Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ultrafast spectroscopy of liquids using extreme-ultraviolet to soft-X-ray pulses

Abstract

Ultrafast X-ray spectroscopy provides access to molecular dynamics with unprecedented time resolution, element specificity and site selectivity. These unique properties are optimally suited for investigating intramolecular and intermolecular interactions of molecular species in the liquid phase. This Review summarizes experimental breakthroughs, such as water photolysis and proton transfer on femtosecond and attosecond time scales, dynamics of solvated electrons, charge-transfer processes in metal complexes, multiscale dynamics in haem proteins, proton-transfer dynamics in prebiotic systems and liquid-phase extreme-ultraviolet high-harmonic spectroscopy. An important novelty for ultrafast liquid-phase spectroscopy is the availability of high-brightness ultrafast short-wavelength sources that allowed access to the water window (from 200 eV to 550 eV) and thus to the K-edges of the key elements of organic and biological chemistry: C, N and O. Not only does this Review present experimental examples that demonstrate the unique capabilities of ultrafast short-wavelength spectroscopy in liquids, but it also highlights the broad range of spectroscopic methodologies already applied in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the shortest pulses of light.
Fig. 2: Femtosecond dynamics of the photolysis of water.
Fig. 3: Attosecond dynamics of the photoionization of water.
Fig. 4: Probing ultrafast dynamics in metal complexes.
Fig. 5: Femtosecond proton transfer in urea solutions.
Fig. 6: Extreme-ultraviolet high-harmonic spectroscopy (HHS) of liquids.

Similar content being viewed by others

References

  1. Maiuri, M., Garavelli, M. & Cerullo, G. Ultrafast spectroscopy: State of the art and open challenges. J. Am. Chem. Soc. 142, 3–15 (2020).

    PubMed  CAS  Google Scholar 

  2. Baltuška, A., Emde, M. F., Pshenichnikov, M. S. & Wiersma, D. A. Early-time dynamics of the photoexcited hydrated electron. J. Phys. Chem. A 103, 10065–10082 (1999).

    Google Scholar 

  3. Fresch, E. et al. Two-dimensional electronic spectroscopy. Nat. Rev. Methods Primers 3, 84 (2023).

    CAS  Google Scholar 

  4. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    PubMed  CAS  Google Scholar 

  5. Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    PubMed  CAS  Google Scholar 

  6. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

    PubMed  CAS  Google Scholar 

  7. Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).

    CAS  Google Scholar 

  8. Siegbahn, H. & Siegbahn, K. ESCA applied to liquids. J. Electron Spectros. Relat. Phenomena 2, 319–325 (1973).

    CAS  Google Scholar 

  9. Siegbahn, H., Svensson, S. & Lundholm, M. A new method for ESCA studies of liquid-phase samples. J. Electron Spectros. Relat. Phenomena 24, 205–213 (1981).

    CAS  Google Scholar 

  10. Siegbahn, H. Electron spectroscopy for chemical analysis of liquids and solutions. J. Phys. Chem. 89, 897–909 (1985).

    CAS  Google Scholar 

  11. Lundholm, M., Siegbahn, H., Holmberg, S. & Arbam, M. Core electron spectroscopy of water solutions. J. Electron Spectros. Relat. Phenomena 40, 163–180 (1986).

    CAS  Google Scholar 

  12. Faubel, M., Steiner, B. & Toennies, J. P. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 106, 9013–9031 (1997).

    CAS  Google Scholar 

  13. Fransson, T. et al. X-ray and electron spectroscopy of water. Chem. Rev. 116, 7551–7569 (2016).

    PubMed  CAS  Google Scholar 

  14. Smith, J. W. & Saykally, R. J. Soft X-ray absorption spectroscopy of liquids and solutions. Chem. Rev. 117, 13909–13934 (2017).

    PubMed  CAS  Google Scholar 

  15. Rehr, J. & Albers, R. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).

    CAS  Google Scholar 

  16. van Bokhoven, J. A. & Lamberti, C. (eds) X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications (Wiley, 2016).

  17. Evans, J. X-ray Absorption Spectroscopy for the Chemical and Materials Sciences (Wiley, 2018).

  18. Wang, M., Árnadóttir, L., Xu, Z. J. & Feng, Z. In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nanomicro Lett. 11, 47 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Bressler, C. et al. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(II) complex. Science 323, 489–492 (2009).

    PubMed  CAS  Google Scholar 

  20. Huse, N. et al. Femtosecond soft X-ray spectroscopy of solvated transition-metal complexes: deciphering the interplay of electronic and structural dynamics. J. Phys. Chem. Lett. 2, 880–884 (2011).

    PubMed  CAS  Google Scholar 

  21. Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).

    CAS  Google Scholar 

  22. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342 (2007).

    Google Scholar 

  23. Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).

    CAS  Google Scholar 

  24. Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2, 839–843 (2006).

    CAS  Google Scholar 

  25. Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544 (2012).

    CAS  Google Scholar 

  26. Wabnitz, H. et al. Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser. Nature 420, 482–485 (2002).

    PubMed  CAS  Google Scholar 

  27. Huang, Z. & Kim, K.-J. Review of X-ray free-electron laser theory. Phys. Rev. Accel. Beams 10, 034801 (2007).

    Google Scholar 

  28. Boutet, S. & Yabashi, M. in X-Ray Free Electron Lasers (eds Boutet, S. et al.) 1–21 (Springer, 2018).

  29. Ekeberg, T. et al. Observation of a single protein by ultrafast X-ray diffraction. Light Sci. Appl. 13, 15 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Tamasaku, K. et al. Nonlinear spectroscopy with X-ray two-photon absorption in metallic copper. Phys. Rev. Lett. 121, 083901 (2018).

    PubMed  CAS  Google Scholar 

  31. Foglia, L. et al. First evidence of purely extreme-ultraviolet four-wave mixing. Phys. Rev. Lett. 120, 263901 (2018).

    PubMed  CAS  Google Scholar 

  32. Bencivenga, F. et al. Nanoscale transient gratings excited and probed by extreme ultraviolet femtosecond pulses. Sci. Adv. 5, eaaw5805 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Rouxel, J. R. et al. Hard X-ray transient grating spectroscopy on bismuth germanate. Nat. Photon. 15, 499–503 (2021).

    CAS  Google Scholar 

  34. Beye, M. Transient gratings with X-rays. Nat. Photon. 15, 490–492 (2021).

    CAS  Google Scholar 

  35. Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 30–36 (2020).

    CAS  Google Scholar 

  36. Li, S. et al. Attosecond coherent electron motion in Auger-Meitner decay. Science 375, 285–290 (2022).

    PubMed  CAS  Google Scholar 

  37. Li, S. et al. Attosecond-pump attosecond-probe X-ray spectroscopy of liquid water. Science 383, 1118–1122 (2024).

    PubMed  CAS  Google Scholar 

  38. Bermúdes Macias, I. J. et al. Study of temporal, spectral, arrival time and energy fluctuations of SASE FEL pulses. Opt. Express 29, 10491–10508 (2021).

    Google Scholar 

  39. Gaumnitz, T. et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express 25, 27506–27518 (2017).

    PubMed  CAS  Google Scholar 

  40. Géneaux, R., Chang, H.-T., Schwartzberg, A. M. & Marroux, H. J. B. Source noise suppression in attosecond transient absorption spectroscopy by edge-pixel referencing. Opt. Express 29, 951–960 (2021).

    PubMed  Google Scholar 

  41. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    PubMed  CAS  Google Scholar 

  42. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994 (1993).

    PubMed  CAS  Google Scholar 

  43. Midorikawa, K. Progress on table-top isolated attosecond light sources. Nat. Photon. 16, 267–278 (2022).

    CAS  Google Scholar 

  44. Shan, B. & Chang, Z. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Phys. Rev. A 65, 011804 (2001).

    Google Scholar 

  45. Colosimo, P. et al. Scaling strong-field interactions towards the classical limit. Nat. Phys. 4, 386–389 (2008).

    CAS  Google Scholar 

  46. Vozzi, C. et al. Millijoule-level phase-stabilized few-optical-cycle infrared parametric source. Opt. Lett. 32, 2957–2959 (2007).

    PubMed  CAS  Google Scholar 

  47. Takahashi, E. J., Kanai, T., Ishikawa, K. L., Nabekawa, Y. & Midorikawa, K. Coherent water window x ray by phase-matched high-order harmonic generation in neutral media. Phys. Rev. Lett. 101, 253901 (2008).

    PubMed  Google Scholar 

  48. Ishii, N. et al. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses. Nat. Commun. 5, 3331 (2014).

    PubMed  Google Scholar 

  49. Cousin, S. L. et al. High-flux table-top soft X-ray source driven by sub-2-cycle, CEP stable, 1.85-μm 1-kHz pulses for carbon K-edge spectroscopy. Opt. Lett. 39, 5383–5386 (2014).

    PubMed  CAS  Google Scholar 

  50. Johnson, A. S. et al. Measurement of sulfur L2,3 and carbon K edge XANES in a polythiophene film using a high harmonic supercontinuum. Struct. Dyn. 3, 062603 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Schmidt, B. E. et al. CEP stable 1.6 cycle laser pulses at 1.8 μm. Opt. Express 19, 6858–6864 (2011).

    PubMed  CAS  Google Scholar 

  52. Stein, G. J. et al. Water-window soft X-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 μm OPCPA source. J. Phys. B 49, 155601 (2016).

    Google Scholar 

  53. Austin, D. R. et al. Spatio-temporal characterization of intense few-cycle 2 μm pulses. Opt. Express 24, 24786–24798 (2016).

    PubMed  CAS  Google Scholar 

  54. Fan, G. et al. Hollow-core-waveguide compression of multi-millijoule CEP-stable 3.2 μm pulses. Optica 3, 1308–1311 (2016).

    CAS  Google Scholar 

  55. Teichmann, S. M., Silva, F., Cousin, S. L., Hemmer, M. & Biegert, J. 0.5-keV soft X-ray attosecond continua. Nat. Commun. 7, 11493 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Silva, F., Teichmann, S. M., Cousin, S. L., Hemmer, M. & Biegert, J. Spatiotemporal isolation of attosecond soft X-ray pulses in the water window. Nat. Commun. 6, 6611 (2015).

    PubMed  CAS  Google Scholar 

  57. Tate, J. et al. Scaling of wave-packet dynamics in an intense midinfrared field. Phys. Rev. Lett. 98, 013901 (2007).

    PubMed  CAS  Google Scholar 

  58. Driever, S. et al. Tunable 1.6–2 μm near infrared few-cycle pulse generation by filamentation. Appl. Phys. Lett. 102, 191119 (2013).

    Google Scholar 

  59. Shiner, A. D. et al. Wavelength scaling of high harmonic generation efficiency. Phys. Rev. Lett. 103, 073902 (2009).

    PubMed  CAS  Google Scholar 

  60. Pertot, Y. et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source. Science 355, 264–267 (2017).

    PubMed  CAS  Google Scholar 

  61. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    PubMed  CAS  Google Scholar 

  62. Saito, N., Ishii, N., Kanai, T., Watanabe, S. & Itatani, J. Attosecond streaking measurement of extreme ultraviolet pulses using a long-wavelength electric field. Sci. Rep. 6, 35594 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Cousin, S. L. et al. Attosecond streaking in the water window: a new regime of attosecond pulse characterization. Phys. Rev. X 7, 041030 (2017).

    Google Scholar 

  64. Keathley, P. D., Bhardwaj, S., Moses, J., Laurent, G. & Kärtner, F. X. Volkov transform generalized projection algorithm for attosecond pulse characterization. New J. Phys. 18, 073009 (2016).

    Google Scholar 

  65. Gebhardt, M. et al. Bright, high-repetition-rate water window soft X-ray source enabled by nonlinear pulse self-compression in an antiresonant hollow-core fibre. Light Sci. Appl. 10, 36 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Pupeikis, J. et al. Water window soft X-ray source enabled by a 25 W few-cycle 2.2 μm OPCPA at 100 kHz. Optica 7, 168–171 (2020).

    CAS  Google Scholar 

  67. Xue, B. et al. Fully stabilized multi-TW optical waveform synthesizer: toward gigawatt isolated attosecond pulses. Sci. Adv. 6, eaay2802 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Schmidt, B. E. et al. Compression of 1.8 μm laser pulses to sub two optical cycles with bulk material. Appl. Phys. Lett. 96, 121109 (2010).

    Google Scholar 

  69. Schmidt, C. et al. High-order harmonic source spanning up to the oxygen K-edge based on filamentation pulse compression. Opt. Express 26, 11834–11842 (2018).

    PubMed  CAS  Google Scholar 

  70. Garratt, D. et al. Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy. Nat. Commun. 13, 3414 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Miller, K. D. Jr. Distribution of spray from impinging liquid jets. J. Appl. Phys. 31, 1132–1133 (1960).

    Google Scholar 

  72. Hasson, D. & Peck, R. E. Thickness distribution in a sheet formed by impinging jets. AIChE J. 10, 752–754 (1964).

    Google Scholar 

  73. Eggers, J. & Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 71, 036601 (2008).

    Google Scholar 

  74. Ekimova, M., Quevedo, W., Faubel, M., Wernet, P. & Nibbering, E. T. J. A liquid flatjet system for solution phase soft-X-ray spectroscopy. Struct. Dyn. 2, 054301 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Nagasaka, M., Yuzawa, H. & Kosugi, N. Intermolecular interactions of pyridine in liquid phase and aqueous solution studied by soft X-ray absorption spectroscopy. Z. Phys. Chem. 232, 705–722 (2018).

    CAS  Google Scholar 

  76. Fondell, M. et al. Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates. Struct. Dyn. 4, 054902 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Luu, T. T. et al. Extreme–ultraviolet high–harmonic generation in liquids. Nat. Commun. 9, 3723 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Yin, Z., Luu, T. T. & Wörner, H. J. Few-cycle high-harmonic generation in liquids: in-operando thickness measurement of flat microjets. J. Phys. Photonics 2, 044007 (2020).

    Google Scholar 

  79. Chang, Y.-P., Yin, Z., Balciunas, T., Wörner, H. J. & Wolf, J.-P. Temperature measurements of liquid flat jets in vacuum. Struct. Dyn. 9, 014901 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Galinis, G. et al. Micrometer-thickness liquid sheet jets flowing in vacuum. Rev. Sci. Instrum. 88, 083117 (2017).

    PubMed  Google Scholar 

  81. Koralek, J. D. et al. Generation and characterization of ultrathin free-flowing liquid sheets. Nat. Commun. 9, 1353 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Loh, Z. H. et al. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy. Phys. Rev. Lett. 98, 143601 (2007).

    PubMed  Google Scholar 

  83. Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    PubMed  CAS  Google Scholar 

  84. Smith, A. D. et al. Femtosecond soft-X-ray absorption spectroscopy of liquids with a water-window high-harmonic source. J. Phys. Chem. Lett. 11, 1981–1988 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Yin, Z. et al. Femtosecond proton transfer in urea solutions probed by X-ray spectroscopy. Nature 619, 749–754 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Loh, Z.-H. et al. Observation of the fastest chemical processes in the radiolysis of water. Science 367, 179–182 (2020).

    PubMed  CAS  Google Scholar 

  87. Wernet, P. et al. Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution. Nature 520, 78–81 (2015).

    PubMed  CAS  Google Scholar 

  88. Engel, N. et al. Light-induced relaxation dynamics of the ferricyanide ion revisited by ultrafast XUV photoelectron spectroscopy. Phys. Chem. Chem. Phys. 19, 14248–14255 (2017).

    PubMed  CAS  Google Scholar 

  89. Ojeda, J., Arrell, C. A., Longetti, L., Chergui, M. & Helbing, J. Charge-transfer and impulsive electronic-to-vibrational energy conversion in ferricyanide: ultrafast photoelectron and transient infrared studies. Phys. Chem. Chem. Phys. 19, 17052–17062 (2017).

    PubMed  CAS  Google Scholar 

  90. Nishitani, J., Yamamoto, Y.-i, West, C. W., Karashima, S. & Suzuki, T. Binding energy of solvated electrons and retrieval of true UV photoelectron spectra of liquids. Sci. Adv. 5, eaww6896 (2019).

    Google Scholar 

  91. Svoboda, V. et al. Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses. Sci. Adv. 6, eaaz0385 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Wang, C. et al. Different timescales during ultrafast stilbene isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy. Nat. Chem. 14, 1126–1132 (2022).

    PubMed  CAS  Google Scholar 

  93. Yamamoto, S. & Matsuda, I. Time-resolved photoelectron spectroscopies using synchrotron radiation: past, present, and future. J. Phys. Soc. Jpn 82, 021003 (2013).

    Google Scholar 

  94. Jordan, I. et al. Attosecond spectroscopy of liquid water. Science 369, 974–979 (2020).

    PubMed  CAS  Google Scholar 

  95. Gong, X. et al. Attosecond spectroscopy of size-resolved water clusters. Nature 609, 507–511 (2022).

    PubMed  CAS  Google Scholar 

  96. Kjellsson, L. et al. Resonant inelastic X-ray scattering reveals hidden local transitions of the aqueous OH radical. Phys. Rev. Lett. 124, 236001 (2020).

    PubMed  CAS  Google Scholar 

  97. Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 105, 355–390 (2004).

    Google Scholar 

  98. Lu, L. et al. The “hole” story in ionized water from the perspective of Ehrenfest dynamics. J. Phys. Chem. Lett. 11, 9946–9951 (2020).

    PubMed  CAS  Google Scholar 

  99. Xu, H. et al. Recent progress in metal–organic complexes for optoelectronic applications. Chem. Soc. Rev. 43, 3259–3302 (2014).

    PubMed  CAS  Google Scholar 

  100. Frauenfelder, H., McMahon, B. H. & Fenimore, P. Myoglobin: the hydrogen atom of biology and a paradigm of complexity. Proc. Natl Acad. Sci. USA 100, 8615–8617 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Parak, F. G. & Nienhaus, G. U. Myoglobin, a paradigm in the study of protein dynamics. ChemPhysChem 3, 249–254 (2002).

    PubMed  CAS  Google Scholar 

  102. Kinschel, D. et al. Femtosecond X-ray emission study of the spin cross-over dynamics in haem proteins. Nat. Commun. 11, 4145 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Martin, J. L. et al. Femtosecond photolysis of CO-ligated protoheme and hemoproteins: appearance of deoxy species with a 350-fsec time constant. Proc. Natl Acad. Sci. USA 80, 173–177 (1983).

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Ye, X. et al. Investigations of heme protein absorption line shapes, vibrational relaxation, and resonance Raman scattering on ultrafast time scales. J. Phys. Chem. A 107, 8156–8165 (2003).

    CAS  Google Scholar 

  105. Ferrante, C., Pontecorvo, E., Cerullo, G., Vos, M. H. & Scopigno, T. Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin. Nat. Chem. 8, 1137–1143 (2016).

    PubMed  CAS  Google Scholar 

  106. Shelby, M. L. et al. Interplays of electron and nuclear motions along CO dissociation trajectory in myoglobin revealed by ultrafast X-rays and quantum dynamics calculations. Proc. Natl Acad. Sci. USA 118, e2018966118 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Ansari, A. et al. Protein states and protein quakes. Proc. Natl Acad. Sci. USA 82, 5000–5004 (1985).

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Lee, Y. et al. Ultrafast coherent motion and helix rearrangement of homodimeric hemoglobin visualized with femtosecond X-ray solution scattering. Nat. Commun. 12, 3677 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Levantino, M. et al. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser. Nat. Commun. 6, 6772 (2015).

    PubMed  CAS  Google Scholar 

  110. Jay, R. M., Kunnus, K., Wernet, P. & Gaffney, K. J. Capturing atom-specific electronic structural dynamics of transition-metal complexes with ultrafast soft X-ray spectroscopy. Annu. Rev. Phys. Chem. 73, 187–208 (2022).

    PubMed  CAS  Google Scholar 

  111. Kubin, M. et al. Soft X-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers. Struct. Dyn. 4, 054307 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Bergues, B., Ansari, Z., Hanstorp, D. & Kiyan, I. Y. Photodetachment in a strong laser field: an experimental test of Keldysh-like theories. Phys. Rev. A 75, 063415 (2007).

    Google Scholar 

  113. Sutra, P. & Igau, A. Emerging Earth-abundant (Fe, Co, Ni, Cu) molecular complexes for solar fuel catalysis. Curr. Opin. Green Sustain. Chem. 10, 60–67 (2018).

    Google Scholar 

  114. Miller, S. L. & Urey, H. C. Organic compound synthesis on the primitive earth. Science 130, 245–251 (1959).

    PubMed  CAS  Google Scholar 

  115. Menor Salván, C. et al. Prebiotic origin of pre-RNA building blocks in a urea “warm little pond” scenario. ChemBioChem 21, 3504–3510 (2020).

    PubMed  Google Scholar 

  116. Chang, Y.-P. et al. Electronic dynamics created at conical intersections and its dephasing in aqueous solution. Nat. Phys. 21, 137–145 (2025).

    PubMed  CAS  Google Scholar 

  117. Orimo, N., Yamamoto, Y-i., Karashima, S., Boyer, A. & Suzuki, T. Ultrafast electronic relaxation in 6-methyluracil and 5-fluorouracil in isolated and aqueous conditions: substituent and solvent effects. J. Phys. Chem. Lett. 14, 2758–2763 (2023).

    PubMed  CAS  Google Scholar 

  118. Miura, Y. et al. Formation of long-lived dark states during electronic relaxation of pyrimidine nucleobases studied using extreme ultraviolet time-resolved photoelectron spectroscopy. J. Am. Chem. Soc. 145, 3369–3381 (2023).

    PubMed  CAS  Google Scholar 

  119. Heim, Z. N. & Neumark, D. M. Nonadiabatic dynamics studied by liquid-jet time-resolved photoelectron spectroscopy. Acc. Chem. Res. 55, 3652–3662 (2022).

    PubMed  CAS  Google Scholar 

  120. Koga, M. et al. Extreme ultraviolet time-resolved photoelectron spectroscopy of adenine, adenosine and adenosine monophosphate in a liquid flat jet. Phys. Chem. Chem. Phys. 26, 13106–13117 (2024).

    PubMed  CAS  Google Scholar 

  121. Ikonnikov, E. et al. Photoelectron spectroscopy of oppositely charged molecular switches in the aqueous phase: theory and experiment. J. Phys. Chem. Lett. 14, 6061–6070 (2023).

    PubMed  CAS  Google Scholar 

  122. Hummert, J. et al. Femtosecond extreme ultraviolet photoelectron spectroscopy of organic molecules in aqueous solution. J. Phys. Chem. Lett. 9, 6649–6655 (2018).

    PubMed  CAS  Google Scholar 

  123. Kanai, T., Minemoto, S. & Sakai, H. Quantum interference during high-order harmonic generation from aligned molecules. Nature 435, 470–474 (2005).

    PubMed  CAS  Google Scholar 

  124. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424 (2006).

    PubMed  CAS  Google Scholar 

  125. Wörner, H. J., Niikura, H., Bertrand, J. B., Corkum, P. B. & Villeneuve, D. M. Observation of electronic structure minima in high-harmonic generation. Phys. Rev. Lett. 102, 103901 (2009).

    PubMed  Google Scholar 

  126. Lein, M. Attosecond probing of vibrational dynamics with high-harmonic generation. Phys. Rev. Lett. 94, 053004 (2005).

    PubMed  Google Scholar 

  127. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    PubMed  CAS  Google Scholar 

  128. Kraus, P. M. et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 350, 790–795 (2015).

    PubMed  CAS  Google Scholar 

  129. Zhou, X. et al. Molecular recollision interferometry in high harmonic generation. Phys. Rev. Lett. 100, 073902–4 (2008).

    PubMed  Google Scholar 

  130. Baykusheva, D. et al. Real-time probing of chirality during a chemical reaction. Proc. Natl Acad. Sci. USA 116, 23923–23929 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Mondal, A. et al. High-harmonic spectroscopy of low-energy electron-scattering dynamics in liquids. Nat. Phys. 19, 1813–1820 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Zhang, P., Perry, C., Luu, T. T., Matselyukh, D. & Wörner, H. J. Intermolecular Coulombic decay in liquid water. Phys. Rev. Lett. 128, 133001 (2022).

    PubMed  CAS  Google Scholar 

  133. Gadeyne, T., Zhang, P., Schild, A. & Wörner, H. J. Low-energy electron distributions from the photoionization of liquid water: a sensitive test of electron mean free paths. Chem. Sci. 13, 1675–1692 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Frühling, U., Trinter, F., Karimi, F., Williams, J. & Jahnke, T. Time-resolved studies of interatomic Coulombic decay. J. Electron Spectros. Relat. Phenomena 204, 237–244 (2015).

    Google Scholar 

  135. Zhang, P. et al. Time-resolved multielectron coincidence spectroscopy of double Auger-Meitner decay following Xe 4d ionization. Phys. Rev. Lett. 132, 083201 (2024).

    PubMed  CAS  Google Scholar 

  136. López-Tarifa, P. et al. Ultrafast damage following radiation-induced oxidation of uracil in aqueous solution. Angew. Chem. Int. Ed. 52, 3160–3163 (2013).

    Google Scholar 

  137. Joy, S. & Periyasamy, G. Influence of explicit water molecules on the charge migration dynamics of peptidomimetics: a DFT study. Theor. Chem. Acc. 139, 92 (2020).

    CAS  Google Scholar 

  138. Li, J. et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nat. Commun. 8, 186 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    PubMed  CAS  Google Scholar 

  140. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443 (2006).

    PubMed  CAS  Google Scholar 

  141. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    PubMed  CAS  Google Scholar 

  142. Hartmann, N. et al. Attosecond time–energy structure of X-ray free-electron laser pulses. Nat. Photon. 12, 215–220 (2018).

    CAS  Google Scholar 

  143. Yang, Y. et al. Strong-field coherent control of isolated attosecond pulse generation. Nat. Commun. 12, 6641 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Ossiander, M. et al. Attosecond correlation dynamics. Nat. Phys. 13, 280–285 (2017).

    CAS  Google Scholar 

  145. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    PubMed  Google Scholar 

  146. Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nat. Photon. 4, 875–879 (2010).

    CAS  Google Scholar 

  147. Bergues, B. et al. Tabletop nonlinear optics in the 100-eV spectral region. Optica 5, 237–242 (2018).

    CAS  Google Scholar 

  148. Xue, B., Midorikawa, K. & Takahashi, E. J. Gigawatt-class, tabletop, isolated-attosecond-pulse light source. Optica 9, 360–363 (2022).

    CAS  Google Scholar 

  149. Feng, X. et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Phys. Rev. Lett. 103, 183901 (2009).

    PubMed  Google Scholar 

  150. Sola, I. J. et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nat. Phys. 2, 319–322 (2006).

    CAS  Google Scholar 

  151. Takahashi, E. J., Lan, P., Muecke, O. D., Nabekawa, Y. & Midorikawa, K. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4, 2691 (2013).

    PubMed  Google Scholar 

  152. Barillot, T. R. et al. Towards XUV pump-probe experiments in the femtosecond to sub-femtosecond regime: new measurement of the helium two-photon ionization cross-section. Chem. Phys. Lett. 683, 38–42 (2017).

    CAS  Google Scholar 

  153. Sekikawa, T., Kosuge, A., Kanai, T. & Watanabe, S. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

H.J.W. acknowledges funding from the European Research Council through a Starting Grant (307270-ATTOSCOPE) and a Consolidator Grant (772797-ATTOLIQ), the Swiss National Science Foundation (SNSF) through grants 200021_172946 and 200020_204928 and ETH Zürich. J.-P.W. acknowledges funding from the SNSF through grant 200021_204844. Both authors acknowledge funding through the NCCR-MUST, a funding instrument of the SNSF.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Hans Jakob Wörner or Jean-Pierre Wolf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Nobel Committee for Physics: Scientific Background to the Nobel Prize in Physics 2023: https://www.nobelprize.org/uploads/2023/10/advanced-physicsprize2023-2.pdf

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wörner, H.J., Wolf, JP. Ultrafast spectroscopy of liquids using extreme-ultraviolet to soft-X-ray pulses. Nat Rev Chem 9, 185–199 (2025). https://doi.org/10.1038/s41570-025-00692-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00692-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing