsen, M. A., Cho, S. H. & Hartwig, J. Iridium-catalyzed, hydrosilyl-directed borylation of unactivated alkyl C−H bonds. J. Am. Chem. Soc. 138, 762–765 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Viereck, P., Krautwald, S., Pabst, T. P. & Chirik, P. J. A boron activating effect enables cobalt-catalyzed asymmetric hydrogenation of sterically hindered alkenes. J. Am. Chem. Soc. 142, 3923–3930 (2020).

    Article  CAS  PubMed  Google Scholar 

  232. Wu, F. & Wu, X. Copper‐catalyzed borylative methylation of alkyl iodides with CO as the C1 source: advantaged by faster reaction of CuH over CuBpin. Angew. Chem. Int. Ed. Engl. 60, 11730–11734 (2021).

    Article  CAS  PubMed  Google Scholar 

  233. Eghbarieh, N. et al. Stereoselective Diels–Alder reactions of gem-diborylalkenes: toward the synthesis of gem-diboron-based polymers. J. Am. Chem. Soc. 143, 6211–6220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Mali, M. et al. Simmons–Smith cyclopropanation of alkenyl 1,2-bis(boronates): stereoselective access to functionalized cyclopropyl derivatives. J. Org. Chem. 87, 7649–7657 (2022).

    Article  CAS  PubMed  Google Scholar 

  235. Salvado, O., Dominguez-Molano, P. & Fernández, E. Stereoselective cyclopropanation of 1,1-diborylalkenes via palladium-catalyzed (trimethylsilyl)diazomethane insertion. Org. Lett. 24, 4949–4953 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ma, X. & Jiang, Y. Synthesis of gem-diboromethyl-substituted bicyclo[1.1.1]pentanes and their application in palladium-catalyzed cross-couplings. J. Org. Chem. 88, 1665–1694 (2023).

    Article  CAS  PubMed  Google Scholar 

  237. Ma, X. & Yeung, C. S. Achieving C(sp2)–C(sp3) coupling with BCP-F2 building blocks via Barluenga coupling: a comparative approach. J. Org. Chem. 86, 10672–10698 (2021).

    Article  CAS  PubMed  Google Scholar 

  238. Nallagonda, R., Padala, K. & Masarwa, A. gem-Diborylalkanes: recent advances in their preparation, transformation and application. Org. Biomol. Chem. 16, 1050–1064 (2018).

    Article  CAS  PubMed  Google Scholar 

  239. Paul, S., Das, K. K., Aich, D., Manna, S. & Panda, S. Recent developments in the asymmetric synthesis and functionalization of symmetrical and unsymmetrical gem-diborylalkanes. Org. Chem. Front. 9, 838–852 (2022).

    Article  CAS  Google Scholar 

  240. Bedford, R. B. et al. Iron-catalyzed borylation of alkyl, allyl, and aryl halides: isolation of an iron(I) boryl complex. Organometallics 33, 5940–5943 (2014).

    Article  CAS  Google Scholar 

  241. Zhou, S. et al. Iron-catalyzed diborylation of unactivated aliphatic gem-dihalogenoalkenes: synthesis of 1,2-bis(boryl)alkanes. Org. Lett. 23, 5565–5570 (2021).

    Article  CAS  PubMed  Google Scholar 

  242. Wang, S., Kaga, A. & Yorimitsu, H. Reductive ring-opening 1,3-difunctionalizations of arylcyclopropanes with sodium metal. Synlett 32, 219–223 (2021).

    Article  CAS  Google Scholar 

  243. Wang, D., Mück-Lichtenfeld, C. & Studer, A. 1,n-bisborylalkanes via radical boron migration. J. Am. Chem. Soc. 142, 9119–9123 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Zhao, B. et al. An olefinic 1,2-boryl-migration enabled by radical addition: construction of gem-bis(boryl)alkanes. Angew. Chem. Int. Ed. Engl. 58, 9448–9452 (2019).

    Article  CAS  PubMed  Google Scholar 

  245. Hemming, D., Fritzemeier, R., Westcott, S. A., Santos, W. L. & Steel, P. G. Copper-boryl mediated organic synthesis. Chem. Soc. Rev. 47, 7477–7494 (2018).

    Article  CAS  PubMed  Google Scholar 

  246. Lee, J., McDonald, R. & Hall, D. Enantioselective preparation and chemoselective cross-coupling of 1,1-diboron compounds. Nat. Chem. 3, 894–899 (2011).

    Article  CAS  PubMed  Google Scholar 

  247. Lee, J. C. H., Sun, H. & Hall, D. G. Optimization of reaction and substrate activation in the stereoselective cross-coupling of chiral 3,3-diboronyl amides. J. Org. Chem. 80, 7134–7143 (2015).

    Article  CAS  PubMed  Google Scholar 

  248. Fang, T., Wang, L., Wu, M., Qi, X. & Liu, C. Diborodichloromethane as versatile reagent for chemodivergent synthesis of gem-diborylalkanes. Angew. Chem. Int. Ed. Engl. 63, e202315227 (2024).

    Article  CAS  PubMed  Google Scholar 

  249. Nishino, S., Hirano, K. & Miura, M. Copper-catalyzed electrophilic amination of gem-diborylalkanes with hydroxylamines providing α-aminoboronic acid derivatives. Org. Lett. 21, 4759–4762 (2019).

    Article  CAS  PubMed  Google Scholar 

  250. Sun, C., Potter, B. & Morken, J. P. A catalytic enantiotopic-group-selective Suzuki reaction for the construction of chiral organoboronates. J. Am. Chem. Soc. 136, 6534–6537 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Li, X. & Hall, D. G. Diastereocontrolled monoprotodeboronation of β-sulfinimido gem-bis(boronates): a general and stereoselective route to α,β-disubstituted β-aminoalkylboronates. Angew. Chem. Int. Ed. Engl. 57, 10304–10308 (2018).

    Article  CAS  PubMed  Google Scholar 

  252. Endo, K., Hirokami, M. & Shibata, T. Synthesis of 1,1-organodiboronates via Rh(I)Cl-catalyzed sequential regioselective hydroboration of 1-alkynes. Synlett 2009, 1331–1335 (2009).

    Article  Google Scholar 

  253. Park, J., Choi, S., Lee, Y. & Cho, S. H. Chemo- and stereoselective crotylation of aldehydes and cyclic aldimines with allylic gem-diboronate ester. Org. Lett. 19, 4054–4057 (2017).

    Article  CAS  PubMed  Google Scholar 

  254. Gao, S., Chen, J. & Chen, M. Z. α-Boryl-crotylboron reagents via Z-selective alkene isomerization and application to stereoselective syntheses of (E)-δ-boryl-syn-aomoallylic alcohols. Chem. Sci. 10, 3637–3642 (2019).

    Article  CAS  PubMed  Google Scholar 

  255. Zhang, Z.-Q. et al. Copper-catalyzed SN2′-selective allylic substitution reaction of gem-diborylalkanes. Org. Lett. 18, 952–955 (2016).

    Article  CAS  PubMed  Google Scholar 

  256. Shi, Y. & Hoveyda, A. H. Catalytic SN2′- and enantioselective allylic substitution with a diborylmethane reagent and application in synthesis. Angew. Chem. Int. Ed. Engl. 55, 3455–3458 (2016).

    Article  CAS  PubMed  Google Scholar 

  257. Green, J. C., Zanghi, J. M. & Meek, S. J. Diastereo- and enantioselective synthesis of homoallylic amines bearing quaternary carbon centers. J. Am. Chem. Soc. 142, 1704–1709 (2020).

    Article  CAS  PubMed  Google Scholar 

  258. Kim, M. et al. Copper-catalyzed enantiotopic-group-selective allylation of gem-diborylalkanes. J. Am. Chem. Soc. 143, 1069–1077 (2021).

    Article  CAS  PubMed  Google Scholar 

  259. Miura, T., Nakahashi, J. & Murakami, M. Enantioselective synthesis of (E)-δ-boryl-substituted anti-homoallylic alcohols using palladium and a chiral phosphoric acid. Angew. Chem. Int. Ed. Engl. 56, 6989–6993 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Lee, Y., Park, J. & Cho, S. H. Generation and application of (diborylmethyl)zinc(II) species: access to enantioenriched gem-diborylalkanes by an asymmetric allylic substitution. Angew. Chem. Int. Ed. Engl. 57, 12930–12934 (2018).

    Article  CAS  PubMed  Google Scholar 

  261. Miura, T., Oku, N., Shiratori, Y., Nagata, Y. & Murakami, M. Stereo‐ and enantioselective synthesis of propionate‐derived trisubstituted alkene motifs. Chem. Eur. J. 27, 3861–3868 (2021).

    Article  CAS  PubMed  Google Scholar 

  262. Park, J., Lee, Y., Kim, J. & Cho, S. H. Copper-catalyzed diastereoselective addition of diborylmethane to N-tert-butanesulfinyl aldimines: synthesis of β-aminoboronates. Org. Lett. 18, 1210–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  263. Joannou, M. V., Moyer, B. S. & Meek, S. J. Enantio- and diastereoselective synthesis of 1,2-hydroxyboronates through Cu-catalyzed additions of alkylboronates to aldehydes. J. Am. Chem. Soc. 137, 6176–6179 (2015).

    Article  CAS  PubMed  Google Scholar 

  264. Sun, W., Xu, L., Qin, Y. & Liu, C. Alkyne synthesis through coupling of gem-diborylalkanes with carboxylic acid esters. Nat. Synth. 2, 413–222 (2023).

    Article  Google Scholar 

  265. Nóvoa, L., Trulli, L., Parra, A. & Tortosa, M. Stereoselective diboration of spirocyclobutenes: a platform for the synthesis of spirocycles with orthogonal exit vectors. Angew. Chem. Int. Ed. Engl. 60, 11763–11768 (2021).

    Article  PubMed  Google Scholar 

  266. Wang, H., Han, W., Noble, A. & Aggarwal, V. K. Dual nickel/photoredox‐catalyzed site‐selective cross‐coupling of 1,2‐bis‐boronic esters enabled by 1,2‐boron shifts. Angew. Chem. Int. Ed. Engl. 61, e202207988 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Yoshida, H., Murashige, Y. & Osaka, I. Copper-catalyzed B(dan)-installing allylic borylation of allylic phosphates. Adv. Synth. Catal. 361, 2286–2290 (2019).

    Article  CAS  Google Scholar 

  268. Nallagonda, R. & Karimov, R. R. Copper-catalyzed regio- and diastereoselective additions of boron-stabilized carbanions to heteroarenium salts: synthesis of azaheterocycles containing contiguous stereocenters. ACS Catal. 11, 248–254 (2021).

    Article  CAS  Google Scholar 

  269. Castle, R. B. & Matteson, D. S. Methanetetraboronic and methanetriboronic esters. J. Organomet. Chem. 20, 19–28 (1969).

    Article  CAS  Google Scholar 

  270. Baker, R. T., Nguyen, P., Marder, T. B. & Wescott, S. A. Transition metal catalyzed diboration of vinyiarenes. Angew. Chem. Int. Ed. Engl. 34, 1336–1338 (1995).

    Article  CAS  Google Scholar 

  271. Zhang, L. & Huang, Z. Synthesis of 1,1,1-tris(boronates) from vinylarenes by co-catalyzed dehydrogenative borylations–hydroboration. J. Am. Chem. Soc. 137, 15600–15603 (2015).

    Article  CAS  PubMed  Google Scholar 

  272. Liu, X., Ming, W., Zhang, Y., Friedrich, A. & Marder, T. B. Copper‐catalyzed triboration: straightforward, atom‐economical synthesis of 1,1,1‐triborylalkanes from terminal alkynes and HBpin. Angew. Chem. Int. Ed. Engl. 58, 18923–18927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Yang, X. & Ge, S. Cobalt-catalyzed 1,1,3-triborylation of terminal alkynes. Organometallics 41, 1823–1828 (2022).

    Article  CAS  Google Scholar 

  274. Zhao, Y. & Ge, S. Synergistic hydrocobaltation and borylcobaltation enable regioselective migratory triborylation of unactivated alkenes. Angew. Chem. Int. Ed. Engl. 61, e202116133 (2022).

    Article  CAS  PubMed  Google Scholar 

  275. Wang, L. et al. Boron-promoted deprotonative conjugate addition: geminal diborons as soft pronucleophiles and acyl anion equivalent. J. Org. Chem. 87, 9896–9906 (2022).

    Article  CAS  PubMed  Google Scholar 

  276. Ishida, N., Masuda, Y., Imamura, Y., Yamakazi, K. & Murakami, M. Carboxylation of benzylic and aliphatic C–H bonds with CO2 induced by light/ketone/nickel. J. Am. Chem. Soc. 141, 19611–19615 (2019).

    Article  CAS  PubMed  Google Scholar 

  277. Bastick, K. A. C. & Watson, A. J. B. W. Pd-catalyzed organometallic-free homologation of arylboronic acids enabled by chemoselective transmetalation. ACS Catal. 13, 7013–7018 (2023).

    Article  CAS  PubMed  Google Scholar 

  278. Matteson, D. S., Moody, R. J. & Jesthi, P. K. Reaction of aldehydes and ketones with a boron-substituted carbanion, bis(ethylenedioxyboryl)methide. Simple aldehyde homologation. J. Am. Chem. Soc. 97, 5608–5609 (1975).

    Article  CAS  Google Scholar 

  279. Liang, M. Z. & Meek, S. J. Synthesis of quaternary carbon stereogenic centers by diastereoselective conjugate addition of boron-stabilized allylic nucleophiles to enones. J. Am. Chem. Soc. 142, 9925–9931 (2020).

    Article  CAS  PubMed  Google Scholar 

  280. Rogova, T., Ahrweiler, E., Schoetz, M. D. & Schoenebeck, F. Recent developments with organogermanes: their preparation and application in synthesis and catalysis. Angew. Chem. Int. Ed. Engl. 63, e202314709 (2024).

    Article  CAS  PubMed  Google Scholar 

  281. McGhie, L., Marotta, A., Loftus, P. O., Seeberger, P. H., Funes-Ardoiz, I. & Molloy, J. J. Photogeneration of α-bimetalloid radicals via selective activation of multifunctional C1 units. J. Am. Chem. Soc. 146, 15850–15859 (2024).

    Article  CAS  PubMed  Google Scholar 

  282. Batsanov, A. S. et al. Fully borylated methane and ethane by ruthenium-mediated cleavage and coupling of CO. Angew. Chem. Int. Ed. Engl. 55, 4707–4710 (2016).

    Article  CAS  PubMed  Google Scholar 

  283. Yamamoto, T., Ishibashi, A. & Suginome, M. Boryl-directed, Ir-catalyzed C(sp3)–H borylation of alkylboronic acids leading to site-selective synthesis of polyborylalkanes. Org. Lett. 21, 6235–6240 (2019).

    Article  CAS  PubMed  Google Scholar 

  284. Li, J. & Ge, S. Copper-catalyzed quadruple borylation of terminal alkynes to access sp3-tetra-organometallic reagents. Angew. Chem. Int. Ed. Engl. 61, e202213057 (2022).

    Article  CAS  PubMed  Google Scholar 

  285. Wang, X., Wang, Y., Huang, W., Xia, C. & Wu, L. Direct synthesis of multi(boronate) esters from alkenes and alkynes via hydroboration and boration reactions. ACS Catal. 11, 1–18 (2021).

    Article  Google Scholar 

  286. Maciel, G. E., McIver, J. W., Ostlund, N. S. & Pople, J. A. Approximate self-consistent molecular orbital theory of nuclear spin coupling. I. Directly bonded carbon–hydrogen coupling constants. J. Am. Chem. Soc. 92, 231–232 (1970).

    Google Scholar 

  287. Mattesson, D. S. & Wilcsek, R. J. Tetrametallomethanes containing one, two, or three group IV metal atoms and boron. J. Organomet. Chem. 57, 231–242 (1973).

    Article  Google Scholar 

  288. Matteson, D. S. & Furue, M. Observations on the reactivity of tris(tetramethylethylenedioxyboryl)methide ion. J. Organomet. Chem. 69, 63–67 (1974).

    Article  CAS  Google Scholar 

  289. Scherbaum, F., Grohmann, A., Huber, B., Kruger, C. & Schmidbaur, H. ‘Aurophilicity’ as a consequence of relativistic effects: the hexakis(triphenylphosphaneaurio)methane dication. Angew. Chem. Ed. Engl. 27, 1544–1546 (1988).

    Article  Google Scholar 

  290. Ogawa, N., Yamaoka, Y., Takikawa, H., Yamada, K. & Takasu, K. Helical nanographenes embedded with contiguous azulene units. J. Am. Chem. Soc. 142, 13322–13327 (2020).

    Article  CAS  PubMed  Google Scholar 

  291. Yoshii, D., Jin, X., Mizuno, N. & Yamaguchi, K. Selective dehydrogenative mono- or diborylation of styrenes by supported copper catalysts. ACS Catal. 9, 3011–3016 (2019).

    Article  CAS  Google Scholar 

  292. Matteson, D. S., Davis, R. A. & Hagelee, L. A. A bromomethanetriboronic ester. J. Organomet. Chem. 69, 45–51 (1974).

    Article  CAS  Google Scholar 

  293. Castle, R. B. & Matteson, D. S. Methanetetraboronic ester. J. Am. Chem. Soc. 90, 2194–2194 (1968).

    Article  CAS  Google Scholar 

  294. Matteson, D. S. & Thomas, J. R. C-alkylation of methanetetraboronic and methanetriboronic esters. J. Organomet. Chem. 24, 263–271 (1970).

    Article  CAS  Google Scholar 

  295. Hanania, N., Eghbarieh, N. & Masarwa, A. Polyborylated alkenes as energy-transfer reactive groups: access to multi-borylated cyclobutanes combined with hydrogen atom transfer event. Angew. Chem. Int. Ed. 63, e202405898 (2024).

    Article  CAS  Google Scholar 

  296. Nishikawa, T. & Ouchi, M. An alkenyl boronate as a monomer for radical polymerizations: boron as a guide for chain growth and as a replaceable side chain for post-polymerization. Angew. Chem. Int. Ed. Engl. 58, 12435–12439 (2019).

    Article  CAS  PubMed  Google Scholar 

  297. Buskes, M. J. & Blanco, M.-J. Impact of cross-coupling reactions in drug discovery and development. Molecules 25, 3493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Arentsen, K., Caddick, S., Cloke, F. G. N., Herring, A. P. & Hitchcock, P. B. Suzuki–Miyaura cross-coupling of aryl and alkyl halides using palladium/imidazolium salt protocols. Tetrahedron Lett. 45, 3511–3515 (2004).

    Article  CAS  Google Scholar 

  299. Li, Z. et al. Palladium-catalyzed Suzuki reactions in water with no added ligand: effects of reaction scale, temperature, pH of aqueous phase, and substrate structure. Org. Process Res. Dev. 20, 1489–1499 (2016).

    Article  CAS  Google Scholar 

  300. Mailyan, A. K. et al. Development of a robust and scalable synthetic route for a potent and selective isoindolinone PI3Kγ inhibitor. Org. Process Res. Dev. 26, 2915–2925 (2022).

    Article  CAS  Google Scholar 

  301. Rubina, M., Rubin, M. & Gevorgyan, V. Catalytic enantioselective hydroboration of cyclopropenes. J. Am. Chem. Soc. 125, 7198–7199 (2003).

    Article  CAS  PubMed  Google Scholar 

  302. Imao, D., Glasspoole, B. W., Laberge, V. S. & Crudden, C. M. Cross-coupling reactions of chiral secondary organoboronic esters with retention of configuration. J. Am. Chem. Soc. 131, 5024–5025 (2009).

    Article  CAS  PubMed  Google Scholar 

  303. Chakrabarty, S., Palencia, H., Morton, M. D., Carr, R. O. & Takacs, J. M. Facile access to functionalized chiral secondary benzylic boronic esters via catalytic asymmetric hydroboration. Chem. Sci. 10, 4854–4861 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Dreher, S. D., Dormer, P. G., Sandrock, D. L. & Molander, G. A. Efficient cross-coupling of secondary alkyltrifluoroborates with aryl chlorides — reaction discovery using parallel microscale experimentation. J. Am. Chem. Soc. 130, 9257–9259 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.A.C.B. thanks the EPSRC for a PhD studentship. A.J.B.W. thanks the Leverhulme Trust for a Research Fellowship (RF-2022-014). D.D.R. and A.J.B.W. thank the EPSRC Programme Grant ‘Boron: beyond the reagent’ (EP/W007517/1) for support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K.A.C.B. and A.J.B.W.; Literature and data searches, K.A.C.B.; Writing — original draft, K.A.C.B.; Writing — review and editing, K.A.C.B, D.D.R. and A.J.B.W.; Funding acquisition, A.J.B.W. 

Corresponding author

Correspondence to Allan J. B. Watson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Qiuling Song, Won Jun Jang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastick, K.A.C., Roberts, D.D. & Watson, A.J.B. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 8, 741–761 (2024). https://doi.org/10.1038/s41570-024-00650-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-024-00650-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing