Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular precursors for the electrodeposition of 2D-layered metal chalcogenides

Abstract

Two-dimensional transition metal dichalcogenides (TMDCs) are highly anisotropic, layered semiconductors, with the general formula ME2 (M = metal, E = sulfur, selenium or tellurium). Much current research in this field focusses on TMDCs for catalysis and energy applications; they are also attracting great interest for next-generation transistor and optoelectronic devices. The latter high-tech applications place stringent requirements on the stoichiometry, crystallinity, morphology and electronic properties of monolayer and few-layer materials. As a solution-based process, wherein the material grows specifically on the electrode surface, electrodeposition offers great promise as a readily scalable, area-selective growth process. This Review explores the state-of-the-art for TMDC electrodeposition, highlighting how the choice of precursor (or precursors), solvent and electrode designs, with novel ‘device-ready’ electrode geometries, influence their morphologies and properties, thus enabling the direct growth of ultrathin, highly anisotropic 2D TMDCs and much scope for future advances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure of a 2D layered TMDC.
Fig. 2: A typical three-electrode electrochemical cell set-up for electrodeposition.
Fig. 3: The molecular species involved in the deposition of elemental tellurium from reduction of [TeCl6]2−.
Fig. 4: A multi-source precursor approach for the electrodeposition of ternary germanium antimony telluride alloys.
Fig. 5: Examples of single-source precursors used for 2D transition metal dichalcogenide electrodeposition.
Fig. 6: Two-dimensional TMDC electrodeposition over a conductor.
Fig. 7: Anisotropic growth of 2D TMDCs from the edges of nano-band electrodes out over an insulator (SiO2).

Similar content being viewed by others

References

  1. Chowdhury, T., Sadler, E. C. & Kempa, T. J. Progress and prospects in transition-metal dichalcogenide research beyond 2D. Chem. Rev. 120, 12563–12591 (2020).

    CAS  PubMed  Google Scholar 

  2. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Google Scholar 

  3. Yin, X. et al. Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 50, 10087–10115 (2021).

    CAS  PubMed  Google Scholar 

  4. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017).

    CAS  Google Scholar 

  5. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–375 (2013).

    PubMed  Google Scholar 

  6. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  PubMed  Google Scholar 

  7. Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    CAS  PubMed  Google Scholar 

  8. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    CAS  PubMed  Google Scholar 

  9. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014).

    CAS  Google Scholar 

  10. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016).

    CAS  PubMed  Google Scholar 

  11. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Barua, S., Dutta, H. S., Gogoi, S., Devi, R. & Khan, R. Nanostructured MoS2-based advanced biosensors: a review. ACS Appl. Nano Mater. 1, 2–25 (2018).

    CAS  Google Scholar 

  13. Voiry, D., Yang, J. & Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 28, 6197–6206 (2016).

    CAS  PubMed  Google Scholar 

  14. Yin, J. et al. Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 7, 1903070 (2020).

    CAS  Google Scholar 

  15. Lei, Z., Zhan, J., Tang, L., Zhang, Y. & Wan, Y. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 8, 1703482 (2018).

    Google Scholar 

  16. Ma, Q. et al. 2D materials for all-solid-state lithium batteries. Adv. Mater. 34, 2108079 (2022).

    CAS  Google Scholar 

  17. Wang, Z. et al. Unveiling highly ambient-stable multilayered 1T-MoS2 towards all-solid-state flexible supercapacitors. J. Mater. Chem. A 7, 19152–19160 (2019).

    CAS  Google Scholar 

  18. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    CAS  PubMed  Google Scholar 

  19. Nazif, K. N. et al. High-specific-power flexible transition metal dichalcogenide solar cells. Nat. Commun. 12, 7034 (2021).

    Google Scholar 

  20. Pang, H. et al. Realizing N-type SnTe thermoelectrics with competitive performance through suppressing Sn vacancies. J. Am. Chem. Soc. 143, 8538–8542 (2021).

    CAS  PubMed  Google Scholar 

  21. Sethi, V. et al. Tungsten dichalcogenide WS2xSe2−2x films via single source precursor low-pressure CVD and their (thermo-)electric properties. J. Mater. Chem. A 11, 9635–9645 (2023).

    CAS  Google Scholar 

  22. Raza, A. et al. Advances in liquid-phase and intercalation exfoliations of transition metal dichalcogenides to produce 2D framework. Adv. Mater. Interfaces 8, 2002205 (2021).

    CAS  Google Scholar 

  23. Zhang, Q., Mei, L., Cao, X., Tang, Y. & Zeng, Z. Intercalation and exfoliation chemistries of transition metal dichalcogenides. J. Mater. Chem. A 8, 15417–15444 (2020).

    CAS  Google Scholar 

  24. Busch, R. T. et al. Exfoliation procedure-dependent optical properties of solution deposited MoS2 films. npj 2D Mater. Appl. 7, 12 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, J. et al. Controlled growth of atomically thin transition metal dichalcogenides via chemical vapor deposition method. Mater. Today Adv. 8, 100098 (2020).

    Google Scholar 

  26. Hoang, A. T., Qu, K., Chen, Z. & Ahn, J.-H. Large-area synthesis of transition metal dichalcogenides via CVD and solution-based approaches and their device applications. Nanoscale 13, 615–633 (2021).

    CAS  PubMed  Google Scholar 

  27. Li, H., Li, Y., Aljarb, A., Shi, Y. & Li, L.-J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem. Rev. 118, 6134–6150 (2018).

    CAS  PubMed  Google Scholar 

  28. Mattinen, M., Leskelä, M. & Ritala, M. Atomic layer deposition of 2D metal dichalcogenides for electronics, catalysis, energy storage, and beyond. Adv. Mater. Interfaces 8, 2001677 (2021).

    CAS  Google Scholar 

  29. Cho, A.-H. et al. Stepwise growth of crystalline MoS2 in atomic layer deposition. J. Mater. Chem. C 10, 7031–7038 (2022).

    CAS  Google Scholar 

  30. Singh, D. K. & Gupta, G. van der Waals epitaxy of transition metal dichalcogenides via molecular beam epitaxy: looking back and moving forward. Mater. Adv. 3, 6142–6156 (2022).

    CAS  Google Scholar 

  31. Choudhury, T. H., Zhang, X., Al Balushi, Z. Y., Chubarov, M. & Redwing, J. M. Epitaxial growth of two-dimensional layered transition metal dichalcogenides. Ann. Rev. Mater. Res. 20, 155–177 (2020).

    Google Scholar 

  32. Li, J. et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv. Mater. 30, 1801043 (2018).

    Google Scholar 

  33. Gong, Y. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135–6141 (2015).

    CAS  PubMed  Google Scholar 

  34. Li, M. Y. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    CAS  PubMed  Google Scholar 

  35. Zhou, J. et al. Morphology engineering in monolayer MoS2-WS2 lateral heterostructures. Adv. Funct. Mater. 28, 1801568 (2018).

    Google Scholar 

  36. Giri, A., Park, G. & Jeong, U. Layer-structured anisotropic metal chalcogenides: recent advances in synthesis, modulation, and applications. Chem. Rev. 123, 3329–3442 (2023). This article provides a detailed review of the various processes typically used to grow 2D TMDCs and the modulation of the films for various applications.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou, H., Zhang, C., Gao, A., Shi, E. & Guo, Y. Patterned growth of two-dimensional atomic layer semiconductors. Chem. Commun. 60, 943–955 (2024). This work sets out the current state-of-the-art for patterning 2D semiconductors on the nanoscale.

    CAS  Google Scholar 

  38. Balasubramanyam, S. et al. Area-selective atomic layer deposition of two-dimensional WS2 nanolayers. ACS Mater. Lett. 2, 511–518 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Parsons, G. N. & Clark, R. D. Area-selective deposition: fundamentals, applications, and future outlook. Chem. Mater. 32, 4920–4953 (2020). This article provides a review of area-selective deposition of 2D materials, with a particular focus on CVD and ALD techniques.

    CAS  Google Scholar 

  40. Schlesinger, T. E., Rajeshwar, K. & de Tacconi, N. R. in Modern Electroplating Ch. 14 (eds Schlesinger, M. & Paunovic, M.) 383–411 (Wiley, 2010).

  41. Lincot, D. Electrodeposition of semiconductors. Thin Solid Films 487, 40–48 (2005).

    CAS  Google Scholar 

  42. Bouroushian, M. Electrochemistry of Metal Chalcogenides (ed. Scholtz, F.) (Springer, 2010).

  43. Osaka, T. Electrodeposition of highly functional thin films for magnetic recording devices of the next century. Electrochim. Acta 45, 3311–3321 (2000).

    CAS  Google Scholar 

  44. Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J. & Deligianni, H. Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42, 568–574 (1998).

    Google Scholar 

  45. Paunovic, M. & Schlesinger, M. (eds) Fundamentals of Electrochemical Deposition 2nd edn (Wiley, 2006). This book provides a very useful introduction to the principles of electrodeposition.

  46. Black, A. W. & Bartlett, P. N. Selection and characterisation of weakly coordinating solvents for semiconductor electrodeposition. Phys. Chem. Chem. Phys. 24, 8093–8103 (2022).

    CAS  PubMed  Google Scholar 

  47. Cook, D. A. et al. Tellurium electrodeposition from tellurium(II) and tellurium(IV) chloride salts in dichloromethane. Electrochim. Acta 456, 142456 (2023).

    CAS  Google Scholar 

  48. Bartlett, P. N., Cummings, C. Y., Levason, W., Pugh, D. & Reid, G. Halometallate complexes of germanium(II) and (IV): probing the role of cation, oxidation state and halide on the structural and electrochemical properties. Chem. Eur. J. 2, 5019–5027 (2014).

    Google Scholar 

  49. Aliyev, A. S., Elrouby, M. & Cafarova, S. F. Electrochemical synthesis of molybdenum sulfide semiconductor. Mater. Sci. Semicond. Process. 32, 31–39 (2015).

    CAS  Google Scholar 

  50. Zhang, L., Wu, L., Li, J. & Lei, J. Electrodeposition of amorphous molybdenum sulfide thin film for electrochemical hydrogen evolution reaction. BMC Chem. 13, 88 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Mohapatra, S., Das, H. T., Tripathy, B. C. & Das, N. Recent developments in electrodeposition of transition metal chalcogenides-based electrode materials for advance supercapacitor applications: a review. Chem. Rec. 24, e202300220 (2024).

    CAS  PubMed  Google Scholar 

  52. Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    PubMed  Google Scholar 

  53. Shin, G. H., Park, C., Lee, K. J., Jin, H. J. & Choi, S. Y. Ultrasensitive phototransistor based on WSe2–MoS2 van der Waals heterojunction. Nano Lett. 20, 5741–5748 (2020).

    CAS  PubMed  Google Scholar 

  54. Huang, R. et al. Towards a 3D GST phase change memory with integrated selector by non-aqueous electrodeposition. Faraday Disc 213, 339–355 (2019).

    CAS  Google Scholar 

  55. Szymczak, J. et al. Electrodeposition of stoichiometric bismuth telluride Bi2Te3 using a piperidinium ionic liquid binary mixture. Electrochim. Acta 137, 586594 (2014).

    Google Scholar 

  56. Hansen, B. B. et al. Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev. 121, 1232–1285 (2021).

    CAS  PubMed  Google Scholar 

  57. Sargar, A. M., Patil, N. S., Mane, S. R., Gawale, S. N. & Bhosale, P. N. Optostructural and electrical studies on electrodeposited Indium doped ZrS2 thin films. J. Alloys Compd 474, 14–17 (2009).

    CAS  Google Scholar 

  58. Hankare, P. P. et al. Effect of annealing on properties of ZrSe2 thin films. J. Cryst. Growth 294, 254–259 (2006).

    CAS  Google Scholar 

  59. Sargar, A. M., Patil, N. S., Mane, S. R., Gawale, S. N. & Bhosale, P. N. Electrochemical synthesis and characterisation of ZrSe2 thin films. Int. J. Electrochem. Sci. 4, 887–894 (2009).

    CAS  Google Scholar 

  60. Rakkini, A. P. V. & Mohanraj, K. Influence of pH of the electrolyte on the formation and properties of electrodeposited ZrSe2 thin films. Inorg. Nano Met. Chem. 52, 570–575 (2022).

    CAS  Google Scholar 

  61. Manyepedza, T., Courtney, J. M., Snowden, A., Jones, C. R. & Rees, N. V. Impact electrochemistry of MoS2: electrocatalysis and hydrogen generation at low overpotentials. J. Phys. Chem. C 126, 17942–17951 (2022).

    CAS  Google Scholar 

  62. Teli, A. M. et al. Electrodeposited crumpled MoS2 nanoflakes for asymmetric supercapacitor. Ceram. Mater. 48, 29002–29010 (2022).

    CAS  Google Scholar 

  63. Strange, L. E. et al. Electrodeposited transition metal dichalcogenides for use in hydrogen evolution electrocatalysts. J. Electrochem. Soc. 169, 026510 (2022).

    CAS  Google Scholar 

  64. Soram, B. S., Dai, J. Y., Thangjam, I. S., Kim, N. H. & Lee, J. H. One-step electrodeposited MoS2@Ni-mesh electrode for flexible and transparent asymmetric solid-state supercapacitors. J. Mater. Chem. A 8, 24040–24052 (2020).

    CAS  Google Scholar 

  65. Mabayoje, O. et al. Electrodeposition of MoSx hydrogen evolution catalysts from sulfur-rich precursors. ACS Appl. Mater. Interfaces 11, 32879–32886 (2019).

    CAS  PubMed  Google Scholar 

  66. Li, C.-D., Wang, W.-W., Jin, M., Shen, Y. & Xu, J.-J. Friction property of MoS2 coatings deposited on the chemical-etched surface of Al–Si alloy cylinder liner. J. Tribol. 140, 041302 (2018).

    Google Scholar 

  67. Quy, V. H. V. et al. Electrodeposited MoS2 as electrocatalytic counter electrode for quantum dot- and dye-sensitized solar cells. Electrochim. Acta 260, 716–725 (2018).

    CAS  Google Scholar 

  68. Erfanifan, S. et al. Tunable bandgap and spin-orbit coupling by composition control of MoS2 and MoOx (x = 2 and 3) thin film compounds. Mater. Des. 122, 220–225 (2017).

    Google Scholar 

  69. Anand, T. J. S., Sanjeeviraja, C. & Jayachandran, M. Preparation of layered semiconductor (MoSe2) by electrosynthesis. Vacuum 60, 431–435 (2001).

    CAS  Google Scholar 

  70. Ponomarev, E. A., Neumann-Spallart, M., Hodes, G. & Lévy-Clément, C. Electrochemical deposition of MoS2 thin films by reduction of tetrathiomolybdate. Thin Solid Films 280, 86–89 (1996).

    CAS  Google Scholar 

  71. Poorahong, S., Izquierdo, R. & Siaj, M. An efficient porous molybdenum diselenide catalyst for electrochemical hydrogen generation. J. Mater. Chem. A 5, 20993–21001 (2017).

    CAS  Google Scholar 

  72. Kowalik, R. et al. Electrochemical deposition of Mo-Se thin films. ECS Trans. 64, 23 (2015).

    CAS  Google Scholar 

  73. Dukstiene, N., Kazancev, K., Prosycevas, I. & Guobiene, A. Electrodeposition of Mo-Se thin films from a sulfamatic electrolyte. J. Solid State Electrochem. 8, 330–336 (2004).

    CAS  Google Scholar 

  74. Kim, E.-K. et al. Epitaxial electrodeposition of single crystal MoTe2 nanorods and Li+ storage feasibility. J. Electroanal. Chem. 878, 114672 (2020).

    CAS  Google Scholar 

  75. Myung, N. et al. Electrosynthesis of MoTe2 thin films: a combined voltammetry-electrochemical quartz crystal microgravimetry study of mechanistic aspects. J. Electrochem. Soc. 167, 116510 (2020).

    CAS  Google Scholar 

  76. Zhou, Y. et al. MoTe2 nanodendrites based on Mo doped reduced graphene oxide/polyimide composite film for electrocatalytic hydrogen evolution in neutral solution. Electrochim. Acta 229, 121–128 (2017).

    CAS  Google Scholar 

  77. Veeralingam, S., Durai, L. & Badhulika, S. Facile fabrication of P(electrodeposition)/N(solvothermal) 2D-WS2-homojunction based high performance photo responsive, strain modulated piezo-phototronic diode. ChemNanoMat 5, 1521–1530 (2019).

    CAS  Google Scholar 

  78. Devadasan, J. J., Sanjeeviraja, C. & Jayachandran, M. Electrodeposition of p-WS2 thin film and characterisation. J. Cryst. Growth 226, 67–72 (2001).

    CAS  Google Scholar 

  79. Delphine, S. M., Jayachandran, M. & Sanjeeviraja, C. Pulsed electrodeposition and characterisation of tungsten diselenide thin films. Mater. Chem. Phys. 81, 78–83 (2003).

    CAS  Google Scholar 

  80. Devadasan, J. J., Sanjeeviraja, C. & Jayachandran, M. Electrosynthesis and characterisation of n-WSe2 thin films. Mater. Chem. Phys. 77, 397–401 (2003).

    Google Scholar 

  81. Peng, Z. et al. Controllable (h k 1) preferred orientation of Sb2S3 thin films fabricated by pulse electrodeposition. Sol. Energy Mater. Sol. Cells 253, 112208 (2003).

    Google Scholar 

  82. García, R. G. A. et al. Phase pure CuSbS2 thin films by heat treatment of electrodeposited Sb2S3/Cu layers. J. Solid State Electrochem. 24, 185–194 (2020).

    Google Scholar 

  83. Garcia, R. G. A., Avendaño, C. A. M., Pal, M., Delgado, F. P. & Mathews, N. R. Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: effect of thermal treatment on structural, optical and electrical properties. Mater. Sci. Semicond. Proc. 44, 91–100 (2016).

    Google Scholar 

  84. Subramanium, S. et al. High-energy ion induced physical and surface modifications in antimony sulphide thin films. Curr. Appl. Phys. 10, 1112–1116 (2010).

    Google Scholar 

  85. Yesugade, N. S., Lokhande, C. D. & Bhosale, C. H. Structural and optical properties of electrodeposited Bi2S3, Sb2S3 and As2S3 thin films. Thin Solid Films 263, 145–149 (1995).

    CAS  Google Scholar 

  86. Majidzade, V. A., Javadova, S. P., Jafarova, S. F., Aliyev, A. S. & Tagiyev, D. B. Electrochemical deposition of Sb2S3 thin films. Russ. J. Appl. Chem. 95, 1627–1633 (2022).

    CAS  Google Scholar 

  87. Majidzade, V. A., Aliyev, A. S., Guliyev, P. H. & Babanly, D. M. Electrodeposition of the Sb2Se3 thin films on various substrates from the tartaric electrolyte. J. Electrochem. Sci. Eng. 10, 1–9 (2020).

    CAS  Google Scholar 

  88. Majidzade, V. A., Aliyev, A. S., Qasimogli, I., Quliyev, P. H. & Tagiyev, D. B. Electrical properties of electrochemically grown thin Sb2Se3 semiconductor films. Inorg. Mater. 55, 979–983 (2019).

    CAS  Google Scholar 

  89. MacLeod, D., Parker, A. J. & Singh, P. Electrochemistry of copper in aqueous acetonitrile. J. Soln. Chem. 10, 757–774 (1981).

    CAS  Google Scholar 

  90. Asif, O., Azadian, F. & Rastogi, A. C. Titanium disulphide (TiS2) dichalcogenide thin films as inorganic hole transport layer for perovskite solar cells synthesized from ionic liquid electrodeposition. MRS Adv. 5, 3555–3564 (2020).

    CAS  Google Scholar 

  91. Murugesan, S. et al. Room temperature electrodeposition of molybdenum sulfide for catalytic and photoluminescence applications. ACS Nano 7, 8199–8205 (2013).

    CAS  PubMed  Google Scholar 

  92. Hayyan, M., Mjalli, F. S., Hashim, M. A., AlNashef, I. M. & Mei, T. X. Investigating the electrochemical windows of ionic liquids. J. Indust. Eng. Chem. 19, 106–112 (2013).

    CAS  Google Scholar 

  93. Tiago, G. A. O., Matias, I. A. S., Ribeiro, A. P. C. & Martins, L. M. D. R. S. Application of ionic liquids in electrochemistry — recent advances. Molecules 25, 5812 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sedev, R. Surface tension, interfacial tension and contact angles of ionic liquids. Curr. Opin. Coll. Interface Sci. 16, 310–316 (2011).

    CAS  Google Scholar 

  95. Kamlet, M. J., Abboud, J. L. M., Abraham, M. H. & Taft, R. W. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, p*, a, and ß, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983). This work sets out the parameters used to describe solvents and is a useful resource that brings together the numerical values for a range of different solvents.

    CAS  Google Scholar 

  96. Bartlett, P. N. et al. A versatile precursor system for supercritical fluid electrodeposition of main-group materials. Chem. Eur. J. 22, 302–309 (2016).

    CAS  PubMed  Google Scholar 

  97. Fan, L. & Suni, I. I. Electrodeposition and capacitance measurements of WS2 thin films. J. Electrochem. Soc. 164, D681–D686 (2017).

    CAS  Google Scholar 

  98. Bartlett, P. N. et al. Non-aqueous electrodeposition of functional semiconducting metal chalcogenides: Ge2Sb2Te5 phase change memory. Mater. Horiz. 2, 420–426 (2015). This work describes a method for the electrodeposition of GeSbTe thin films and nanostructures from a CH2Cl2 electrolyte using compatible multi-source precursors.

    CAS  Google Scholar 

  99. Kissling, G. P. et al. Electrodeposition of a functional solid state memory material: germanium antimony telluride from a non-aqueous plating bath. J. Electrochem. Soc. 165, D557–D567 (2018).

    CAS  Google Scholar 

  100. Bartlett, P. N. et al. Non-aqueous electrodeposition of p-block metals and metalloids from halometallate salts. RSC Adv. 3, 15645–15654 (2013).

    CAS  Google Scholar 

  101. Lodge, A. W. et al. Electrodeposition of tin nanowires from a dichloromethane based electrolyte. RSC Adv. 8, 24013–24020 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bartlett, P. N. et al. Haloplumbate salts as reagents for the non-aqueous electrodeposition of lead. RSC Adv. 6, 73323–72330 (2016).

    CAS  Google Scholar 

  103. Cook, D. A. et al. Cathodic stripping of elemental Te in dichloromethane. Electrochim. Acta 465, 142997 (2023).

    CAS  Google Scholar 

  104. Evans, D. H. One-electron and two-electron transfers in electrochemistry and homogeneous solution reaction. Chem. Rev. 108, 2113–2144 (2008).

    CAS  PubMed  Google Scholar 

  105. Cicvaric, K. et al. Thermoelectric properties of bismuth telluride thin films electrodeposited from a nonaqueous solution. ACS Omega 5, 14679–14688 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jaafer, A. H. et al. Flexible memristor devices using hybrid polymer/electrodeposited GeSbTe nanoscale thin films. ACS Appl. Nano Mater. 5, 17711–17720 (2022).

    Google Scholar 

  107. Noori, Y. J. et al. Phase-change memory by GeSbTe electrodeposition in crossbar arrays. ACS Appl. Electron. Mater. 3, 3610–3618 (2021).

    CAS  Google Scholar 

  108. Liang, T. et al. A facile approach to enhance the hydrogen evolution reaction of electrodeposited MoS2 in acidic solutions. N. J. Chem. 46, 23344–23350 (2022).

    CAS  Google Scholar 

  109. Xue, J. et al. Enhanced photoelectrocatalytic hydrogen production performance of porous MoS2/PPy/ZnO film under visible light irradiation. Int. J. Hydr. Energy 46, 35219–35229 (2021).

    CAS  Google Scholar 

  110. Nisar, T., Balster, T. & Wagner, V. Mechanical transfer of electrochemically grown molybdenum sulfide layers to silicon wafer. J. Appl. Electrochem. 51, 1279–1286 (2021).

    CAS  Google Scholar 

  111. Aslan, E. & Patir, I. H. Catalysis of hydrogen evolution reaction by in situ electrodeposited amorphous molybdenum sulfide at soft interfaces. Mater. Today Energy 21, 100742 (2021).

    CAS  Google Scholar 

  112. Chakraborty, B., Maity, I., Chung, P., Ho, M. & Bhattacharyya, P. Understanding the highly selective methanol sensing mechanism of electrodeposited pristine MoS2 using first principle analysis. IEEE Sens. J. 21, 15 (2021).

    Google Scholar 

  113. Shit, S., Bolar, S., Murmu, N. C. & Kuila, T. Tailoring the bifunctional electrocatalytic activity of electrodeposited molybdenum sulfide/iron oxide heterostructure to achieve excellent overall water splitting. Chem. Eng. J. 417, 129333 (2021).

    CAS  Google Scholar 

  114. Levinas, R., Tsyntsaru, N. & Cesiulis, K. The characterisation of electrodeposited MoS2 thin films on a foam-based electrode for hydrogen evolution. Catalysts 10, 1182 (2020).

    CAS  Google Scholar 

  115. Chang, C.-Y. et al. Potential-reversal electrodeposited MoS2 thin film as an efficient electrocatalytic material for bifacial dye-sensitized solar cells. Sol. Energy 206, 163–170 (2020).

    CAS  Google Scholar 

  116. Yagati, A. K., Go, A., Vu, N. H. & Lee, M. H. A MoS2–Au nanoparticle-modified immunosensor for T3 biomarker detection in clinical serum samples. Electrochim. Acta 342, 136065 (2020).

    CAS  Google Scholar 

  117. Gurulakshmi, M. et al. Electrodeposited MoS2 counter electrode for flexible dye sensitized solar cell module with ionic liquid assisted photoelectrode. Sol. Energy 199, 447–452 (2020).

    CAS  Google Scholar 

  118. Lei, Y. et al. Synthesis of V-MoS2 layered alloys as stable Li-ion battery anodes. ACS Appl. Energy Mater. 2, 8625–8632 (2019).

    CAS  Google Scholar 

  119. Giang, H., Pali, M., Fan, L. & Suni, I. I. Impedance biosensing atop MoS2 thin films with Mo−S bond formation to antibody fragments created by disulphide bond reduction. Electroanalysis 31, 957–965 (2019).

    CAS  Google Scholar 

  120. Yang, L. et al. Efficient hydrogen evolution catalyzed by amorphous molybdenum sulfide/N-doped active carbon hybrid on carbon fiber paper. Int. J. Hydr. Energy 43, 15135–15143 (2018).

    CAS  Google Scholar 

  121. Amin, R., Hossain, M. A. & Yahya Zakaria, Y. Interfacial kinetics and ionic diffusivity of the electrodeposited MoS2 film. ACS Appl. Mater. Interfaces 10, 13509–13518 (2018).

    CAS  PubMed  Google Scholar 

  122. Chia, X., Sutrisnoh, N. A. A. & Pumera, M. Tunable Pt–MoSx hybrid catalysts for hydrogen evolution. ACS Appl. Mater. Interfaces 10, 8702–8711 (2018).

    CAS  PubMed  Google Scholar 

  123. Lamouchi, A., Assaker, I. B. & Chtourou, R. Effect of annealing temperature on the structural, optical, and electrical properties of MoS2 electrodeposited onto stainless steel mesh. J. Mater. Sci. 52, 4635–4646 (2017).

    CAS  Google Scholar 

  124. Falola, B. D., Wiltowski, T. & Suni, I. I. Electrodeposition of MoS2 for charge storage in electrochemical supercapacitors. J. Electrochem. Soc. 163, D568 (2016).

    CAS  Google Scholar 

  125. Ahn, H. S. & Bard, A. J. Electrochemical surface interrogation of a MoS2 hydrogen-evolving catalyst: in situ determination of the surface hydride coverage and the hydrogen evolution kinetics. J. Phys. Chem. Lett. 7, 2748–2752 (2016).

    CAS  PubMed  Google Scholar 

  126. Ponomarev, E. A., Tenne, R., Katty, A. & Lévy-Clément, C. Highly oriented photoactive polycrystalline MoS2 layers obtained by van der Waals rheotaxy technique from electrochemically deposited thin films. Sol. Energy Mater. Sol. Cells 52, 125–133 (1998).

    CAS  Google Scholar 

  127. Albu-Yaron, A., Lévy-Clément, C., Katty, A., Bastide, S. & Tenne, R. Influence of the electrochemical deposition parameters on the microstructure of MoS2 thin films. Thin Solid Films 361–362, 223–228 (2000).

    Google Scholar 

  128. Ponomarev, E. A., Albu‐Yaron, A., Tenne, R. & Lévy‐Clément, C. Electrochemical deposition of quantized particle MoS2 thin films. J. Electrochem. Soc. 144, L277 (1997).

    CAS  Google Scholar 

  129. Fan, L. & Suni, I. I. Polysulfide reduction and oxidation at MoS2, WS2 and Cu-doped MoS2 thin film electrodes. J. Electrochem. Soc. 166, A1471 (2019).

    CAS  Google Scholar 

  130. Novčić, K. A., Iffelsberger, C., Ng, S. & Pumera, M. Local electrochemical activity of transition metal dichalcogenides and their heterojunctions on 3D-printed nanocarbon surfaces. Nanoscale 13, 5324–5332 (2021).

    PubMed  Google Scholar 

  131. Pu, Z., Liu, Q., Asiri, A. M., Obaid, A. Y. & Sun, X. One-step electrodeposition fabrication of graphene film-confined WS2 nanoparticles with enhanced electrochemical catalytic activity for hydrogen evolution. Electrochim. Acta 134, 8–12 (2014).

    CAS  Google Scholar 

  132. Redman, D. W., Rose, M. J. & Stevenson, K. J. Electrodeposition of amorphous molybdenum chalcogenides from ionic liquids and their activity for the hydrogen evolution reaction. Langmuir 33, 9354–9360 (2017).

    CAS  PubMed  Google Scholar 

  133. Ng, S., Iffelsberger, C., Sofer, Z. & Pumera, M. Tunable room-temperature synthesis of ReS2 bicatalyst on 3D- and 2D-printed electrodes for photo- and electrochemical energy applications. Adv. Funct. Mater. 30, 1910193 (2020).

    CAS  Google Scholar 

  134. Wallace, A. G. et al. Anodic Sb2S3 electrodeposition from a single source precursor for resistive random-access memory devices. Electrochim. Acta 432, 141162 (2022).

    CAS  Google Scholar 

  135. Thomas, S. et al. Electrodeposition of MoS2 from dichloromethane. J. Electrochem. Soc. 167, 106511 (2020).

    CAS  Google Scholar 

  136. Thomas, S. et al. Tungsten disulfide thin films via electrodeposition from a single source precursor. Chem. Commun. 57, 10194–10197 (2021). This work describes the preparation and electrochemistry of a stoichiometric SSP for the electrodeposition of WS2 without the need for a proton source.

    CAS  Google Scholar 

  137. O’Neal, S. C. & Kolis, J. W. Convenient preparation and structures of selenometalates MoSe42−, WSe42−, and MoSe92− from polyselenide anions and metal carbonyls. J. Am. Chem. Soc. 110, 1971–1973 (1988).

    Google Scholar 

  138. Kim, J. et al. A facile synthetic route to tungsten diselenide using a new precursor containing a long alkyl chain cation for multifunctional electronic and optoelectronic applications. RSC Adv. 9, 6169–6176 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Klingelhöfer, P. & Müller, U. Thiochlorowolframate von wolfram(V) und -(VI). Die kristallstrukturen von PPh4[WSCl4] und (PPh4)2[WS2Cl4]·2CH2Cl2. Z. Anorg. Allg. Chem. 556, 70–78 (1988).

    Google Scholar 

  140. Greenacre, V. K. et al. Tungsten(VI) selenide tetrachloride, WSeCl4 — synthesis, properties, coordination complexes and application of [WSeCl4(SenBu2)] for CVD growth of WSe2 thin films. Dalton Trans. 51, 2400–2412 (2022).

    CAS  PubMed  Google Scholar 

  141. Thomas, S. et. al. Electrodeposition of 2D layered tungsten diselenide thin films using a single source precursor. J. Mater. Chem. C https://doi.org/10.1039/D4TC02755H (2024).

  142. Das, S. et al. A self-limiting electro-ablation technique for the top-down synthesis of large-area monolayer flakes of 2D materials. Sci. Rep. 6, 28195 (2016). This article describes a method for electropolishing multilayer (bulk) TMDC crystals to produce monolayers.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wan, X. et al. Controlled electrochemical deposition of large-area MoS2 on graphene for high-responsivity photodetectors. Adv. Funct. Mater. 27, 1603998 (2017).

    Google Scholar 

  144. Noori, Y. J. et al. Large-area electrodeposition of few-layer MoS2 on graphene for 2D material heterostructures. ACS Appl. Mater. Interfaces 12, 49786–49794 (2020).

    CAS  PubMed  Google Scholar 

  145. Noori, Y. J. et al. Electrodeposited WS2 monolayers on patterned graphene. 2D Mater. 9, 015025 (2022). This article describes a method for the electrochemical growth of ultrathin WS2 over graphene electrodes using a SSP and a CH2Cl2 electrolyte.

    CAS  Google Scholar 

  146. Abdelazim, N. et al. Lateral growth of MoS2 2D material semiconductors over an insulator via electrodeposition. Adv. Electron. Mater. 7, 2100419 (2021). This article describes the clean-room fabrication process for nano-band electrodes and their application for the electrochemical growth of 2D MoS2 over an insulating SiO2 surface.

    CAS  Google Scholar 

  147. Greenacre, V. K., Levason, W., Reid, G. & Smith, D. E. Coordination complexes and applications of transition metal sulfide and selenide halides. Coord. Chem. Rev. 424, 213512 (2020).

    CAS  Google Scholar 

  148. Black, A. W., Zhang, W., Noori, Y. J., Reid, G. & Bartlett, P. N. Temperature effects on the electrodeposition of semiconductors from a weakly coordinating solvent. J. Electroanal. Chem. 944, 117638 (2023).

    CAS  Google Scholar 

  149. Liang, X., Jayaraju, N., Thambidurai, C., Zhang, Q. & Stickney, J. L. Controlled electrochemical formation of GexSbyTez using atomic layer deposition (ALD). Chem. Mater. 23, 1742–1752 (2011).

    CAS  Google Scholar 

  150. Schwarzacher, W. & Lashmore, D. S. Giant magnetoresistance in electrodeposited films. IEEE Trans. Magn. 32, 3133–3153 (1996).

    CAS  Google Scholar 

  151. Jyoko, Y. & Schwarzacher, W. Characterization of electrodeposited magnetic Co/Pt multilayered nanostructures. Electrochim. Acta 47, 371–378 (2001).

    CAS  Google Scholar 

  152. Schlesinger, M. & Paunovic, M. (eds) Modern Electroplating (Wiley, 2010).

  153. Reeves, S. J., Noori, Y. J., Zhang, W., Reid, G. & Bartlett, P. N. Chloroantimonate electrochemistry in dichloromethane. Electrochim. Acta 354, 136692 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Engineering and Physical Sciences Research Council (EPSRC), UK, for funding our work in this area, mainly through grants EP/V062689/1, EP/P025137/1 and EP/N035437/1.

Author information

Authors and Affiliations

Authors

Contributions

P.N.B. and G.R. conceived the idea and drafted the proposal. P.N.B., R.H., S.T. and G.R. wrote most of the content. Y.J.N., C.H.D.G., R.H., V.K.G. and S.T. prepared the graphic concepts. All of the authors edited and revised the manuscript.

Corresponding authors

Correspondence to Philip N. Bartlett or Gillian Reid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Daniel Mandler, Andrew Mount, John Henry, Julie Macpherson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anisotropic growth

Growth strongly favoured in one or two specific directions; in the case of transition metal dichalcogenides, this is typically from the edges of the growing layer (to produce a 2D sheet).

Area-selective growth

Growth of materials only on specific regions of a pre-patterned substrate.

Brighteners

Chemical used in electrodeposition to increase the optical brightness of the deposited material.

Counter electrode

The electrode used to complete the circuit in the electrochemical cell. It has to pass an equal but opposite current from that at the working electrode.

Electrolyte

The solution used for the electrochemical experiment, usually comprising the solvent, precursor (or precursors) and a redox inactive cation–anion salt that dissociates in the solvent to form ions that carry the charge.

iR drop

Difference between the applied potential and the potential at the working electrode owing to passage of current through solution, or other uncompensated resistance.

Levellers

Chemical used in electrodeposition to increase the uniformity of the deposited material.

Macroelectrodes

Electrode with diameter >0.1 mm.

Microelectrodes

Electrode with diameter <50 μm.

Nano-band electrodes

Electrode structure wherein the conducting surface is in the form of a line <100 nm deep, typically fabricated on a silicon substrate.

Planar diffusion

Diffusion in 1D to or from the electrode surface.

Radial diffusion

Diffusion in 2D or 3D to or from the electrode surface.

Single-source precursors

(SSPs). Compounds that can be used for depositing the target transition metal dichalcogenide that contains pre-formed metal–chalcogen bonds.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartlett, P.N., de Groot, C.H.K., Greenacre, V.K. et al. Molecular precursors for the electrodeposition of 2D-layered metal chalcogenides. Nat Rev Chem 9, 88–101 (2025). https://doi.org/10.1038/s41570-024-00671-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-024-00671-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing