Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Smart molecular designs and applications of activatable organic photosensitizers

Abstract

Photodynamic therapy (PDT) — which combines light, oxygen and photosensitizers (PS) to generate reactive oxygen species — has emerged as an effective approach for targeted ablation of pathogenic cells with reduced risk of inducing resistance. Some organic PS are now being applied for PDT in the clinic or undergoing evaluation in clinical trials. A limitation of the first-generation organic PS was their potential off-target toxicity. This shortcoming prompted the design of constructs that can be activated by the presence of specific biomolecules — from small biomolecules to large enzymes — in the target cells. Here, we review advances in the design and synthesis of activatable organic PS and their contribution to PDT in the past decade. Important areas of research include novel synthetic methodologies to engineer smart PS with tuneable singlet oxygen generation, their integration into larger constructs such as bioconjugates, and finally, representative examples of their translational potential as antimicrobial and anticancer therapies.

Key points

  • Activatable organic photosensitizers (PS) are designed for targeted photodynamic therapy (PDT), reducing off-target toxicity by activating only at disease sites.

  • Chemical activation strategies include pH-responsive, redox-mediated, and enzyme-activatable PS, enhancing selectivity and efficacy in anticancer and antibacterial treatments.

  • Near-infrared (NIR) PS improve tissue penetration and targeting for clinical translatability, with modifications such as extended conjugation and heavy atom inclusion to increase the excitation wavelengths.

  • Successful biomedical applications demonstrate the potential of activatable PS in treating cancers and infectious diseases, with ongoing challenges in clinical adaptation.

  • Future directions focus on optimizing PS formulations for better biodistribution, developing NIR PS for deeper tissue penetration, and exploring sonodynamic activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biomarkers within the tumour microenvironment can be harnessed for activatable photodynamic therapy.
Fig. 2: Activation mechanisms behind the differential behaviour of organic PS in their inactive and active states.
Fig. 3: Electrostatic and metabolic labelling as targeting strategies for bacterial ablation in antimicrobial photodynamic therapy.
Fig. 4: Clinical translation with NIR excitation and intelligent formulation designs.
Fig. 5: Chemical strategies to modulate ICT and PS activity in NIR hemicyanines.

Similar content being viewed by others

References

  1. Robertson, C. A., Evans, D. H. & Abrahamse, H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B Biol. 96, 1–8 (2009).

    Article  CAS  Google Scholar 

  2. Wainwright, M. et al. Photoantimicrobials — are we afraid of the light? Lancet Infect. Dis. 17, e49–e55 (2017).

    Article  PubMed  Google Scholar 

  3. Matera, C. et al. Photoswitchable antimetabolite for targeted photoactivated chemotherapy. J. Am. Chem. Soc. 140, 15764–15773 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Durantini, A. M., Greene, L. E., Lincoln, R., Martínez, S. R. & Cosa, G. Reactive oxygen species mediated activation of a dormant singlet oxygen photosensitizer: from autocatalytic singlet oxygen amplification to chemicontrolled photodynamic therapy. J. Am. Chem. Soc. 138, 1215–1225 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Nguyen, V. N. et al. An emerging molecular design approach to heavy-atom-free photosensitizers for enhanced photodynamic therapy under hypoxia. J. Am. Chem. Soc. 141, 16243–16248 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Duan, X. et al. Photodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc. 138, 16686–16695 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mao, D. et al. Metal–organic‐framework‐assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv. Mater. 30, 1706831 (2018).

    Article  Google Scholar 

  8. Jin, S. et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target. Ther. 7, 39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maruani, A. et al. Site-selective multi-porphyrin attachment enables the formation of a next-generation antibody-based photodynamic therapeutic. Chem. Commun. 51, 15304–15307 (2015).

    Article  CAS  Google Scholar 

  10. Subiros-Funosas, R. et al. Fluorogenic Trp(redBODIPY) cyclopeptide targeting keratin 1 for imaging of aggressive carcinomas. Chem. Sci. 11, 1368–1374 (2020).

    Article  CAS  Google Scholar 

  11. Fernandez, A., Thompson, E. J., Pollard, J. W., Kitamura, T. & Vendrell, M. A fluorescent activatable AND-gate chemokine CCL2 enables in vivo detection of metastasis-associated macrophages. Angew. Chem. Int. Ed. 58, 16894–16898 (2019).

    Article  CAS  Google Scholar 

  12. Wang, X., Luo, D. & Basilion, J. P. Photodynamic therapy: targeting cancer biomarkers for the treatment of cancers. Cancers 13, 2992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park, S. J. et al. Mechanistic elements and critical factors of cellular reprogramming revealed by stepwise global gene expression analyses. Stem Cell Res. 12, 730–741 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, C. et al. Searching for the optimal fluorophore to label antimicrobial peptides. ACS Comb. Sci. 18, 689–696 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Kaplaneris, N. et al. Chemodivergent manganese-catalyzed C–H activation: modular synthesis of fluorogenic probes. Nat. Commun. 12, 3389 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barth, N. D. et al. A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis. Nat. Commun. 11, 4027 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghashghaei, O. et al. Multiple multicomponent reactions: unexplored substrates, selective processes, and versatile chemotypes in biomedicine. Chem. Eur. J. 24, 14513–14521 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, X., Wang, R., Kwon, N., Ma, H. & Yoon, J. Activatable fluorescent probes for in situ imaging of enzymes. Chem. Soc. Rev. 51, 450–463 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Mendive-Tapia, L. & Vendrell, M. Activatable fluorophores for imaging immune cell function. Acc. Chem. Res. 55, 1183–1193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grimm, J. B. et al. Synthesis of a far-red photoactivatable silicon-containing rhodamine for super-resolution microscopy. Angew. Chem. Int. Ed. 55, 1723–1727 (2016).

    Article  CAS  Google Scholar 

  21. Mochida, A., Ogata, F., Nagaya, T., Choyke, P. L. & Kobayashi, H. Activatable fluorescent probes in fluorescence-guided surgery: practical considerations. Bioorg. Med. Chem. 26, 925–930 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Park, W. et al. Advanced smart-photosensitizers for more effective cancer treatment. Biomater. Sci. 6, 79–90 (2018).

    Article  CAS  Google Scholar 

  23. Pavlova, N. N., Zhu, J. & Thompson, C. B. The hallmarks of cancer metabolism: still emerging. Cell Metab. 34, 355–377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma, A. et al. Theranostic fluorescent probes. Chem. Rev. 124, 2699–2804 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu, Y. et al. Rationally designed monoamine oxidase A‐activatable AIE molecular photosensitizer for the specific imaging and cellular therapy of tumors. Aggregate 4, e256 (2023).

    Article  CAS  Google Scholar 

  26. Hulikova, A., Harris, A. L., Vaughan-Jones, R. D. & Swietach, P. Regulation of intracellular pH in cancer cell lines under normoxia and hypoxia. J. Cell. Physiol. 228, 743–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, C. et al. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chem. Soc. Rev. 50, 12656–12678 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Yamaoka, S., Okazaki, S. & Hirakawa, K. Activity control of pH-responsive photosensitizer bis(6-quinolinoxy)P(V)tetrakis(4-chlorophenyl)porphyrin through intramolecular electron transfer. Chem. Phys. Lett. 788, 139285 (2022).

    Article  CAS  Google Scholar 

  29. Wang, S. et al. Molecular engineering to construct specific cancer cell lysosome targeting photosensitizer by adjusting the proton binding ability. Sens. Actuators B Chem. 371, 132546 (2022).

    Article  CAS  Google Scholar 

  30. Siriwibool, S. et al. Near-infrared fluorescent pH responsive probe for targeted photodynamic cancer therapy. Sci. Rep. 10, 1283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tian, J. et al. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chem. Sci. 6, 5969–5977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Say, B. et al. Caging of BODIPY photosensitizers through hydrazone bond formation and their activation dynamics. ChemMedChem 18, e202300199 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Gallagher, W. M. et al. A potent nonporphyrin class of photodynamic therapeutic agent: cellular localisation, cytotoxic potential and influence of hypoxia. Br. J. Cancer 92, 1702–1710 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kennedy, L., Sandhu, J. K., Harper, M. E. & Cuperlovic‐Culf, M. Role of glutathione in cancer: from mechanisms to therapies. Biomolecules 10, 1429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, M. H., Sessler, J. L. & Kim, J. S. Disulfide-based multifunctional conjugates for targeted theranostic drug delivery. Acc. Chem. Res. 48, 2935–2946 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Cao, J. J. et al. A glutathione-responsive photosensitizer with fluorescence resonance energy transfer characteristics for imaging-guided targeting photodynamic therapy. Eur. J. Med. Chem. 193, 112203 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Shi, W., Ng, D. K. P., Zhao, S. & Lo, P. A phthalocyanine‐based glutathione‐activated photosensitizer with a ferrocenyl boron dipyrromethene dark quencher for photodynamic therapy. ChemPhotoChem 3, 1004–1013 (2019).

    Article  CAS  Google Scholar 

  38. Zhang, Y. H. et al. AIE based GSH activatable photosensitizer for imaging-guided photodynamic therapy. Chem. Commun. 56, 10317–10320 (2020).

    Article  CAS  Google Scholar 

  39. Yang, G. et al. GSH-activatable NIR nanoplatform with mitochondria targeting for enhancing tumor-specific therapy. ACS Appl. Mater. Interfaces 11, 44961–44969 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, R. et al. A glutathione activatable photosensitizer for combined photodynamic and gas therapy under red light irradiation. Adv. Healthc. Mater. 11, 2102017 (2022).

    Article  CAS  Google Scholar 

  41. Teng, K. X., Niu, L. Y., Kang, Y. F. & Yang, Q. Z. Rational design of a “dual lock-and-key” supramolecular photosensitizer based on aromatic nucleophilic substitution for specific and enhanced photodynamic therapy. Chem. Sci. 11, 9703–9711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kilic, E. et al. Activity-based photosensitizers with optimized triplet state characteristics toward cancer cell selective and image guided photodynamic therapy. ACS Appl. Bio Mater. 5, 2754–2767 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Savani, S. et al. Development of a cysteine responsive chlorinated hemicyanine for image-guided dual phototherapy. Bioorg. Chem. 122, 105725 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Rehman, T. et al. Cysteine and homocysteine as biomarker of various diseases. Food Sci. Nutr. 8, 4696–4707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Y., Xu, C., Sun, H., Ren, M. & Kong, F. A Cys-regulated fluorescent probe targeting cancer cells and their application in inflammation detection. J. Photochem. Photobiol. A Chem. 444, 114919 (2023).

    Article  CAS  Google Scholar 

  46. Min, J. Y., Chun, K. S. & Kim, D. H. The versatile utility of cysteine as a target for cancer treatment. Front. Oncol. 12, 997919 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nagarkar, S. S., Desai, A. V. & Ghosh, S. K. A nitro‐functionalized metal–organic framework as a reaction‐based fluorescence turn‐on probe for rapid and selective H2S detection. Chem. Eur. J. 21, 9994–9997 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Dirak, M. et al. Selective monitoring and treatment of neuroblastoma cells with hydrogen sulfide activatable phototheranostic agent. Dye. Pigment. 210, 111011 (2023).

    Article  CAS  Google Scholar 

  49. Quan, Y. Y. et al. A multifunctional BODIPY based fluorescent probe for hydrogen sulfide detection and photodynamic anticancer therapy in HCT116 colon cancer cell. Dye. Pigment. 197, 109897 (2022).

    Article  CAS  Google Scholar 

  50. Wang, R. et al. Activatable near-infrared emission-guided on-demand administration of photodynamic anticancer therapy with a theranostic nanoprobe. Chem. Sci. 10, 2785–2790 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Storz, P. Reactive oxygen species in tumor progression. Front. Biosci. 10, 1881–1896 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Z. W. et al. A H2O2-responsive boron dipyrromethene-based photosensitizer for imaging-guided photodynamic therapy. Molecules 24, 32 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yuan, B., Wang, H., Xu, J. F. & Zhang, X. Activatable photosensitizer for smart photodynamic therapy triggered by reactive oxygen species in tumor cells. ACS Appl. Mater. Interfaces 12, 26982–26990 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Zeng, Q., Zhang, R., Zhang, T. & Xing, D. H2O2-responsive biodegradable nanomedicine for cancer-selective dual-modal imaging guided precise photodynamic therapy. Biomaterials 207, 39–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Heng, H. et al. Intrinsic mitochondrial reactive oxygen species (ROS) activate the in situ synthesis of trimethine cyanines in cancer cells. Angew. Chem. Int. Ed. 61, e202203444 (2022).

    Article  CAS  Google Scholar 

  56. Chen, M. et al. An ultra-sensitive ESIPT fluorescent probe for distinguishing cancerous cells and diagnosing APAP-induced liver injury via HClO fluctuation. Sens. Actuators B Chem. 386, 133749 (2023).

    Article  CAS  Google Scholar 

  57. Huang, T. et al. A hypochlorite-activated strategy for realizing fluorescence turn-on, type I and type II ROS-combined photodynamic tumor ablation. Biomaterials 297, 122108 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Dolmans, D., Fukumura, D. & Jain, R. Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Pryor, W. A. & Squadrito, G. L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, L699–L722 (1995).

    CAS  PubMed  Google Scholar 

  60. Zielonka, J. et al. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides. Chem. Res. Toxicol. 25, 1793–1799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhai, W. et al. Universal scaffold for an activatable photosensitizer with completely inhibited photosensitivity. Angew. Chem. Int. Ed. 58, 16601–16609 (2019).

    Article  CAS  Google Scholar 

  62. Tyagi, S., Bratu, D. P. & Kramer, F. R. Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16, 49–53 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, J. et al. Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation. J. Am. Chem. Soc. 126, 11450–11451 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Li, M. et al. De novo design of phototheranostic sensitizers based on structure-inherent targeting for enhanced cancer ablation. J. Am. Chem. Soc. 140, 15820–15826 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Punganuru, S. R., Madala, H. R., Arutla, V. & Srivenugopal, K. S. Cancer-specific biomarker hNQO1-activatable fluorescent probe for imaging cancer cells in vitro and in vivo. Cancers 10, 470 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Digby, E. M., Sadovski, O. & Beharry, A. A. An activatable photosensitizer targeting human NAD(P)H: quinone oxidoreductase 1. Chem. Eur. J. 26, 2713–2718 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Xue, E. Y., Kang, F., Zhou, Y. & Ng, D. K. P. Design and synthesis of a NAD(P)H:quinone oxidoreductase 1-activatable photosensitiser for controlled photodynamic therapy. Chem. Commun. 59, 7056–7059 (2023).

    Article  CAS  Google Scholar 

  68. Lu, S. et al. PEGylated dimeric BODIPY photosensitizers as nanocarriers for combined chemotherapy and cathepsin B-activated photodynamic therapy in 3D tumor spheroids. ACS Appl. Bio Mater. 3, 3835–3845 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, Q., Yu, L., Wong, R. C. H. & Lo, P. C. Construction of cathepsin B-responsive fluorescent probe and photosensitizer using a ferrocenyl boron dipyrromethene dark quencher. Eur. J. Med. Chem. 179, 828–836 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, T. W. et al. Imaging of specific activation of photodynamic molecular beacons in breast cancer vertebral metastases. Bioconjug. Chem. 22, 1021–1030 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Almammadov, T. et al. Resorufin enters the photodynamic therapy arena: a monoamine oxidase activatable agent for selective cytotoxicity. ACS Med. Chem. Lett. 11, 2491–2496 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lioret, V., Renault, K., Maury, O. & Romieu, A. Valkyrie probes: a novel class of enzyme-activatable photosensitizers based on sulfur- and seleno-rosamines with pyridinium unit. Chem. Asian J. 18, e202300756 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Li, Y. et al. Enzyme‐activatable near‐infrared photosensitizer with high enrichment in tumor cells based on a multi‐effect design. Angew. Chem. Int. Ed. 63, e202317773 (2024).

    Article  CAS  Google Scholar 

  74. Verirsen, I., Uyar, B., Ozsamur, N. G., Demirok, N. & Erbas-Cakmak, S. Enzyme activatable photodynamic therapy agents targeting melanoma. Org. Biomol. Chem. 20, 8864–8868 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, Y. et al. A tyrosinase-activated Pt(II) complex for melanoma photodynamic therapy and fluorescence imaging. Sens. Actuators B Chem. 374, 132836 (2023).

    Article  CAS  Google Scholar 

  76. Chiba, M. et al. An activatable photosensitizer targeted to γ‐glutamyltranspeptidase. Angew. Chem. Int. Ed. 56, 10418–10422 (2017).

    Article  CAS  Google Scholar 

  77. Shen, Z. & Tung, C. H. Selective photo-ablation of glioma cells using an enzyme activatable photosensitizer. Chem. Commun. 56, 13860–13863 (2020).

    Article  CAS  Google Scholar 

  78. Li, J. et al. A fluorescence-activatable tumor-reporting probe for precise photodynamic therapy. J. Mater. Chem. B 9, 5829–5836 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Liu, F. et al. A multifunctional near-infrared fluorescent probe for in vitro and in vivo imaging of γ-glutamyltranspeptidase and photodynamic cancer therapy. Sens. Actuators B Chem. 363, 131838 (2022).

    Article  CAS  Google Scholar 

  80. Zhou, X. et al. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials 253, 120089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, W. et al. AIE-active lysosome-targeted fluorescent organic nanoparticles for leucine aminopeptidase-activatable fluorescent imaging and precision photodynamic therapy potential. Dye. Pigment. 221, 111781 (2024).

    Article  CAS  Google Scholar 

  82. Arslan, B. et al. A leucine aminopeptidase activatable photosensitizer for cancer cell selective photodynamic therapy action. Dye. Pigment. 195, 109735 (2021).

    Article  CAS  Google Scholar 

  83. Piao, W. et al. Development of an azo-based photosensitizer activated under mild hypoxia for photodynamic therapy. J. Am. Chem. Soc. 139, 13713–13719 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Liu, W. et al. Azo-based hypoxia-responsive self-assembly near-infrared fluorescent nanoprobe for in vivo real-time bioimaging of tumors. ACS Appl. Bio Mater. 4, 2752–2758 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Tian, J. et al. Activatable type I photosensitizer with quenched photosensitization pre and post photodynamic therapy. Angew. Chem. Int. Ed. 62, e202307288 (2023).

    Article  CAS  Google Scholar 

  86. Xiong, J. et al. Engineering a theranostic platform for synergistic hypoxia-responsive photodynamic therapy and chemotherapy. Matter 5, 1502–1519 (2022).

    Article  CAS  Google Scholar 

  87. Wang, C. et al. Microenvironment-triggered dual-activation of a photosensitizer-fluorophore conjugate for tumor specific imaging and photodynamic therapy. Sci. Rep. 10, 12127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tam, L. K. B. et al. Dual cathepsin B and glutathione-activated dimeric and trimeric phthalocyanine-based photodynamic molecular beacons for targeted photodynamic therapy. J. Med. Chem. 64, 17455–17467 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Tam, L. K. B., He, L., Ng, D. K. P., Cheung, P. C. K. & Lo, P. A tumor‐targeting dual‐stimuli‐activatable photodynamic molecular beacon for precise photodynamic therapy. Chem. Eur. J. 28, e202201652 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Tam, L. K. B. et al. Enzyme-responsive double-locked photodynamic molecular beacon for targeted photodynamic anticancer therapy. J. Am. Chem. Soc. 145, 7361–7375 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun, J. et al. GSH and H2O2 co‐activatable mitochondria‐targeted photodynamic therapy under normoxia and hypoxia. Angew. Chem. Int. Ed. 59, 12122–12128 (2020).

    Article  CAS  Google Scholar 

  92. Benson, S. et al. Photoactivatable metabolic warheads enable precise and safe ablation of target cells in vivo. Nat. Commun. 12, 2369 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Almammadov, T. et al. Locked and loaded: β-galactosidase activated photodynamic therapy agent enables selective imaging and targeted treatment of glioblastoma multiforme cancer cells. ACS Appl. Bio Mater. 5, 4284–4293 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xiong, J., Cheung, Y. K., Fong, W. P., Wong, C. T. T. & Ng, D. K. P. Selective photodynamic eradication of senescent cells with a β-galactosidase-activated photosensitiser. Chem. Commun. 59, 3471–3474 (2023).

    Article  CAS  Google Scholar 

  95. Chiba, M. et al. Activatable photosensitizer for targeted ablation of lacZ-positive cells with single-cell resolution. ACS Cent. Sci. 5, 1676–1681 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yue, X. et al. Three birds one stone: an enzyme-activatable theragnostic agent for fluorescence diagnosis, photodynamic and inhibitor therapies. Chem. Commun. 59, 4676–4679 (2023).

    Article  CAS  Google Scholar 

  97. Yuan, Y. et al. Specific light‐up bioprobe with aggregation‐induced emission and activatable photoactivity for the targeted and image‐guided photodynamic ablation of cancer cells. Angew. Chem. Int. Ed. 54, 1780–1786 (2015).

    Article  CAS  Google Scholar 

  98. Chu, J. C. H., Fong, W. P., Wong, C. T. T. & Ng, D. K. P. Facile synthesis of cyclic peptide-phthalocyanine conjugates for epidermal growth factor receptor-targeted photodynamic therapy. J. Med. Chem. 64, 2064–2076 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Kim, J., Won, Y., Goh, S. H. & Choi, Y. A redox-responsive theranostic agent for target-specific fluorescence imaging and photodynamic therapy of EGFR-overexpressing triple-negative breast cancers. J. Mater. Chem. B 4, 6787–6790 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Chu, J. C. H., Wong, C. T. T. & Ng, D. K. P. Toward precise antitumoral photodynamic therapy using a dual receptor-mediated bioorthogonal activation approach. Angew. Chem. Int. Ed. 62, e202214473 (2023).

    Article  CAS  Google Scholar 

  101. Xiong, J., Chu, J. C. H., Fong, W. P., Wong, C. T. T. & Ng, D. K. P. Specific activation of photosensitizer with extrinsic enzyme for precisive photodynamic therapy. J. Am. Chem. Soc. 144, 10647–10658 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Xiong, J., Xue, E. Y., Wu, Q., Lo, P. C. & Ng, D. K. P. A tetrazine-responsive isonitrile-caged photosensitiser for site-specific photodynamic therapy. J. Control. Release 353, 663–674 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Maharjan, P. S. & Bhattarai, H. K. Singlet oxygen, photodynamic therapy, and mechanisms of cancer cell death. J. Oncol. 2022, 7211485 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Benson, S. et al. Environmentally sensitive photosensitizers enable targeted photodynamic ablation of Gram-positive antibiotic resistant bacteria. Theranostics 13, 3814–3825 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang, C. et al. Traceable cancer cell photoablation with a new mitochondria-responsive and -activatable red-emissive photosensitizer. Chem. Commun. 55, 3801–3804 (2019).

    Article  CAS  Google Scholar 

  106. Lincoln, R., Van Kessel, A. T. M., Zhang, W. & Cosa, G. A dormant BODIPY-acrolein singlet oxygen photosensitizer intracellularly activated upon adduct formation with cysteine residues. Photochem. Photobiol. Sci. 18, 2003–2011 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Linden, G. & Vázquez, O. Bioorthogonal turn‐on BODIPY‐peptide photosensitizers for tailored photodynamic therapy. Chem. Eur. J. 26, 10014–10023 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Li, J. et al. Activatable dual ROS-producing probe for dual organelle-engaged photodynamic therapy. ACS Appl. Bio Mater. 4, 4618–4628 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Yi, Z. et al. Mitochondria-targeting type-I photodrug: harnessing caspase-3 activity for pyroptotic oncotherapy. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.4c01929 (2024).

  110. Tu, L. et al. Augmenting cancer therapy with a supramolecular immunogenic cell death inducer: a lysosome-targeted NIR-light-activated ruthenium(II) metallacycle. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.3c13224 (2024).

  111. Zeng, S. et al. An ER‐targeted, viscosity‐sensitive hemicyanine dye for the diagnosis of nonalcoholic fatty liver and photodynamic cancer therapy by activating pyroptosis pathway. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202316487 (2024).

  112. Linden, G. et al. Conditional singlet oxygen generation through a bioorthogonal DNA-targeted tetrazine reaction. Angew. Chem. Int. Ed. 58, 12868–12873 (2019).

    Article  CAS  Google Scholar 

  113. Li, J. et al. A coumarin-based fluorescent probe for NIR imaging-guided photodynamic therapy against S. aureus-induced infection in mouse models. J. Mater. Chem. B 10, 1427–1433 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Zhao, E. et al. Light-enhanced bacterial killing and wash-free imaging based on AIE fluorogen. ACS Appl. Mater. Interfaces 7, 7180–7188 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Xiao, P. et al. Precise molecular engineering of type I photosensitizers with near-infrared aggregation-induced emission for image-guided photodynamic killing of multidrug-resistant bacteria. Adv. Sci. 9, 2104079 (2022).

    Article  CAS  Google Scholar 

  116. Wu, X. et al. Reactivity differences enable ROS for selective ablation of bacteria. Angew. Chem. Int. Ed. 61, e202200808 (2022).

    Article  CAS  Google Scholar 

  117. Digby, E. M., Ma, T., Zipfel, W. R., Milstein, J. N. & Beharry, A. A. highly potent photoinactivation of bacteria using a water-soluble, cell-permeable, DNA-binding photosensitizer. ACS Infect. Dis. 7, 3052–3061 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Cantelli, A. et al. Concanavalin A-rose bengal bioconjugate for targeted Gram-negative antimicrobial photodynamic therapy. J. Photochem. Photobiol. B Biol. 206, 111852 (2020).

    Article  CAS  Google Scholar 

  119. Zhao, Y. et al. Glycomimetic-conjugated photosensitizer for specific pseudomonas aeruginosa recognition and targeted photodynamic therapy. Bioconjug. Chem. 29, 3222–3230 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Jiang, F., Cai, C., Wang, X. & Han, S. A dual biomarker-targeting probe enables signal-on surface labeling of Staphylococcus aureus. Bioorg. Med. Chem. Lett. 93, 129428 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Dutta, A. K. et al. Trehalose conjugation enhances toxicity of photosensitizers against mycobacteria. ACS Cent. Sci. 5, 644–650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu, F. et al. Visualization and in situ ablation of intracellular bacterial pathogens through metabolic labeling. Angew. Chem. Int. Ed. 59, 9288–9292 (2020).

    Article  CAS  Google Scholar 

  123. Yu, E. Y. et al. One-step light-up metabolic probes for in situ discrimination and killing of intracellular bacteria. Mater. Chem. Front. 6, 450–458 (2022).

    Article  CAS  Google Scholar 

  124. Ucuncu, M. et al. Polymyxin-based photosensitizer for the potent and selective killing of Gram-negative bacteria. Chem. Commun. 56, 3757–3760 (2020).

    Article  CAS  Google Scholar 

  125. Mills, B., Kiang, A., Mohanan, S. M. P. C., Bradley, M. & Klausen, M. Riboflavin-vancomycin conjugate enables simultaneous antibiotic photo-release and photodynamic killing against resistant Gram-positive pathogens. JACS Au 3, 3014–3023 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Scott, J. I., Deng, Q. & Vendrell, M. Near-infrared fluorescent probes for the detection of cancer-associated proteases. ACS Chem. Biol. 16, 1304–1317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mellanby, R. J. et al. Tricarbocyanine N-triazoles: the scaffold-of-choice for long-term near-infrared imaging of immune cells in vivo. Chem. Sci. 9, 7261–7270 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Turan, I. S., Cakmak, F. P., Yildirim, D. C., Cetin‐Atalay, R. & Akkaya, E. U. Near‐IR absorbing BODIPY derivatives as glutathione‐activated photosensitizers for selective photodynamic action. Chem. Eur. J. 20, 16088–16092 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Xiong, H., Zhou, K., Yan, Y., Miller, J. B. & Siegwart, D. J. Tumor-activated water-soluble photosensitizers for near-infrared photodynamic cancer therapy. ACS Appl. Mater. Interfaces 10, 16335–16343 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, B. et al. A S-substituted Nile blue-derived bifunctional near-infrared fluorescent probe for in vivo carboxylesterase imaging-guided photodynamic therapy of hepatocellular carcinoma. J. Mater. Chem. B 11, 7623–7628 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Lv, W. et al. Development of a red absorbing Se-rhodamine photosensitizer and its application for bio-orthogonally activatable photodynamic therapy. Chem. Commun. 55, 7037–7040 (2019).

    Article  CAS  Google Scholar 

  132. Li, X. et al. A lipid droplet-targeted multifunctional AIE-active fluorescent probe for hydrogen peroxide detection and imaging-guided photodynamic therapy. Sens. Actuators B Chem. 375, 132892 (2023).

    Article  CAS  Google Scholar 

  133. Zheng, J. et al. A nitroreductase-activatable near-infrared theranostic photosensitizer for photodynamic therapy under mild hypoxia. Chem. Commun. 56, 5819–5822 (2020).

    Article  CAS  Google Scholar 

  134. Yang, Y. et al. A glutathione activatable pro-drug-photosensitizer for combined chemotherapy and photodynamic therapy. Chin. Chem. Lett. 33, 4583–4586 (2022).

    Article  CAS  Google Scholar 

  135. Cheng, Z. et al. Enzyme‐activatable near‐infrared hemicyanines as modular scaffolds for in vivo photodynamic therapy. Angew. Chem. Int. Ed. 63, e202404587 (2024).

    Article  CAS  Google Scholar 

  136. Ebaston, T. M., Nakonechny, F., Talalai, E., Gellerman, G. & Patsenker, L. Iodinated xanthene-cyanine NIR dyes as potential photosensitizers for antimicrobial photodynamic therapy. Dye. Pigment. 184, 108854 (2021).

    Article  CAS  Google Scholar 

  137. Xu, F. et al. Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy. Chem. Sci. 10, 10586–10594 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, Y. et al. Hemicyanine-based type I photosensitizers for antihypoxic activatable photodynamic therapy. ACS Mater. Lett. 5, 3058–3067 (2023).

    Article  CAS  Google Scholar 

  139. Liu, H. W. et al. A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy. Chem. Sci. 8, 7689–7695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li, Z., Feng, Q., Hou, J. & Shen, J. NQO-1 activatable NIR photosensitizer for visualization and selective killing of breast cancer cells. Bioorg. Chem. 143, 107021 (2024).

    Article  CAS  PubMed  Google Scholar 

  141. Seah, D., Cheng, Z. & Vendrell, M. Fluorescent probes for imaging in humans: where are we now? ACS Nano 17, 19478–19490 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Peng, Q. et al. 5-Aminolevulinic acid-based photodynamic therapy. Cancer 79, 2282–2308 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Vermandel, M. et al. Standardized intraoperative 5-ALA photodynamic therapy for newly diagnosed glioblastoma patients: a preliminary analysis of the INDYGO clinical trial. J. Neurooncol. 152, 501–514 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Akimoto, J., Fukami, S., Nagai, K. & Kohno, M. First clinical report of the intraoperative macro- and micro-photodiagnosis and photodynamic therapy using talaporfin sodium for a patient with disseminated lumbar medulloblastoma. J. Clin. Med. 12, 432 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bao, L. L. et al. In vitro and in vivo evaluation of a pyropheophorbide-a derivative as a potential photosensitizer for age-related macular degeneration. Biomed. Pharmacother. 88, 1220–1226 (2017).

    Article  CAS  Google Scholar 

  146. Martins, S. H. L. et al. Effect of surgical periodontal treatment associated to antimicrobial photodynamic therapy on chronic periodontitis: a randomized controlled clinical trial. J. Clin. Periodontol. 44, 717–728 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Yano, T. & Wang, K. K. Photodynamic therapy for gastrointestinal cancer. Photochem. Photobiol. 96, 517–523 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Luo, Y. et al. Fibroblast activation protein α activatable theranostic pro-photosensitizer for accurate tumor imaging and highly-specific photodynamic therapy. Theranostics 12, 3610–3627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Huang, L. et al. Ultralow-power near infrared lamp light operable targeted organic nanoparticle photodynamic therapy. J. Am. Chem. Soc. 138, 14586–14591 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Ghosh, S., Carter, K. A. & Lovell, J. F. Liposomal formulations of photosensitizers. Biomaterials 218, 119341 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cho, H. J. et al. Injectable single-component peptide depot: autonomously rechargeable tumor photosensitization for repeated photodynamic therapy. ACS Nano 14, 15793–15805 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Teh, D. B. L. et al. A Flexi‐PEGDA upconversion implant for wireless brain photodynamic therapy. Adv. Mater. 32, e2001459 (2020).

    Article  PubMed  Google Scholar 

  153. Nestoros, E. et al. Tuning singlet oxygen generation with caged organic photosensitizers. Nat. Commun. https://doi.org/10.1038/s41467-024-51872-y (2024).

  154. Lochenie, C. et al. Photosensitizer-amplified antimicrobial materials for broad-spectrum ablation of resistant pathogens in ocular infections. Adv. Mater. 36, e2404107 (2024).

    Article  PubMed  Google Scholar 

  155. Ma, C. W. et al. Rapid broad spectrum detection of carbapenemases with a dual fluorogenic-colorimetric probe. J. Am. Chem. Soc. 143, 6886–6894 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Cosco, E. D. et al. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat. Chem. 12, 1123–1130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cosco, E. D. et al. Bright chromenylium polymethine dyes enable fast, four-color in vivo imaging with shortwave infrared detection. J. Am. Chem. Soc. 143, 6836–6846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. McHale, A. P., Callan, J. F., Nomikou, N., Fowley, C. & Callan, B. Sonodynamic therapy: concept, mechanism and application to cancer treatment. Adv. Exp. Med. Biol. 880, 429–450 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Medical Research Council (MR/R01566X/1), the Engineering and Physical Sciences Research Council (EP/W015706/1, to M.V.), an ERC Consolidator Grant (DYNAFLUORS, 771443, to M.V.), the National Research Foundation of Korea (CRI project no. 2018R1A3B1052702, to J.S.K.), the Prestigious DBT-Ramalingaswami Fellowship (BT/RLF/Re-entry/59/2018, to A.S.) and SERB (CRG/2021/0022476, to A.S.). The authors acknowledge BioRender.com for the assistance with figure creation.

Author information

Authors and Affiliations

Authors

Contributions

E.N. and A.S. contributed equally to this work and were responsible for researching data for the article. E.N. and M.V. discussed the content and wrote the article with contributions from A.S., E.K. and J.S.K.

Corresponding authors

Correspondence to Jong Seung Kim or Marc Vendrell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Activatable fluorophores

Fluorescent molecules whose emission varies in response to biological or chemical stimuli.

Bioorthogonal reactions

Chemical reactions that occur inside living systems without interfering with native biochemical processes, often used for labelling and tracking biomolecules.

Boron dipyrromethenes

(BODIPY). A class of fluorescent dyes with their high photostability and brightness, and used in various imaging applications.

Cyclic RGD peptides

Short peptides containing the amino acid sequence arginine–glycine–aspartic acid, which target integrins on cell membranes.

Dual-lock activation strategies

Methods that require two distinct triggers to activate a photosensitizer or drug, enhancing specificity and reducing off-target effects.

Enzyme-activatable PS

Photosensitizers that are activated by specific enzymes, allowing for targeted photodynamic therapy in areas wherein those enzymes are present.

Glutathione

(GSH). A tripeptide that acts as an antioxidant in cells, often used as a trigger for activating photosensitizers in anticancer therapy owing to its high levels in cancer cells.

Intramolecular charge transfer

(ICT). A process used in designing fluorescent probes and photosensitizers wherein a charge is transferred from an electron-rich donor moiety to an electron-poor acceptor moiety.

Near-infrared

(NIR). A region of the electromagnetic spectrum with wavelengths just beyond visible light and enhanced penetration in living tissues.

Photoinduced electron transfer

(PeT). A mechanism through which an electron is transferred between two chemical groups of photosensitizers and fluorophores, and used to quench or activate singlet oxygen generation or fluorescence emission, respectively.

Photosensitizers

(PS). Molecules that produce reactive oxygen species when exposed to light and used in photodynamic therapy to kill targeted cells.

Reactive oxygen species

(ROS). Chemically reactive molecules containing oxygen, which can cause cell damage and are used in photodynamic therapy to kill cancer cells or pathogens.

Singlet oxygen

A highly reactive form of oxygen generated by photosensitizers during photodynamic therapy, responsible for inducing cell death.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nestoros, E., Sharma, A., Kim, E. et al. Smart molecular designs and applications of activatable organic photosensitizers. Nat Rev Chem 9, 46–60 (2025). https://doi.org/10.1038/s41570-024-00662-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-024-00662-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing