Abstract
Carbanionic compounds provide unique reactivity patterns resulting from the high negative partial charge at the carbon centre, making them invaluable in chemical synthesis. They are important reagents in synthesis, including for challenging metalation reactions or the formation of C–C bonds. Despite this, broader applications have long been limited by their high reactivity and sensitivity to air and moisture. However, recent studies have underscored the versatility of carbanions beyond their traditional role as strong bases and nucleophiles. Utilization of molecular design strategies has opened applications such as their use as electron-donating groups isoelectronic with amines, ambiphilic reagents and even as weakly coordinating anions. In this review article, we provide an overview of these emerging uses of carbanionic compounds, aiming to inspire a broader rethinking of their potential and to encourage the development of new applications.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Seyferth, D. Zinc alkyls, Edward Frankland, and the beginnings of main-group organometallic chemistry. Organometallics 20, 2940–2955 (2001).
Grignard, V. Sur quelques nouvelles combinaisons organométalliques du magnésium et leur application à des synthèses d’alcools et d’hydrocarbures. Compt. Rend. Hebd. Seances Acad. Sci. 130, 1322–1324 (1900).
Schlenk, W. & Holtz, J. Über die einfachsten metallorganischen Alkaliverbindungen. Ber. Dtsch. Chem. Ges. 50, 262–274 (1917).
Carey, F. A. & Sundberg, R. J. in Advanced Organic Chemistry 373–402 (Springer, 1984).
Snieckus, V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 90, 879–933 (1990).
Armstrong, D. R. et al. Directed meta-metalation using alkali-metal-mediated zincation. Angew. Chem. Int. Ed. 45, 3775–3778 (2006).
Martínez-Martínez, A. J., Kennedy, A. R., Mulvey, R. E. & O’Hara, C. T. Directed ortho-meta’- and meta-meta’-dimetalations: a template base approach to deprotonation. Science 346, 834–837 (2014).
Bole, L. J. & Hevia, E. Activation of polar organometallic reagents with alkali-metal alkoxides. Nat. Synth. 1, 195–202 (2022).
Gentner, T. X. & Mulvey, R. E. Alkali-metal mediation: diversity of applications in main-group organometallic chemistry. Angew. Chem. Int. Ed. 60, 9247–9262 (2020).
Harder, S. From limestone to catalysis: application of calcium compounds as homogeneous catalysts. Chem. Rev. 110, 3852–3876 (2010).
Magre, M., Szewczyk, M. & Rueping, M. s-Block metal catalysts for the hydroboration of unsaturated bonds. Chem. Rev. 122, 8261–8312 (2022).
Gil-Negrete, J. M. & Hevia, E. Main group bimetallic partnerships for cooperative catalysis. Chem. Sci. 12, 1982–1992 (2021).
Fazekas, E. et al. Main group metal polymerisation catalysts. Chem. Soc. Rev. 51, 8793–8814 (2022).
Fiorentini, F. et al. Understanding catalytic synergy in dinuclear polymerization catalysts for sustainable polymers. Nat. Commun. 14, 4783 (2023).
Colella, M., Nagaki, A. & Luisi, R. Flow technology for the genesis and use of (highly) reactive organometallic reagents. Chem. Eur. J. 26, 19–32 (2020).
Slavík, P., Trowse, B. R., O’Brien, P. & Smith, D. K. Organogel delivery vehicles for the stabilization of organolithium reagents. Nat. Chem. 15, 319–325 (2023).
Mulks, F. F. et al. Continuous, stable, and safe organometallic reactions in flow at room temperature assisted by deep eutectic solvents. Chem 8, 3382–3394 (2022).
Vidal, C., García-Álvarez, J., Hernán-Gómez, A., Kennedy, A. R. & Hevia, E. Introducing deep eutectic solvents to polar organometallic chemistry: chemoselective addition of organolithium and Grignard reagents to ketones in air. Angew. Chem. Int. Ed. 53, 5969–5973 (2014).
Rodríguez-Álvarez, M. J. et al. Recent advancements in the utilization of s-block organometallic reagents in organic synthesis with sustainable solvents. Molecules 29, 1422 (2024).
Olmstead, M. M. & Power, P. P. The isolation and X-ray structures of lithium crown ether salts of the free phenyl carbanions [CHPh2]− and [CPh3]−. J. Am. Chem. Soc. 107, 2174–2175 (1985).
Alexander, J. S. & Ruhlandt-Senge, K. Barium triphenylmethanide: an examination of anion basicity. Angew. Chem. Int. Ed. 40, 2658–2660 (2001).
Yanai, H. et al. Synthesis, characterization, and applications of zwitterions containing a carbanion moiety. Angew. Chem. Int. Ed. 52, 1560–1563 (2013).
Luisi, R. & Capriati, V. Lithium Compounds in Organic Synthesis (Wiley, 2014).
Closs, G. L. & Moss, R. A. Carbenoid formation of arylcyclopropanes from olefins, benzal bromides, and organolithium compounds and from photolysis of aryldiazomethanes. J. Am. Chem. Soc. 86, 4042–4053 (1964).
Colella, M. et al. Straightforward chemo- and stereoselective fluorocyclopropanation of allylic alcohols: exploiting the electrophilic nature of the not so elusive fluoroiodomethyllithium. Chem. Commun. 55, 8430–8433 (2019).
Kelly, C. B. Modern cyclopropanation via non-traditional building blocks. ChemCatChem 16, e202400110 (2024).
Matteson, D. S. & Majumdar, D. α-Chloro boronic esters from homologation of boronic esters. J. Am. Chem. Soc. 102, 7588–7590 (1980).
Liu, Q. & Dong, Q. Carbenoids with sulfinate as nucleofuge for Matteson-type homologation: direct insertion of oxygen- and nitrogen-substituted units into carbon-boron bond. Angew. Chem. Int. Ed. 63, e202411980 (2024).
Cason, G. et al. α-Sulfinyl benzoates as precursors to Li and Mg carbenoids for the stereoselective iterative homologation of boronic esters. J. Am. Chem. Soc. 139, 11877–11886 (2017).
Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).
Wu, J. et al. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 547, 436–440 (2017).
Aiken, S. G. et al. Iterative synthesis of 1,3-polyboronic esters with high stereocontrol and application to the synthesis of bahamaolide A. Nat. Chem. 15, 248–256 (2023).
Fasano, V. et al. Automated stereocontrolled assembly-line synthesis of organic molecules. Nat. Synth. 1, 902–907 (2022).
Blair, D. J. et al. Automated iterative Csp3–C bond formation. Nature 604, 92–97 (2022).
Ielo, L., Pillari, V., Miele, M., Castiglione, D. & Pace, V. Carbenoid-mediated homologation tactics for assembling (fluorinated) epoxides and aziridines. Synlett 32, 551–560 (2021).
Bennett, S. H. et al. Difunctionalization of C–C σ-bonds enabled by the reaction of bicyclo[1.1.0]butyl boronate complexes with electrophiles: reaction, development, scope, and stereochemical origins. J. Am. Chem. Soc. 142, 16766–16775 (2020).
Fordham, J. M., Grayson, M. N. & Aggarwal, V. K. Vinylidene homologation of boronic esters and its application to the synthesis of the proposed structure of machillene. Angew. Chem. Int. Ed. 58, 15268–15272 (2019).
Chen, M., Tugwell, T. H., Liu, P. & Dong, G. Synthesis of alkenyl boronates through stereoselective vinylene homologation of organoboronates. Nat. Synth. 3, 337–346 (2024).
Xie, Q. & Dong, G. Aza-Matteson reactions via controlled mono- and double-methylene insertions into nitrogen–boron bonds. J. Am. Chem. Soc. 143, 14422–14427 (2021).
Xie, Q., Zhang, R. & Dong, G. Programmable amine synthesis via iterative boron homologation. Angew. Chem. Int. Ed. 62, e202307118 (2023).
Xie, Q. & Dong, G. Programmable ether synthesis enabled by Oxa-Matteson reaction. J. Am. Chem. Soc. 144, 8498–8503 (2022).
Pace, V. et al. Bromomethyllithium-mediated chemoselective homologation of disulfides to dithioacetals. Chem. Commun. 52, 2639–2642 (2016).
Roque, J. B., Kuroda, Y., Göttemann, L. T. & Sarpong, R. Deconstructive diversification of cyclic amines. Nature 564, 244–248 (2018).
Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).
Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).
Reisenbauer, J. C., Green, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 377, 1104–1109 (2022).
Ciamician, G. L. & Dennstedt, M. Ueber die Einwirkung des Chloroforms auf die Kaliumverbindung Pyrrols. Ber. Dtsch. Chem. Ges. 14, 1153–1163 (1881).
Guo, H., Qiu, S. & Xu, P. One-carbon ring expansion of indoles and pyrroles: a straightforward access to 3-fluorinated quinolines and pyridines. Angew. Chem. Int. Ed. 64, e202317104 (2023).
Tonner, R. & Frenking, G. C(NHC)2: divalent carbon(0) compounds with N-heterocyclic carbene ligands—theoretical evidence for a class of molecules with promising chemical properties. Angew. Chem. Int. Ed. 46, 8695–8698 (2007).
Himmel, D., Krossing, I. & Schnepf, A. Dative bonds in main-group compounds: a case of fewer arrows! Angew. Chem. Int. Ed. 53, 370–374 (2014).
Frenking, G. Dative bonds in main-group compounds: a case of more arrows! Angew. Chem. Int. Ed. 53, 6040–6046 (2014).
Antoni, P. W., Reitz, J. & Hansmann, M. M. N2/CO exchange at a vinylidene carbon center: stable alkylidene ketenes and alkylidene thioketenes from 1,2,3-triazole derived diazoalkenes. J. Am. Chem. Soc. 143, 12878–12885 (2021).
Feuerstein, W., Varava, P., Fadaei-Tirani, F., Scopelliti, R. & Severin, K. Synthesis, structural characterization, and coordination chemistry of imidazole-based alkylidene ketenes. Chem. Commun. 57, 11509–11512 (2021).
Antoni, P. W., Golz, C., Holstein, J. J., Pantazis, D. A. & Hansmann, M. M. Isolation and reactivity of an elusive diazoalkene. Nat. Chem. 13, 587–593 (2021).
Jörges, M., Krischer, F. & Gessner, V. H. Transition metal–free ketene formation from carbon monoxide through isolable ketenyl anions. Science 378, 1331–1336 (2022).
Xu, M., Jupp, A. R. & Stephan, D. W. Acyl-phosphide anions via an intermediate with carbene character: reactions of K[PtBu2] and CO. Angew. Chem. Int. Ed. 58, 3548–3552 (2019).
Xu, M., Qu, Z.-W., Grimme, S. & Stephan, D. W. Lithium dicycloxylamide in transition-metal-free Fischer–Tropsch chemistry. J. Am. Chem. Soc. 143, 634–638 (2021).
Wang, T. et al. Steric influence on reactions of benzyl potassium species with CO. Chem. Asian J. 16, 3640–3644 (2021).
Jörges, M. et al. Phosphinoyl-substituted ketenyl anions: synthesis and substituent effects on the structural properties. Organometallics 43, 585–593 (2024).
Krischer, F., Jörges, M., Leung, T.-F., Darmandeh, H. & Gessner, V. H. Selectivity control of the ligand exchange at carbon in α-metallated ylides as a route to ketenyl anions. Angew. Chem. Int. Ed. 62, e202309629 (2023).
Krischer, F., Swamy, V. S. V. S. N., Feichtner, K.-S., Ward, R. J. & Gessner, V. H. The cyanoketenyl anion [NC3O]−. Angew. Chem. Int. Ed. 63, e202403766 (2024).
Wang, T. et al. Synthesis and reactivity of the [NCCCO]− cyanoketenate anion. Angew. Chem. Int. Ed. 63, e202402728 (2024).
Le Dé, Q. et al. Isolation and structure elucidation of the heterocumulene anions [NCC‒L]− (L=CO, CS, N2). Angew. Chem. Int. Ed. 64, e202422496 (2025).
Wei, R., Wang, X.-F., Ruiz, D. A. & Liu, L. L. Stable ketenyl anions via ligand exchange at an anionic carbon as powerful synthons. Angew. Chem. Int. Ed. 62, e202219211 (2023).
Duari, P., Mondal, S., Jörges, M. & Gessner, V. H. The lithium effect in ketenyl anion chemistry. Chem. Commun. 60, 9372–9375 (2024).
Xu, M., Wang, T., Qu, Z.-W., Grimme, S. & Stephan, D. W. Reactions of a dilithiomethane with CO and N2O: an avenue to an anionic ketene and a hexafunctionalized benzene. Angew. Chem. Int. Ed. 60, 25281–25285 (2021).
Koike, T., Yu, J.-K. & Hansmann, M. M. Ph3PCN2: a stable reagent for carbon-atom transfer. Science 385, 305–311 (2024).
Genoux, A. & Severin, K. Nitrous oxide as diazo transfer reagent. Chem. Sci. 15, 13605–13617 (2024).
Sun, Q. et al. Spiro-C(sp3)-atom transfer: creating rigid three-dimensional structures with Ph2SCN2. Science 387, 885–892 (2025).
He, Y., Lyu, Y., Tymann, D., Antoni, P. W. & Hansmann, M. M. Cleavage of carbodicarbenes with N2O for accessing stable diazoalkenes: two-fold ligand exchange at a C(0)-atom. Angew. Chem. Int. Ed. 64, e202415228 (2024).
Ward, R. J. et al. An azide-free synthesis of metallodiazomethanes using nitrous oxide. J. Am. Chem. Soc. 146, 24602–24608 (2024).
Gilbert, J. C. & Weerasooriya, U. Diazoethenes: their attempted synthesis from aldehydes and aromatic ketones by way of the Horner-Emmons modification of the Wittig reaction. A facile synthesis of alkynes. J. Org. Chem. 47, 1837–1845 (1982).
Wang, X.-F., Wei, R., Liang, Q. & Liu, L. L. Stable crystalline keteniminyl anions. Chem 11, 102444 (2025).
Mondal, S. et al. PPh3/isocyanide and N2/isocyanide exchange: pathways to isolable alkali metal keteniminyl anions. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202504325 (2025).
Race, J. J. & Albrecht, M. Pyridylidene amines and amides: donor-flexible ligands for catalysis. ACS Catal. 13, 9891–9904 (2023).
Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C‒N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).
Biffis, A., Centomo, P., Del Zotto, A. & Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem. Rev. 118, 2249–2295 (2018).
Collado, A., Nelson, D. J. & Nolan, S. P. Optimizing catalyst reaction conditions gold(I) catalysis−ligand development. Chem. Rev. 121, 8559–8612 (2021).
Zheng, Z. et al. Homogeneous gold-catalyzed oxidation reactions. Chem. Rev. 121, 8979–9038 (2021).
Chen, L., Ren, P. & Carrow, B. P. Tri(1-adamantyl)phosphine: expanding the boundary of electron-releasing character available to organophosphorus compounds. J. Am. Chem. Soc. 138, 6392–6395 (2016).
Fleckenstein, C. A. & Plenio, H. Sterically demanding trialkylphosphines for palladium-catalyzed cross coupling reactions alternatives to PtBu3. Chem. Soc. Rev. 39, 694–711 (2010).
Park, N. H., Vinogradova, E. V., Surry, D. S. & Buchwald, S. L. Design of new ligands for the palladium-catalyzed arylation of α-branched secondary amines. Angew. Chem. Int. Ed. 54, 8259–8262 (2015).
Dennis, J. M., White, N. A., Liu, R. Y. & Buchwald, S. L. Breaking the base barrier: an electron-deficient palladium catalyst enables the use of a common soluble base in C‒N coupling. J. Am. Chem. Soc. 140, 4721–4725 (2018).
Wünsche, M. A. et al. Imidazolin-2-ylidenaminophosphines as highly electron-rich ligands for transition-metal catalysts. Angew. Chem. Int. Ed. 54, 11857–11860 (2015).
Rotering, P., Wilm, L. F. B., Werra, J. A. & Dielmann, F. Pyridinylidenaminophosphines: facile access to highly electron-rich phosphines. Chem. Eur. J. 26, 406–411 (2020).
Buß, F., Mehlmann, P., Mück-Lichtenfeld, C., Bergander, K. & Dielmann, F. Reversible carbon dioxide binding by simple Lewis base adducts with electron-rich phosphines. J. Am. Chem. Soc. 138, 1840–1843 (2016).
Ullrich, S., Kovačević, B., Xie, X. & Sundermeyer, J. Phosphazenyl phosphines: the most electron‐rich uncharged phosphorus Brønsted and Lewis bases. Angew. Chem. Int. Ed. 58, 10335–10339 (2019).
Dumrath, A. et al. Recyclable catalysts for palladium-catalyzed C‒O coupling reactions, Buchwald–Hartwig aminations, and Sonogashira reactions. Angew. Chem. Int. Ed. 49, 8988–8992 (2010).
Dumrath, A., Lübbe, C., Neumann, H., Jackstell, R. & Beller, M. Recyclable catalysts for palladium-catalyzed aminations of aryl halides. Chem. Eur. J. 17, 9599–9604 (2011).
Yu, C.-H. et al. Increasing the donor strength of alkenylphosphines by twisting the C=C double bond. Angew. Chem. Int. Ed. 63, e02416764 (2024).
Scherpf, T. et al. Ylide-functionalized phosphines: strong donor ligands for homogeneous catalysis. Angew. Chem. Int. Ed. 57, 12859–12864 (2018).
Däschlein-Gessner, V. & Scherpf, T. Ylid-funktionalisierte phosphane zur Verwendung in Metallkomplexen und der homogenen katalyse. Patent WO2019030304A1 (2019).
Issleib, K. & Lindner, R. Beiträge zur Chemie der Phosphinalkylene, III. Zur Basizität und Säurespaltung der Phosphinalkylene. Liebigs Ann. Chem. 707, 120–129 (1967).
Lapointe, S., Sarbajna, A. & Gessner, V. H. Ylide-substituted phosphines: a platform of strong donor ligands for gold catalysis and palladium-catalyzed coupling reactions. Acc. Chem. Res. 55, 770–782 (2022).
Löffler, J. et al. P,N-coordinating ylide-functionalized phosphines (NYPhos): a ligand platform for the selective monoarylation of small nucleophiles. Angew. Chem. Int. Ed. 63, e202408947 (2024).
Goebel, J. F. et al. Computer-driven development of ylide functionalized phosphines for palladium-catalyzed Hiyama couplings. Angew. Chem. Int. Ed. 62, e202216160 (2023).
Xiao, Y. et al. Palladium-catalyzed coupling of aryl chlorides with secondary phosphines to construct unsymmetrical tertiary phosphines. Org. Lett. 26, 10564–10569 (2024).
Puerta-Oteo, R., Ojeda-Amador, A. I., Jiménez, M. V. & Pérez-Torrente, J. J. Catalytic applications of zwitterionic transition metal compounds. Dalton Trans. 51, 817–830 (2022).
Stradiotto, M., Cipot, J. & McDonald, R. A catalytically active, charge-neutral Rh(I) zwitterion featuring a P,N-substituted ‘naked’ indenide ligand. J. Am. Chem. Soc. 125, 5618–5619 (2003).
Cipot, J., McDonald, R. & Stradiotto, M. New bidentate cationic and zwitterionic relatives of Crabtree’s hydrogenation catalyst. Chem. Commun. https://doi.org/10.1039/B510253G (2005).
Lundgren, R. J., Rankin, M. A., McDonald, R., Schatte, G. & Stradiotto, M. A formally zwitterionic ruthenium catalyst precursor for the transfer hydrogenation of ketones that does not feature an ancillary ligand N‒H functionality. Angew. Chem. Int. Ed. 46, 4732–4735 (2007).
Lavallo, V., Wright, J. H. II, Tham, F. S. & Quinlivan, S. Perhalogenated carba-closo-dodecaborate anions as ligand substituents: applications in gold catalysis. Angew. Chem. Int. Ed. 52, 3172–3176 (2013).
van Leeuwen, P. W. N. M., Cano, I. & Freixa, Z. Secondary phosphine oxides: bifunctional ligands in catalysis. ChemCatChem 12, 3982–3994 (2020).
Ackermann, L. & Born, R. Modular diamino- and dioxophosphine oxides and chlorides as ligands for transition-metal-catalyzed C‒C and C‒N couplings with aryl chlorides. Angew. Chem. Int. Ed. 44, 2444–2447 (2005).
Martin, D., Moraleda, D., Achard, T., Giordano, L. & Buono, G. Assessment of the electronic properties of P ligands stemming from secondary phosphine oxides, P ligands stemming SPOs. Chem. Eur. J. 17, 12729–12740 (2011).
Bellotti, P., Koy, M., Hopkinson, M. N. & Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 5, 711–725 (2021).
Weetman, C. in Encyclopedia of Inorganic and Bioinorganic Chemistry (ed. Scott, R. A.) 1–27 (Wiley, 2025).
Roy, M. M. D. & Rivard, E. Pushing chemical boundaries with N-heterocyclic olefins (NHOs): from catalysis to main group element chemistry. Acc. Chem. Res. 50, 2017–2025 (2017).
Ghadwal, R. S. Tuning the electronic properties of main-group species by N-heterocyclic vinyl (NHV) scaffolds. Acc. Chem. Res. 55, 457–470 (2022).
Sarbajna, A., Swamy, V. S. V. S. N. & Gessner, V. H. Phosphorus-ylides: powerful substituents for the stabilization of reactive main group compounds. Chem. Sci. 12, 2016–2024 (2020).
Ghadwal, R. S., Schürmann, C. J., Andrada, D. M. & Frenking, G. Mono- and di-cationic hydrido boron compounds. Dalton Trans. 44, 14359–14367 (2015).
Lee, W.-H., Lin, Y.-F., Lee, G.-H., Peng, S.-M. & Chiu, C.-W. N-Heterocyclic olefin stabilized boron dication. Dalton Trans. 45, 5937–5940 (2016).
Scherpf, T., Feichtner, K.-S. & Gessner, V. H. Using ylide functionalization to stabilize boron cations. Angew. Chem. Int. Ed. 56, 3275–3279 (2017).
Krämer, F., Paradies, J., Fernández, I. & Breher, F. A crystalline aluminium-carbon-based ambiphile capable of activation and catalytic transfer of ammonia in non-aqueous media. Nat. Chem. 16, 63–69 (2024).
Krämer, F., Paradies, J., Fernández, I. & Breher, F. Quo vadis CO2 activation: catalytic reduction of CO2 to methanol using aluminum and gallium/carbon-based ambiphiles. Chem. Eur. J. 30, e202303380 (2024).
Hering-Junghans, C., Andreiuk, P., Ferguson, M. J., McDonald, R. & Rivard, E. Using N-heterocyclic vinyl ligands to access stable divinylgermylenes and a germylium cation. Angew. Chem. Int. Ed. 56, 6272–6275 (2017).
Asay, M., Inoue, S. & Driess, M. Aromatic ylide-stabilized carbocyclic silylene. Angew. Chem. Int. Ed. 50, 9589–9592 (2011).
Schmidpeter, A., Schrödel, H.-P. & Knizek, J. 2-stannaindenes and 2-stannaindanes. Heteroat. Chem. 9, 103–108 (1998).
Alvarado-Beltran, I., Baceiredo, A., Saffon-Merceron, N., Branchadell, V. & Kato, T. Cyclic amino(ylide) silylene: a stable heterocyclic silylene with strongly electron-donating character. Angew. Chem. Int. Ed. 55, 16141–16144 (2016).
Mohapatra, C. et al. Isolation of a diylide-stabilized stannylene and germylene: enhanced donor strength through coplanar lone pair alignment. Angew. Chem. Int. Ed. Engl. 58, 7459–7463 (2019).
Li, Z. et al. (L)2C2P2: dicarbondiphosphide stabilized by N-heterocyclic carbenes or cyclic diamido carbenes. Angew. Chem. Int. Ed. 56, 5744–5749 (2017).
Sharma, M. K. et al. Isolation of a Ge(I) diradicaloid and dihydrogen splitting. J. Am. Chem. Soc. 143, 121–125 (2021).
Sharma, M. K. et al. An open-shell singlet Sn(I) diradical and H2 splitting. Angew. Chem. Int. Ed. 60, 6414–6418 (2021).
Riddlestone, I. M., Kraft, A., Schaefer, J. & Krossing, I. Taming the cationic beast: novel developments in the synthesis and application of weakly coordinating anions. Angew. Chem. Int. Ed. 57, 13982–14024 (2018).
Fisher, S. P. et al. Nonclassical applications of closo-carborane anions: from main group chemistry and catalysis to energy storage. Chem. Rev. 119, 8262–8290 (2019).
Li, Y., Cokoja, M. & Kühn, F. E. Inorganic/organometallic catalysts and initiators involving weakly coordinating anions for isobutene polymerisation. Coord. Chem. Rev. 255, 1541–1557 (2011).
Engesser, T. A., Lichtenthaler, M. R., Schleep, M. & Krossing, I. Reactive p-block cations stabilized by weakly coordinating anions. Chem. Soc. Rev. 45, 789–899 (2016).
Mandouma, G., Collins, J. & Williams, D. Synthesis, crystal structure, and conductivity of a weakly coordinating anion/cation salt for electrolyte application in next-generation batteries. Acc. Chem. Res. 56, 1263–1270 (2023).
Rupp, A. B. A. & Krossing, I. Ionic liquids with weakly coordinating [MIII(ORF)4]− anions. Acc. Chem. Res. 48, 2537–2546 (2015).
Niemann, M., Neumann, B., Stammler, H.-G. & Hoge, B. Synthesis, properties, and application of tetrakis(pentafluoroethyl)gallate, [Ga(C2F5)4]. Angew. Chem. Int. Ed. 58, 8938–8942 (2019).
Martens, A. et al. Facile and systematic access to the least-coordinating WCA [(RFO)3Al-F-Al(ORF)3]− and its more Lewis-basic brother [F-Al(ORF)3]− (RF = C(CF3)3). Chem. Sci. 9, 7058–7068 (2018).
Olaru, M. et al. The weakly coordinating tris(trichlorosilyl)silyl anion. Angew. Chem. Int. Ed. 56, 16490 (2017).
Knüpfer, C., Klerner, L., Mai, J., Langer, J. & Harder, S. s-Block metal complexes of superbulky (tBu3Si)2N−: a new weakly coordinating anion? Chem. Sci. 15, 4386–4395 (2024).
Wiesner, A., Gries, T. W., Steinhauer, S., Beckers, H. & Riedel, S. Superacids based on pentafluoroorthotellurate derivatives of aluminum. Angew. Chem. Int. Ed. 56, 8263–8266 (2017).
Golden, J. H., Mutolo, P. F., Lobkovsky, E. B. & DiSalvo, F. J. Lithium-mediated organofluorine hydrogen bonding: structure of lithium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate tetrahydrate. Inorg. Chem. 33, 5374–5375 (1994).
Krossing, I. The facile preparation of weakly coordinating anions: structure and characterisation of silverpolyfluoroalkoxyaluminates AgAl(ORF)4, calculation of the alkoxide ion affinity. Chem. Eur. J. 7, 490–502 (2001).
Shelly, K., Reed, C. A., Lee, Y. J. & Scheidt, W. R. The least coordinating anion. J. Am. Chem. Soc. 108, 3117–3118 (1986).
Unkrig, W., Schmitt, M., Kratzert, D., Himmel, D. & Krossing, I. Synthesis and characterization of crystalline niobium and tantalum carbonyl complexes at room temperature. Nat. Chem. 12, 647–653 (2020).
Sellin, M. et al. Utilizing the perfluoronaphthalene radical cation as a selective deelectronator to access a variety of strongly oxidizing reactive cations. Angew. Chem. Int. Ed. 63, e202406742 (2024).
Willrett, J. et al. Synthesis and characterization of a copper dinitrogen complex supported by a weakly coordinating anion. Angew. Chem. Int. Ed. 63, e202405330 (2024).
Yang, X. et al. Synthesis, isolation, and characterization of two cationic organobismuth(II) pincer complexes relevant in radical redox chemistry. J. Am. Chem. Soc. 145, 5618–5623 (2023).
Klare, H. F. T. et al. Silylium ions: from elusive reactive intermediates to potent catalysts. Chem. Rev. 121, 5889–5985 (2021).
Wasserscheid, P. & Welton, T. (eds) Ionic Liquids in Synthesis (Wiley, 2007).
Aravindan, V., Gnanaraj, J., Madhavi, S. & Liu, H.-K. Lithium-ion conducting electrolyte salts for lithium batteries. Chem. Eur. J. 17, 14326–14346 (2011).
Turowsky, L. & Seppelt, K. Tris[(trifluoromethyl)sulfonyl]methane, HC(SO2CF3)3. Inorg. Chem. 27, 2135–2137 (1988).
Schulz, C., Daniels, J., Bredow, T. & Beck, J. The electrochemical synthesis of polycationic clusters. Angew. Chem. Int. Ed. 55, 1173–1177 (2016).
Murmann, P. et al. Electrochemical performance and thermal stability studies of two lithium sulfonyl methide salts in lithium-ion battery electrolytes. J. Electrochem. Soc. 162, A1738–A1744 (2015).
Siedle, A. R., Newmark, R. A. & Gleason, W. B. Facile addition and elimination reactions of fluorocarbon acids at platinum. J. Am. Chem. Soc. 108, 767–773 (1986).
Ishihara, K., Hasegawa, A. & Yamamoto, H. Polystyrene-bound tetrafluorophenylbis(triflyl)methane as an organic-solvent-swellable and strong Brønsted acid catalyst. Angew. Chem. Int. Ed. 40, 4077–4079 (2001).
Höfler, D. et al. 1,1,3,3‐Tetratriflylpropene (TTP): a strong, allylic C–H acid for Brønsted and Lewis acid catalysis. Angew. Chem. Int. Ed. 56, 1411–1415 (2017).
Gatzenmeier, T. et al. Asymmetric Lewis acid organocatalysis of the Diels–Alder reaction by a silylated C‒H acid. Science 351, 949–952 (2016).
Popovic, J. et al. High lithium transference number electrolytes containing tetratriflylpropene’s lithium salt. J. Phys. Chem. Lett. 9, 5116–5120 (2018).
Kelling, L., Eßer, J., Knyszek, D. & Gessner, V. H. Carbon-based weakly coordinating anions: molecular design, synthesis and applications. Angew. Chem. Int. Ed. 63, e202405936 (2024).
Chambers, R. D. et al. Reactions involving fluoride ion. Part 41.1,2 Synthesis of hexakis(trifluoromethyl) cyclopentadiene and derived cyclopentadienide salts. J. Chem. Soc. Perkin Trans. 1, 135–146 (1997).
Sievers, R., Sellin, M., Rupf, S. M., Parche, J. & Malischewski, M. Introducing perfluorinated Cp* ligand coordination chemistry. Angew. Chem. Int. Ed. 61, e202211147 (2022).
Schulte, Y. et al. Structural characterization and reactivity of a room-temperature-stable, antiaromatic cyclopentadienyl cation salt. Nat. Chem. 16, 651–657 (2024).
Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744–5758 (2007).
Cheon, C. H. & Yamamoto, H. Super Brønsted acid catalysis. Chem. Commun. 47, 3043–3056 (2011).
Yanai, H. & Taguchi, T. Synthesis of superacidic carbon acid and its derivatives. J. Fluor. Chem. 174, 108–119 (2015).
Nakashima, D. & Yamamoto, H. Design of chiral N-triflyl phosphoramide as a strong chiral Brønsted acid and its application to asymmetric Diels−Alder reaction. J. Am. Chem. Soc. 128, 9626–9627 (2006).
Cheon, C. H. & Yamamoto, H. Development of N,N-bis(perfluoroalkanesulfonyl)squaramides as new strong Brønsted acids and their application to organic reactions. Tetrahedron 66, 4257–4264 (2010).
Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).
Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).
Akiyama, T., Itoh, J. & Fuchibe, K. Recent progress in chiral Brønsted acid catalysis. Adv. Synth. Catal. 348, 999–1010 (2006).
Čorić, I. & List, B. Asymmetric spiroacetalization catalysed by confined Brønsted acids. Nature 483, 315–319 (2012).
Schwengers, S. A. et al. Unified approach to imidodiphosphate-type Brønsted acids with tunable confinement and acidity. J. Am. Chem. Soc. 143, 14835–14844 (2021).
Schreyer, L., Properzi, R. & List, B. IDPi catalysis. Angew. Chem. Int. Ed. 58, 12761–12777 (2019).
Yanai, H. et al. 2-(Pyridinium-1-yl)-1,1-bis(perfluoroalkylsulfonyl)ethan-1-ide: a practical reagent for synthesis of strongly acidic 1,1-bis(perfluoroalkylsulfonyl)alkanes. Chem. Eur. J. 23, 8203–8211 (2017).
Hasegawa, A., Naganawa, Y., Fushimi, M., Ishihara, K. & Yamamoto, H. Design of Brønsted acid-assisted chiral Brønsted acid catalyst bearing a bis(triflyl)methyl group for a Mannich-type reaction. Org. Lett. 8, 3175–3178 (2006).
Peng, B. et al. A powerful chiral super Brønsted C–H acid for asymmetric catalysis. J. Am. Chem. Soc. 144, 2853–2860 (2022).
Acknowledgements
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy — EXC-2033 - 390677874 — RESOLV and INST 213/917-1 FUGG, as well as the European Union (ERC, CarbFunction, 101086951). A.D. thanks the Alexander von Humboldt Foundation for a postdoctoral research fellowship. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.
Author information
Authors and Affiliations
Contributions
All authors wrote the article. V.H.G. finalized the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Robert Mulvey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Das, A., Le Dé, Q. & Gessner, V.H. Rethinking carbanion chemistry from donor substituents to weakly coordinating carbanions. Nat Rev Chem 9, 523–536 (2025). https://doi.org/10.1038/s41570-025-00725-3
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41570-025-00725-3


