Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transuranium organometallic chemistry

Abstract

Coordination chemistry is a tool to reveal the hidden nature of elements through controlled manipulation of their environment, and the benefits that this understanding has brought society are numerous. For a chemist, the actinide series represents an intriguing frontier wherein conventional chemical intuition yields to relativistic effects and atypical technical challenges influence the pace of progress. Much of the chemical understanding of transuranium elements was developed during and shortly after the Manhattan Project and was borne out of practical needs. Although theoretical interest in their fundamental bonding and behaviour has always existed, synthesis-led exploration was often not possible. Synthetic, analytical and computational advancements in the twenty-first century have changed this, and contemporary synthetic transuranium coordination chemistry has begun to reveal that their properties are more nuanced than previously appreciated. In this Review, we discuss the discovery of transuranium elements, their history and the logistical demands inherent to chemical advancement in the area, and present key progress in transuranium organometallic and selected metal–organic chemistry, with a focus on how the field has begun to mature.

Key points

  • The Review summarizes the history and current state of transuranium organometallic chemistry, with a focus on synthesis, characterization and reactivity up to early 2025.

  • The unique challenges in handling transuranium elements owing to their radioactivity, scarcity and high chemical toxicity are discussed from the perspective of synthetic chemistry.

  • Recent advancements in laboratory-scale instrumentation have enabled the characterization of transuranium complexes, doubling the number of crystallographically characterized compounds in the past decade.

  • The bonding and electronic structure of transuranium elements and ions are compared to those of lanthanide and earlier actinide analogues, emphasizing similarities and differences which manifest in their chemistry.

  • The Review outlines future directions for transuranium chemistry, including the exploration of new metal–carbon bonding motifs and the requirement for specialized ligand platforms to overcome oxidation–reduction limitations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The unique electronic structure and bonding in f-element complexes.
Fig. 2: Bonding of actinides and lanthanides to aromatic ligands.
Fig. 3: Synthetic routes to anhydrous transuranium precursor materials.
Fig. 4: Cyclopentadienide complexes of transuranium metals.
Fig. 5: Actinocene complexes.
Fig. 6: Actinide–arene complexes.
Fig. 7: Actinide–carbon σ-bonding.
Fig. 8: Actinide–element multiple bonds.

Similar content being viewed by others

References

  1. Morss, L. R., Edelstein, N. M. & Fuger, J. The Chemistry of the Actinide and Transactinide Elements 4th edn (Springer, 2011).

  2. Birnbaum, E. R., Fassbender, M. E., Ferrier, M. G., John, K. D. & Mastren, T. in Encyclopedia of Inorganic and Bioinorganic Chemistry (ed. Scott, R. A.) 1–21 (Wiley, 2018).

  3. Martin, R. C., Knauer, J. B. & Balo, P. A. Production, distribution and applications of californium-252 neutron sources. Appl. Radiat. Isot. 53, 785–792 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Lange, R. G. & Carroll, W. P. Review of recent advances of radioisotope power systems. Energy Convers. Manag. 49, 393–401 (2008).

    Article  CAS  Google Scholar 

  5. Khuyagbaatar, J. et al. 48Ca + 249Bk fusion reaction leading to element Z = 117: long-lived α-decaying 270Db and discovery of 266Lr. Phys. Rev. Lett. 112, 172501 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. McMillan, E. & Abelson, P. H. Radioactive element 93. Phys. Rev. 57, 1185–1186 (1940).

    Article  CAS  Google Scholar 

  7. Seaborg, G. T. in Actinides in Perspective (ed. Edelstein N. M.) 1–22 (Pergamon, 1982).

  8. Seaborg, G. T. & Loveland, W. D. Elements Beyond Uranium (Wiley, 1991).

  9. Seaborg, G. T. in Handbook on the Physics and Chemistry of Rare Earths Vol. 18 (eds Gschneidner, K. A. Jr. & Eyring, L.) 1–27 (Elsevier, 1994).

  10. Balasubramanian, K. in Handbook on the Physics and Chemistry of Rare Earths Vol. 18 (eds Gschneidner, K. A. Jr. & Eyring, L.) 29–158 (Elsevier, 1994).

  11. Seaborg, G. T. Overview of the actinide and lanthanide (the f) elements. Radiochim. Acta 61, 115–122 (1993).

    Article  CAS  Google Scholar 

  12. Ghiorso, A., Sikkeland, T., Larsh, A. E. & Latimer, R. M. New element, lawrencium, atomic number 103. Phys. Rev. Lett. 6, 473–475 (1961).

    Article  CAS  Google Scholar 

  13. Goldwhite, H. The Manhattan Project. J. Fluor. Chem. 33, 109–132 (1986).

    Article  CAS  Google Scholar 

  14. Clark, D. L., Geeson, D. A. & Hanrahan, R. J. Jr. Plutonium Handbook 2nd edn (American Nuclear Society, 2019).

  15. Edelstein, N. M., Fuger, J., Katz, J. J. & Morss, L. R. in The Chemistry of the Actinide and Transactinide Elements (eds Morss, L. R., Edelstein, N. M. & Fuger, J.) 1753–1835 (Springer, 2011).

  16. Schlesinger, H. I. et al. New developments in the chemistry of diborane and the borohydrides. I. General summary. J. Am. Chem. Soc. 75, 186–190 (1953).

    Article  CAS  Google Scholar 

  17. Schlesinger, H. I. & Brown, H. C. Uranium(IV) borohydride. J. Am. Chem. Soc. 75, 219–221 (1953).

    Article  CAS  Google Scholar 

  18. Liddle, S. T. The renaissance of non-aqueous uranium chemistry. Angew. Chem. Int. Ed. 54, 8604–8641 (2015).

    Article  CAS  Google Scholar 

  19. Scott, B. L. Actinide research quarterly (Los Alamos National Laboratory, 2015).

  20. White, F. D., Dan, D. & Albrecht‐Schmitt, T. E. Contemporary chemistry of berkelium and californium. Chem. Eur. J. 25, 10251–10261 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. White, F. D. & Marsh, M. L. in Handbook on the Physics and Chemistry of Rare Earths Vol. 55 (eds Bünzli, J.-C. G. & Pecharsky, V. K.) 123–158 (Elsevier2019).

  22. Gilson, S. E. & Burns, P. C. The crystal and coordination chemistry of neptunium in all its oxidation states: an expanded structural hierarchy of neptunium compounds. Coord. Chem. Rev. 445, 213994 (2021).

    Article  CAS  Google Scholar 

  23. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B 72, 171–179 (2016).

    Article  CAS  Google Scholar 

  24. Kaltsoyannis, N. Transuranic computational chemistry. Chem. Eur. J. 24, 2815–2825 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Burns, C. J., Clark, D. L. & Sattelberger, A. P. in Encyclopedia of Inorganic Chemistry (eds King, R. B. et al.) (Wiley, 2006).

  26. La Pierre, H. S. & Meyer, K. in Progress in Inorganic Chemistry Vol. 58 (ed Karlin, K. D.) 303–416 (Wiley, 2014).

  27. Liddle, S. T. Progress in nonaqueous molecular uranium chemistry: where to next? Inorg. Chem. 63, 9366–9384 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liddle, S. T., Mills, D. P. & Natrajan, L. S. The Lanthanides and Actinides (World Scientific, 2022).

  29. Gibson, J. K. & Haire, R. G. Berkelium and californium organometallic ions. Radiochim. Acta 89, 363–369 (2001).

    Article  CAS  Google Scholar 

  30. Gibson, J. K. & Haire, R. G. Activation of pentamethylcyclopentadiene by Bk+, Cf+, and Es+ ions in the gas phase: probing electronic structures of transcurium actinides. Organometallics 24, 119–126 (2005).

    Article  CAS  Google Scholar 

  31. Gibson, J. K. & Haire, R. G. Gas-phase californium ion chemistry. Int. J. Mass Spectrom. 203, 127–142 (2000).

    Article  CAS  Google Scholar 

  32. Tague, T. J. Jr., Andrews, L. & Hunt, R. D. Matrix infrared spectra of the products of uranium-atom reactions with carbon monoxide and carbon dioxide. J. Phys. Chem. 97, 10920–10924 (1993).

    Article  CAS  Google Scholar 

  33. Zhou, M., Andrews, L., Li, J. & Bursten, B. E. Reaction of laser-ablated uranium atoms with CO: infrared spectra of the CUO, CUO, OUCCO, (η2-C2)UO2, and U(CO)x (x = 1−6) molecules in solid neon. J. Am. Chem. Soc. 121, 9712–9721 (1999).

    Article  CAS  Google Scholar 

  34. Gibson, J. K. et al. Gas-phase reactions of hydrocarbons with An+ and AnO+ (An = Th, Pa, U, Np, Pu, Am, Cm): the active role of 5f electrons in organoprotactinium chemistry. Organometallics 26, 3947–3956 (2007).

    Article  CAS  Google Scholar 

  35. Carter, K. P. et al. Structural and spectroscopic characterization of an einsteinium complex. Nature 590, 85–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Ortu, F., Formanuik, A., Innes, J. R. & Mills, D. P. New vistas in the molecular chemistry of thorium: low oxidation state complexes. Dalton Trans. 45, 7537–7549 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Jones, M. B. & Gaunt, A. J. Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chem. Rev. 113, 1137–1198 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Gaunt, A. J. & Neu, M. P. Recent developments in nonaqueous plutonium coordination chemistry. C. R. Chim. 13, 821–831 (2010).

    Article  CAS  Google Scholar 

  39. Riedhammer, J., Halter, D. P. & Meyer, K. Nonaqueous electrochemistry of uranium complexes: a guide to structure–reactivity tuning. Chem. Rev. 123, 7761–7781 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Ephritikhine, M. Recent advances in organoactinide chemistry as exemplified by cyclopentadienyl compounds. Organometallics 32, 2464–2488 (2013).

    Article  CAS  Google Scholar 

  41. Walter, O. Actinide organometallic complexes with π-ligands. Chem. Eur. J. 25, 2927–2934 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Cryer, J. D. & Liddle, S. T. in Comprehensive Organometallic Chemistry IV 4th edn (eds Parkin, G., Meyer, K. & O’Hare, D.) 460–501 (Elsevier, 2022).

  43. Arnold, P. L., Dutkiewicz, M. S. & Walter, O. Organometallic neptunium chemistry. Chem. Rev. 117, 11460–11475 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Farnaby, J. H., Chowdhury, T., Horsewill, S. J., Wilson, B. & Jaroschik, F. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2019. Coord. Chem. Rev. 437, 213830 (2021).

    Article  CAS  Google Scholar 

  45. Marks, T. J. & Ernst, R. D. in Comprehensive Organometallic Chemistry (eds Wilkinson, G., Stone, F. G. A. & Abel, E. W.) 173–270 (Pergamon, 1982).

  46. Nugent, L. J. Standard electrode potentials and enthalpies of formation of some lanthanide and actinide aquo-ions. J. Inorg. Nucl. Chem. 37, 1767–1770 (1975).

    Article  CAS  Google Scholar 

  47. Nugent, L. J., Baybarz, R. D., Burnett, J. L. & Ryan, J. L. Electron-transfer and fd absorption bands of some lanthanide and actinide complexes and the standard (III–IV) oxidation potentials for each member of the lanthanide and actinide series. J. Inorg. Nucl. Chem. 33, 2503–2530 (1971).

    Article  CAS  Google Scholar 

  48. Cotton, S. Lanthanide and Actinide Chemistry 2nd edn (Wiley, 2024).

  49. Gompa, T. P., Ramanathan, A., Rice, N. T. & La Pierre, H. S. The chemical and physical properties of tetravalent lanthanides: Pr, Nd, Tb, and Dy. Dalton Trans. 49, 15945–15987 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Palumbo, C. T., Zivkovic, I., Scopelliti, R. & Mazzanti, M. Molecular complex of Tb in the +4 oxidation state. J. Am. Chem. Soc. 141, 9827–9831 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Xue, T. et al. Tetravalent terbium chelates: stability enhancement and property tuning. Precis. Chem. 1, 583–591 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xue, T., Ding, Y.-S. & Zheng, Z. A tetravalent praseodymium complex with field-induced slow magnetic relaxation. Dalton Trans. 53, 5779–5783 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Piro, N. A., Robinson, J. R., Walsh, P. J. & Schelter, E. J. The electrochemical behavior of cerium(III/IV) complexes: thermodynamics, kinetics and applications in synthesis. Coord. Chem. Rev. 260, 21–36 (2014).

    Article  CAS  Google Scholar 

  54. Rice, N. T. et al. Design, isolation, and spectroscopic analysis of a tetravalent terbium complex. J. Am. Chem. Soc. 141, 13222–13233 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Boggiano, A. C. et al. A four-coordinate Pr4+ imidophosphorane complex. Angew. Chem. Int. Ed. 63, e202409789 (2024).

    CAS  Google Scholar 

  56. Woen, D. H. & Evans, W. J. in Handbook on the Physics and Chemistry of Rare Earths Vol. 50 (eds Bünzli, J.-C. G. & Pecharsky, V. K.) 337–394 (Elsevier, 2016).

  57. MacDonald, M. R., Ziller, J. W. & Evans, W. J. Synthesis of a crystalline molecular complex of Y2+, [(18-crown-6)K][(C5H4SiMe3)3Y]. J. Am. Chem. Soc. 133, 15914–15917 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. MacDonald, M. R., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. Completing the series of +2 ions for the lanthanide elements: synthesis of molecular complexes of Pr2+, Gd2+, Tb2+, and Lu2+. J. Am. Chem. Soc. 135, 9857–9868 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Fieser, M. E. et al. Structural, spectroscopic, and theoretical comparison of traditional vs recently discovered Ln2+ ions in the [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln] complexes: the variable nature of Dy2+ and Nd2+. J. Am. Chem. Soc. 137, 369–382 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals 6th edn (Wiley, 2014).

  61. Kiselev, Y. M. et al. On existence and properties of plutonium(VIII) derivatives. Radiochim. Acta 102, 227–237 (2014).

    Article  CAS  Google Scholar 

  62. Sullivan, J. C. et al. Pulse radiolysis studies of americum(III) and curium(III) ions in perchlorate media. The preparation of Am II, Am IV, Cm II and Cm IV. Inorg. Nucl. Chem. Lett. 12, 599–601 (1976).

    Article  CAS  Google Scholar 

  63. Runde, W. H. & Mincher, B. J. Higher oxidation states of americium: preparation, characterization and use for separations. Chem. Rev. 111, 5723–5741 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Cary, S. K. et al. Emergence of californium as the second transitional element in the actinide series. Nat. Commun. 6, 6827 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).

    Article  CAS  Google Scholar 

  66. Walensky, J. R., Martin, R. L., Ziller, J. W. & Evans, W. J. Importance of energy level matching for bonding in Th3+-Am3+ actinide metallocene amidinates, (C5Me5)2[iPrNC(Me)NiPr]An. Inorg. Chem. 49, 10007–10012 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Kaltsoyannis, N. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg. Chem. 52, 3407–3413 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Tassell, M. J. & Kaltsoyannis, N. Covalency in AnCp4 (An = Th-Cm): a comparison of molecular orbital, natural population and atoms-in-molecules analyses. Dalton Trans. 39, 6719–6725 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Kirker, I. & Kaltsoyannis, N. Does covalency really increase across the 5f series? A comparison of molecular orbital, natural population, spin and electron density analyses of AnCp3 (An = Th-Cm; Cp = η5-C5H5). Dalton Trans. 40, 124–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Su, J. et al. Energy-degeneracy-driven covalency in actinide bonding. J. Am. Chem. Soc. 140, 17977–17984 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Chandrasekar, A. & Ghanty, T. K. Uncovering heavy actinide covalency: implications for minor actinide partitioning. Inorg. Chem. 58, 3744–3753 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Polinski, M. J. et al. Unusual structure, bonding and properties in a californium borate. Nat. Chem. 6, 387–392 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Silver, M. A. et al. Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state. Science 353, aaf3762 (2016).

    Article  PubMed  Google Scholar 

  74. Sperling, J. M. et al. Compression of curium pyrrolidine-dithiocarbamate enhances covalency. Nature 583, 396–399 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Kerridge, A. Quantification of f-element covalency through analysis of the electron density: insights from simulation. Chem. Commun. 53, 6685–6695 (2017).

    Article  CAS  Google Scholar 

  76. Kelley, M. P. et al. On the origin of covalent bonding in heavy actinides. J. Am. Chem. Soc. 139, 9901–9908 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Goodwin, C. A. P. et al. Isolation and characterization of a californium metallocene. Nature 599, 421–424 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Strittmatter, R. J. & Bursten, B. E. Bonding in tris(η5-cyclopentadienyl) actinide complexes. 5. A comparison of the bonding in neptunium, plutonium, and transplutonium compounds with that in lanthanide compounds and a transition-metal analogue. J. Am. Chem. Soc. 113, 552–559 (1991).

    Article  CAS  Google Scholar 

  79. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  80. Baumgärtner, F., Fischer, E. O., Kanellakopulos, B. & Laubereau, P. Triscyclopentadienylplutonium. Angew. Chem. Int. Ed. 4, 878 (1965).

    Article  Google Scholar 

  81. Baumgärtner, F., Fischer, E. O., Kanellakopulos, B. & Laubereau, P. Tri(cyclopentadienyl)americium(III). Angew. Chem. Int. Ed. 5, 134–135 (1966).

    Article  Google Scholar 

  82. Laubereau, P. G. & Burns, J. H. Tricyclopentadienyl-curium. Inorg. Nucl. Chem. Lett. 6, 59–63 (1970).

    Article  CAS  Google Scholar 

  83. Laubereau, P. G. & Burns, J. H. Microchemical preparation of tricyclopentadienyl compounds of berkelium, californium, and some lanthanide elements. Inorg. Chem. 9, 1091–1095 (1970).

    Article  CAS  Google Scholar 

  84. Apostolidis, C., Dutkiewicz, M. S., Kovács, A. & Walter, O. Solid-state structure of tris-cyclopentadienide uranium(III) and plutonium(III). Chem. Eur. J. 24, 2841–2844 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Dutkiewicz, M. S., Apostolidis, C., Walter, O. & Arnold, P. L. Reduction chemistry of neptunium cyclopentadienide complexes: from structure to understanding. Chem. Sci. 8, 2553–2561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maier, R., Kanellakopulos, B., Apostolidis, C., Meyer, D. & Rebizant, J. Molecular structure and charge distribution in organometallics of the 4f and 5f elements — V: crystal and molecular structure of tetrakis(η5-cyclopentadienyl)-thorium(IV) and the temperature dependence of its electrical dipole moment. J. Alloy. Compd. 190, 269–271 (1993).

    Article  CAS  Google Scholar 

  87. Burns, J. H. The molecular and crystal structure of tetracyclopentadienyluranium(IV). J. Organomet. Chem. 69, 225–233 (1974).

    Article  CAS  Google Scholar 

  88. Baumgärtner, F., Fischer, E. O., Kanellakopulos, B. & Laubereau, P. Tetrakis(cyclopentadienyl)protactinium(IV). Angew. Chem. Int. Ed. 8, 202–202 (1969).

    Article  Google Scholar 

  89. Baumgärtner, F., Fischer, E. O., Kanellakopulos, B. & Laubereau, P. Tetrakis(cyclopentadienyl)neptunium(IV). Angew. Chem. Int. Ed. 7, 634–634 (1968).

    Article  Google Scholar 

  90. Grignard, F. A. V. Sur quelques nouvelles combinaisons organométalliques du magnésium et leur application à des synthèses d’alcools et d’hydrocarbures. C. R. Hebd. Séances Acad. Sci. 130, 1322–1323 (1900).

  91. Mond, L., Langer, C. & Quincke, F. Action of carbon monoxide on nickel. J. Chem. Soc. Trans. 57, 749–753 (1890).

    Article  CAS  Google Scholar 

  92. Muetterties, E. L., Bleeke, J. R., Wucherer, E. J. & Albright, T. Structural, stereochemical, and electronic features of arene-metal complexes. Chem. Rev. 82, 499–525 (1982).

    Article  CAS  Google Scholar 

  93. Long, N. J. Metallocenes: An Introduction to Sandwich Complexes (Blackwell Science, 1998).

  94. Streitwieser, A. & Mueller-Westerhoff, U. Bis(cyclooctatetraenyl)uranium (uranocene). A new class of sandwich complexes that utilize atomic f orbitals. J. Am. Chem. Soc. 90, 7364–7364 (1968).

    Article  CAS  Google Scholar 

  95. Streitwieser, A. et al. Preparation and properties of uranocene, di-π-cyclooctatetraeneuranium(IV). J. Am. Chem. Soc. 95, 8644–8649 (1973).

    Article  CAS  Google Scholar 

  96. Lukens, W. W. et al. The roles of 4f- and 5f-orbitals in bonding: a magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study. Dalton Trans. 45, 11508–11521 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Cloke, F. G. N. & Tsoureas, N. in Comprehensive Organometallic Chemistry IV 4th edn (eds Parkin, G., Meyer, K. & O’hare, D.) 405–459 (Elsevier, 2022).

  98. Wilkinson, G. & Birmingham, J. M. Cyclopentadienyl compounds of Sc, Y, La, Ce and some lanthanide elements. J. Am. Chem. Soc. 76, 6210 (1954).

    Article  CAS  Google Scholar 

  99. Reynolds, L. T. & Wilkinson, G. π-Cyclopentadienyl compounds of uranium-IV and thorium-IV. J. Inorg. Nucl. Chem. 2, 246–253 (1956).

    Article  CAS  Google Scholar 

  100. Karraker, D. G. & Stone, J. A. Mössbauer and magnetic susceptibility studies of uranium(III), uranium(IV), neptunium(IV) compounds with the cyclopentadiene ion. Inorg. Chem. 11, 1742–1746 (1972).

    Article  CAS  Google Scholar 

  101. Calderazzo, F. in Encyclopedia of Inorganic Chemistry (2006).

  102. Nolan, S. P. & Marks, T. J. Spectroscopic detection of organolanthanide dihydrogen and olefin complexes. J. Am. Chem. Soc. 111, 8538–8540 (1989).

    Article  CAS  Google Scholar 

  103. Sheline, R. K. & Slater, J. L. Spectral evidence for lanthanoid and actinoid carbonyl compounds. Angew. Chem. Int. Ed. 14, 309–313 (1975).

    Article  Google Scholar 

  104. Slater, J. L., DeVore, T. C. & Calder, V. Detection of neodymium and ytterbium carbonyls using matrix isolation. Inorg. Chem. 12, 1918–1921 (1973).

    Article  CAS  Google Scholar 

  105. Selg, P., Brintzinger, H. H., Schultz, M. & Andersen, R. A. Solution infrared spectroscopic studies on equilibrium reactions of CO with the decamethylmetallocenes Cp*2MII, where MII = Mg, Ca, Sr, Ba, Sm, Eu, Yb. Organometallics 21, 3100–3107 (2002).

    Article  CAS  Google Scholar 

  106. del Mar Conejo, M. et al. Carbon monoxide and isocyanide complexes of trivalent uranium metallocenes. Chem. Eur. J. 5, 3000–3009 (1999).

    Article  Google Scholar 

  107. Evans, W. J., Kozimor, S. A., Nyce, G. W. & Ziller, J. W. Comparative reactivity of sterically crowded nf3 (C5Me5)3Nd and (C5Me5)3U complexes with CO: formation of a nonclassical carbonium ion versus an f element metal carbonyl complex. J. Am. Chem. Soc. 125, 13831–13835 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Ward, R. J., Rosal, I. D., Kelley, S. P., Maron, L. & Walensky, J. R. Isolation of C1 through C4 derivatives from CO using heteroleptic uranium(III) metallocene aryloxide complexes. Chem. Sci. 14, 2024–2032 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maron, L., Eisenstein, O. & Andersen, R. A. The bond between CO and Cp′3U in Cp′3U(CO) involves back-bonding from the Cp′3U ligand-based orbitals of π-symmetry, where Cp′ represents a substituted cyclopentadienyl ligand. Organometallics 28, 3629–3635 (2009).

    Article  CAS  Google Scholar 

  110. Ortu, F. Rare earth starting materials and methodologies for synthetic chemistry. Chem. Rev. 122, 6040–6116 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Asprey, L. B., Keenan, T. K. & Kruse, F. H. Preparation and crystal data for lanthanide and actinide triiodides. Inorg. Chem. 3, 1137–1141 (1964).

    Article  CAS  Google Scholar 

  112. Enriquez, A. E., Matonic, J. H., Scott, B. L. & Neu, M. P. Preparation and structures of homoleptic Pu(III) and U(III) acetonitrile salts. Chem. Commun. https://doi.org/10.1039/B303558A (2003).

  113. Avens, L. R. et al. A convenient entry into trivalent actinide chemistry: synthesis and characterization of AnI3(THF)4 and An[N(SiMe3)2]3 (An = U, Np, Pu). Inorg. Chem. 33, 2248–2256 (1994).

    Article  CAS  Google Scholar 

  114. Copping, R. et al. A versatile precursor for non-aqueous neptunyl(V) chemistry. Chem. Commun. 47, 5497–5499 (2011).

    Article  CAS  Google Scholar 

  115. Reilly, S. D., Brown, J. L., Scott, B. L. & Gaunt, A. J. Synthesis and characterization of NpCl4(DME)2 and PuCl4(DME)2 neutral transuranic An(IV) starting materials. Dalton Trans. 43, 1498–1501 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Whitefoot, M. A., Perales, D., Zeller, M. & Bart, S. C. Synthesis of non-aqueous neptunium(III) halide solvates from NpO2. Chem. Eur. J. 27, 18054–18057 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Goodwin, C. A. P., Janicke, M. T., Scott, B. L. & Gaunt, A. J. [AnI3(THF)4] (An = Np, Pu) preparation bypassing An0 metal precursors: access to Np3+/Pu3+ nonaqueous and organometallic complexes. J. Am. Chem. Soc. 143, 20680–20696 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Gaunt, A. J., Reilly, S. D., Hayton, T. W., Scott, B. L. & Neu, M. P. An entry route into non-aqueous plutonyl coordination chemistry. Chem. Commun. https://doi.org/10.1039/B618577K (2007).

  119. Reilly, S. D., Scott, B. L. & Gaunt, A. J. [N(n-Bu)4]2[Pu(NO3)6] and [N(n-Bu)4]2[PuCl6]: starting materials to facilitate nonaqueous plutonium(IV) chemistry. Inorg. Chem. 51, 9165–9167 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Gaunt, A. J., Enriquez, A. E., Reilly, S. D., Scott, B. L. & Neu, M. P. Structural characterization of Pu[N(SiMe3)2]3, a synthetically useful nonaqueous plutonium(III) precursor. Inorg. Chem. 47, 26–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Gaunt, A. J. et al. Low-valent molecular plutonium halide complexes. Inorg. Chem. 47, 8412–8419 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Galley, S. S. et al. Conversion of americia to anhydrous trivalent americium halides. Organometallics 38, 606–609 (2019).

    Article  CAS  Google Scholar 

  123. Long, B. N. et al. Altering the spectroscopy, electronic structure, and bonding of organometallic curium(III) upon coordination of 4,4′-bipyridine. Nat. Commun. 14, 3774 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Russo, D. R. et al. Berkelium–carbon bonding in a tetravalent berkelocene. Science 387, 974–978 (2025).

    Article  CAS  PubMed  Google Scholar 

  125. Goodwin, C. A. P. et al. N-Heterocyclic carbene to actinide d-based π-bonding correlates with observed metal–carbene bond length shortening versus lanthanide congeners. J. Am. Chem. Soc. 146, 10367–10380 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Clark, D. L., Sattelberger, A. P., Bott, S. G. & Vrtis, R. N. Lewis base adducts of uranium triiodide: a new class of synthetically useful precursors for trivalent uranium chemistry. Inorg. Chem. 28, 1771–1773 (1989).

    Article  CAS  Google Scholar 

  127. Clark, D. L., Frankcom, T. M., Miller, M. M. & Watkin, J. G. Facile solution routes to hydrocarbon-soluble Lewis base adducts of thorium tetrahalides. synthesis, characterization, and X-ray structure of ThBr4(THF)4. Inorg. Chem. 31, 1628–1633 (2002).

    Article  Google Scholar 

  128. Fetrow, T. V., Grabow, J. P., Leddy, J. & Daly, S. R. Convenient syntheses of trivalent uranium halide starting materials without uranium metal. Inorg. Chem. 60, 7593–7601 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Travia, N. E., Monreal, M. J., Scott, B. L. & Kiplinger, J. L. Thorium-mediated ring-opening of tetrahydrofuran and the development of a new thorium starting material: preparation and chemistry of ThI4(DME)2. Dalton Trans. 41, 14514–14523 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Cantat, T., Scott, B. L. & Kiplinger, J. L. Convenient access to the anhydrous thorium tetrachloride complexes ThCl4(DME)2, ThCl4(1,4-dioxane)2 and ThCl4(THF)3.5 using commercially available and inexpensive starting materials. Chem. Commun. 46, 919–921 (2010).

    Article  CAS  Google Scholar 

  131. Monreal, M. J. et al. UI4(1,4-dioxane)2, [UCl4(1,4-dioxane)]2, and UI3(1,4-dioxane)1.5: stable and versatile starting materials for low- and high-valent uranium chemistry. Organometallics 30, 2031–2038 (2011).

    Article  CAS  Google Scholar 

  132. Lopez, L. M., Uible, M. C., Zeller, M. & Bart, S. C. Lewis base adducts of NpCl4. Chem. Commun. 60, 5956–5959 (2024).

    Article  CAS  Google Scholar 

  133. Windorff, C. J., Celis-Barros, C., Sperling, J. M., McKinnon, N. C. & Albrecht-Schmitt, T. E. Probing a variation of the inverse-trans-influence in americium and lanthanide tribromide tris(tricyclohexylphosphine oxide) complexes. Chem. Sci. 11, 2770–2782 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wedal, J. C. et al. Synthesis of trimethyltriazacyclohexane (Me3tach) sandwich complexes of uranium, neptunium, and plutonium triiodides: (Me3tach)2AnI3. Inorg. Chem. 62, 5897–5905 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Baumgärtner, F., Fischer, E. O. & Laubereau, P. Über die existenz von tri-cyclopentadienyl-neptunium(IV)-halogenid. Naturwissenschaften 52, 560–560 (1965).

    Article  Google Scholar 

  136. Crisler, L. R. & Eggerman, W. G. A novel synthesis of triscyclopentadienyl plutonium (III). J. Inorg. Nucl. Chem. 36, 1424–1426 (1974).

    Article  CAS  Google Scholar 

  137. Laubereau, P. G. The formation of dicyclopentadienylberkeliumchloride. Inorg. Nucl. Chem. Lett. 6, 611–616 (1970).

    Article  CAS  Google Scholar 

  138. Karraker, D. G. & Stone, J. A. Covalency of neptunium(IV) tris(cyclopentadienyl) compounds from Mössbauer spectra. Inorg. Chem. 18, 2205–2207 (1979).

    Article  CAS  Google Scholar 

  139. Karraker, D. G. Cyclopentadienyl bonding in bis(cyclopentadienyl)neptunium(IV) compounds from 237Np Mössbauer spectra. Inorg. Chem. 22, 503–506 (1983).

    Article  CAS  Google Scholar 

  140. Karraker, D. G., Stone, J. A., Jones, E. R. & Edelstein, N. Bis(cyclooctatetraenyl)neptunium(IV) and bis(cyclooctatetraenyl)plutonium(IV). J. Am. Chem. Soc. 92, 4841–4845 (1970).

    Article  CAS  Google Scholar 

  141. Bagnall, K. W. et al. Anionic tris(cyclopentadienyl)actinide(IV) complexes. J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/DT9820001999 (1982).

  142. Bagnall, K. W., Plews, M. J. & Brown, D. Some oxygen donor complexes of cyclopentadienylneptunium(IV) trichloride. J. Less Common Met. 90, 29–35 (1983).

    Article  CAS  Google Scholar 

  143. Bagnall, K. W., Payne, G. F. & Brown, D. Phosphine oxide complexes of cyclopentadienyl neptunium(IV) and plutonium(IV) N-thiocyanates. J. Less Common Met. 116, 333–339 (1986).

    Article  CAS  Google Scholar 

  144. Bagnall, K. W., Payne, G. F., Alcock, N. W., Flanders, D. J. & Brown, D. Actinide structural studies. Part 8. Some new oxygen-donor complexes of trichloro(cyclopentadienyl)neptunium(IV); the crystal structure of trichloro(η5-cyclopentadienyl)bis(methyldiphenylphosphine oxide)neptunium(IV). J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/DT9860000783 (1986).

  145. De Ridder, D. J. A., Apostolidis, C., Rebizant, J., Kanellakopulos, B. & Maier, R. Tris(η5-cyclopentadienyl)phenolatoneptunium(IV). Acta Crystallogr. C 52, 1436–1438 (1996).

    Article  Google Scholar 

  146. Fischer, E. O. & Hristidu, Y. Über aromatenkomplexe von metallen LVII. Uran-tetracyclopentadienyl. Z. Naturforsch. B 17, 275–276 (1962).

    Article  Google Scholar 

  147. Fischer, E. O. & Treiber, A. Über aromatenkomplexe von metallen LIX. Thorium-tetra-cyclopentadienyl. Z. Naturforsch. B 17, 276–277 (1962).

    Article  Google Scholar 

  148. Bagnall, K. W., Plews, M. J. & Brown, D. Tris(cyclopentadienyl)plutonium(IV) chloride and thiocyanate, (η5-C5H5)3PuCl and (η5-C5H5)3Pu(NCS). J. Organomet. Chem. 224, 263–266 (1982).

    Article  CAS  Google Scholar 

  149. Goodwin, C. A. P. et al. [Am(C5Me4H)3]: an organometallic americium complex. Angew. Chem. Int. Ed. 58, 11695–11699 (2019).

    Article  CAS  Google Scholar 

  150. Schumann, H., Glanz, M., Hemling, H. & Ekkehard Hahn, F. Organometallic compounds of the lanthanides. 93. Tetramethylcyclopentadienyl complexes of selected 4f-elements. Z. Anorg. Allg. Chem. 621, 341–345 (1995).

    Article  CAS  Google Scholar 

  151. Evans, W. J., Rego, D. B. & Ziller, J. W. Synthesis, structure, and 15N NMR studies of paramagnetic lanthanide complexes obtained by reduction of dinitrogen. Inorg. Chem. 45, 10790–10798 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Siladke, N. A. et al. Actinide metallocene hydride chemistry: C–H activation in tetramethylcyclopentadienyl ligands to form [μ-η5-C5Me3H(CH2)-κC]2− tuck-over ligands in a tetrathorium octahydride complex. Organometallics 32, 6522–6531 (2013).

    Article  CAS  Google Scholar 

  153. Windorff, C. J. et al. Small-scale metal-based syntheses of lanthanide iodide, amide, and cyclopentadienyl complexes as analogues for transuranic reactions. Inorg. Chem. 56, 11981–11989 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Long, B. N., Sperling, J. M., Windorff, C. J. & Albrecht-Schönzart, T. E. Characterization of the organoamericium complex Cp′3Am. Organometallics 42, 3048–3052 (2023).

    Article  CAS  Google Scholar 

  155. Wedal, J. C. et al. Structural variations in cyclopentadienyl uranium(III) iodide complexes. J. Coord. Chem. 74, 74–91 (2020).

    Article  Google Scholar 

  156. Carnall, W. T. & Wybourne, B. G. Electronic energy levels of the lighter actinides: U3+, Np3+, Pu3+, Am3+, and Cm3+. J. Chem. Phys. 40, 3428–3433 (1964).

    Article  CAS  Google Scholar 

  157. Carnall, W. T. A systematic analysis of the spectra of trivalent actinide chlorides in D3h site symmetry. J. Chem. Phys. 96, 8713–8726 (1992).

    Article  CAS  Google Scholar 

  158. Sonnenberger, D. C. & Gaudiello, J. Synthesis and cyclic voltammetric study of bis(pentamethylcyclopentadienyl)neptunium dichloride. J. Less Common Met. 126, 411–414 (1986).

    Article  CAS  Google Scholar 

  159. Finke, R. G., Gaughan, G. & Voegeli, R. Organoactinide electrochemistry. A cyclic voltammetric and coulometric study of (C5Me5)2UCl2, [(C5Me5)2UCl2·THF]Na+, (C5Me5)2UCl·THF and (C5Me5)2ThCl2. J. Organomet. Chem. 229, 179–184 (1982).

    Article  CAS  Google Scholar 

  160. Dietrich, H. M., Ziller, J. W., Anwander, R. & Evans, W. J. Reactivity of (C5Me5)2UMe2 and (C5Me5)2UMeCl toward group 13 alkyls. Organometallics 28, 1173–1179 (2009).

    Article  CAS  Google Scholar 

  161. Straub, T. et al. Intermolecular hydroamination of terminal alkynes catalyzed by organoactinide complexes. scope and mechanistic studies. Organometallics 20, 5017–5035 (2001).

    Article  CAS  Google Scholar 

  162. Spirlet, M. R., Rebizant, J., Apostolidis, C. & Kanellakopulos, B. Bis(cyclopentadienyl) actinide(IV) compounds. I. The structure of dichlorobis(pentamethyl-η5-cyclopentadienyl)uranium(IV) and dichlorobis(pentamethyl-η5-cyclopentadienyl)thorium(IV). Acta Crystallogr. C 48, 2135–2137 (1992).

    Article  Google Scholar 

  163. Kovacs, A., Apostolidis, C. & Walter, O. Competing metal-ligand interactions in tris(cyclopentadienyl)-cyclohexylisonitrile complexes of trivalent actinides and lanthanides. Molecules 27, 3811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Burns, J. H. & Baldwin, W. H. Molecular and crystal structure of the adduct of cyclohexylisonitrile and praseodymium tricyclopentadienide. J. Organomet. Chem. 120, 361–368 (1976).

    Article  CAS  Google Scholar 

  165. Kanellakopulos, B., Aderhold, C., Dornberger, E., Müller, W. & Baybarz, R. D. The energy gap of the lowest manifolds in americium triscyclopentadienide. Radiochim. Acta 25, 89–92 (1978).

    Article  CAS  Google Scholar 

  166. Arnold, P. L. et al. Subtle interactions and electron transfer between UIII, NpIII, or PuIII and uranyl mediated by the oxo group. Angew. Chem. Int. Ed. 55, 12797–12801 (2016).

    Article  CAS  Google Scholar 

  167. Arnold, P. L., Patel, D., Pécharman, A.-F., Wilson, C. & Love, J. B. Equatorial ligand substitution by hydroxide in uranyl Pacman complexes of a Schiff-base pyrrole macrocycle. Dalton Trans. 39, 3501–3508 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Evans, W. J. Tutorial on the role of cyclopentadienyl ligands in the discovery of molecular complexes of the rare-earth and actinide metals in new oxidation states. Organometallics 35, 3088–3100 (2016).

    Article  CAS  Google Scholar 

  169. Windorff, C. J. et al. Identification of the formal +2 oxidation state of plutonium: synthesis and characterization of {PuII[C5H3(SiMe3)2]3}. J. Am. Chem. Soc. 139, 3970–3973 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Su, J. et al. Identification of the formal +2 oxidation state of neptunium: synthesis and characterization of {NpII[C5H3(SiMe3)2]3}1−. J. Am. Chem. Soc. 140, 7425–7428 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Langeslay, R. R., Fieser, M. E., Ziller, J. W., Furche, F. & Evans, W. J. Synthesis, structure, and reactivity of crystalline molecular complexes of the {[C5H3(SiMe3)2]3Th}1− anion containing thorium in the formal +2 oxidation state. Chem. Sci. 6, 517–521 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Windorff, C. J. et al. Expanding the chemistry of molecular U2+ complexes: synthesis, characterization, and reactivity of the {[C5H3(SiMe3)2]3U} anion. Chem. Eur. J. 22, 772–782 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. MacDonald, M. R. et al. Identification of the +2 oxidation state for uranium in a crystalline molecular complex, [K(2.2.2-cryptand)][(C5H4SiMe3)3U]. J. Am. Chem. Soc. 135, 13310–13313 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Zalkin, A., Brennan, J. G. & Andersen, R. A. Tris(trimethylsilylcyclopentadienyl)uranium(III). Acta Crystallogr. C 44, 2104–2106 (1988).

    Article  Google Scholar 

  175. Krinsky, J. L., Minasian, S. G. & Arnold, J. Covalent lanthanide chemistry near the limit of weak bonding: observation of (CpSiMe3)3Ce–ECp* and a comprehensive density functional theory analysis of Cp3Ln−ECp (E = Al, Ga). Inorg. Chem. 50, 345–357 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Minasian, S. G. et al. A comparison of 4f vs 5f metal–metal bonds in (CpSiMe3)3M–ECp* (M = Nd, U; E = Al, Ga; Cp* = C5Me5): synthesis, thermodynamics, magnetism, and electronic structure. J. Am. Chem. Soc. 131, 13767–13783 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Peterson, J. K., MacDonald, M. R., Ziller, J. W. & Evans, W. J. Synthetic aspects of (C5H4SiMe3)3Ln rare-earth chemistry: formation of (C5H4SiMe3)3Lu via [(C5H4SiMe3)2Ln]+ metallocene precursors. Organometallics 32, 2625–2631 (2013).

    Article  CAS  Google Scholar 

  178. Long, B. N., Sperling, J. M., Windorff, C. J., Huffman, Z. K. & Albrecht-Schonzart, T. E. Expanding transuranium organoactinide chemistry: synthesis and characterization of (Cp′3M)2(μ-4,4′-bpy) (M = Ce, Np, Pu). Inorg. Chem. 62, 6368–6374 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Long, B. N. et al. Cyclopentadienyl coordination induces unexpected ionic Am-N bonding in an americium bipyridyl complex. Nat. Commun. 13, 201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mehdoui, T., Berthet, J. C., Thuery, P. & Ephritikhine, M. CCDC 958634: experimental crystal structure determination. CCDC https://doi.org/10.5517/cc115jpf (2013).

  181. Formanuik, A. et al. Double reduction of 4,4′-bipyridine and reductive coupling of pyridine by two thorium(III) single-electron transfers. Chem. Eur. J. 23, 2290–2293 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Nugent, L. J., Baybarz, R. D., Burnett, J. L. & Ryan, J. L. Electron-transfer and f-d absorption bands of some lanthanide and actinide complexes and the standard (II-III) oxidation potential for each member of the lanthanide and actinide series. J. Phys. Chem. 77, 1528–1539 (1973).

    Article  CAS  Google Scholar 

  183. Zalkin, A. & Raymond, K. N. Structure of di-π-cyclooctatetraeneuranium (uranocene). J. Am. Chem. Soc. 91, 5667–5668 (1969).

    Article  CAS  Google Scholar 

  184. Avdeef, A., Raymond, K. N., Hodgson, K. O. & Zalkin, A. Two isostructural actinide π complexes. Crystal and molecular structure of bis(cyclooctatetraenyl)uranium(IV), U(C8H8)2, and bis(cyclooctatetraenyl)thorium(IV), Th(C8H8)2. Inorg. Chem. 11, 1083–1088 (1972).

    Article  CAS  Google Scholar 

  185. Streitwieser, A. Jr. & Yoshida, N. Di-π-cyclooctatetraenethorium. J. Am. Chem. Soc. 91, 7528 (1969).

    Article  CAS  Google Scholar 

  186. Kurras, E. & Kruger, C., CCDC 256935: experimental crystal structure determination. CCDC https://doi.org/10.5517/cc8mc7g (2005).

  187. De Ridder, D. J. A., Rebizant, J., Apostolidis, C., Kanellakopulos, B. & Dornberger, E. Bis(cyclooctatetraenyl)neptunium(IV). Acta Crystallogr. C 52, 597–600 (1996).

    Article  Google Scholar 

  188. Windorff, C. J. et al. A single small-scale plutonium redox reaction system yields three crystallographically-characterizable organoplutonium complexes. Inorg. Chem. 59, 13301–13314 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Magnani, N. et al. Magnetic memory effect in a transuranic mononuclear complex. Angew. Chem. Int. Ed. 50, 1696–1698 (2011).

    Article  CAS  Google Scholar 

  190. Starks, D. F., Parsons, T. C., Streitwieser, A. & Edelstein, N. Bis(π-cyclooctatetraene)protactinium. Inorg. Chem. 13, 1307–1308 (1974).

    Article  CAS  Google Scholar 

  191. Karraker, D. G. Bis(alkylcyclooctatetraenyl)actinide(IV) compounds. Inorg. Chem. 12, 1105–1108 (1973).

    Article  CAS  Google Scholar 

  192. Streitwieser, A. Jr., Dempf, D., La Mar, G. N., Karraker, D. G. & Edelstein, N. Bis(1,3,5,7-tetramethylcyclooctatetraene)uranium(IV) and bis(1,3,5,7-tetramethylcyclooctatetraene)-neptunium(IV). Proton magnetic resonance spectrum and the question of f-orbital covalency. J. Am. Chem. Soc. 93, 7343–7344 (1971).

    Article  CAS  Google Scholar 

  193. Solar, J. P., Burghard, H. P. G., Banks, R. H., Streitwieser, A. & Brown, D. Bis(η8-1,3,5,7-tetramethylcyclooctatetraene) compounds of protactinium, neptunium, and plutonium. Inorg. Chem. 19, 2186–2188 (1980).

    Article  CAS  Google Scholar 

  194. Boussie, T. R., Eisenberg, D. C., Rigsbee, J., Streitwieser, A. & Zalkin, A. Structures of organo-f-element compounds differing in the oxidation state of the central metal: crystal structures of bis([8]annulene) complexes of cerium(IV), ytterbium(III), and uranium(III). Organometallics 10, 1922–1928 (1991).

    Article  CAS  Google Scholar 

  195. Hodgson, K. O. & Raymond, K. N. Rotomeric configurations of a methyl-substituted cyclooctatetraene dianion complex of uranium(IV). Crystal and molecular structure of bis(1,3,5,7-tetramethylcyclooctatetraenyl)uranium(IV), U(C8H4(CH3)4)2. Inorg. Chem. 12, 458–466 (1973).

    Article  CAS  Google Scholar 

  196. Thompson, S. G., Cunningham, B. B. & Seaborg, G. T. Chemical properties of berkelium. J. Am. Chem. Soc. 72, 2798–2801 (1950).

    Article  CAS  Google Scholar 

  197. Bratsch, S. G. & Lagowski, J. J. Actinide thermodynamic predictions. 3. Thermodynamics of compounds and aquo-ions of the 2+, 3+, and 4+ oxidation states and standard electrode potentials at 298.15 K. J. Phys. Chem. 90, 307–312 (1986).

    Article  CAS  Google Scholar 

  198. Russo, D. R. et al. Synthesis and characterization of isostructural annulated actinocenes. Chem. Commun. 61, 2504–2507 (2025).

    Article  CAS  Google Scholar 

  199. Apostolidis, C. et al. A structurally characterized organometallic plutonium(IV) complex. Angew. Chem. Int. Ed. 56, 5066–5070 (2017).

    Article  CAS  Google Scholar 

  200. Burton, N. C., Cloke, F. G. N., Hitchcock, P. B., de Lemos, H. C. & Sameh, A. A. Scandium, yttrium, uranium, and thorium derivatives of the 1,4-bis(trimethylsilyl)cyclo-octatetraene dianion; the X-ray crystal structure of [Sc2(η-C8H6{1,4-(SiMe3)2})2(µ-Cl)2(µ-THF)] (THF = tetrahydrofuran). J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39890001462 (1989).

  201. Clegg, W. & A., M., CCDC 284020: experimental crystal structure determination. CCDC https://doi.org/10.5517/cc9jjy8 (2005).

  202. Rausch, J. et al. One ligand fits all: lanthanide and actinide sandwich complexes comprising the 1,4-bis(trimethylsilyl)cyclooctatetraenyl (= COT′′) ligand. N. J. Chem. 39, 7656–7666 (2015).

    Article  CAS  Google Scholar 

  203. Le Roy, J. J., Gorelsky, S. I., Korobkov, I. & Murugesu, M. Slow magnetic relaxation in uranium(III) and neodymium(III) cyclooctatetraenyl complexes. Organometallics 34, 1415–1418 (2015).

    Article  Google Scholar 

  204. Lorenz, V. et al. Unprecedented bending and rearrangement of f-element sandwich complexes induced by superbulky cyclooctatetraenide ligands. J. Am. Chem. Soc. 133, 1257–1259 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Chen, Q. W., Ding, Y. S., Zhu, X. F., Wang, B. W. & Zheng, Z. Substituent positioning effects on the magnetic properties of sandwich-type erbium(III) complexes with bis(trimethylsilyl)-substituted cyclooctatetraenyl ligands. Inorg. Chem. 63, 9511–9519 (2023).

    Article  PubMed  Google Scholar 

  206. Karraker, D. G. Absorption spectrum of KAm(C8H8)2 in the solution. J. Inorg. Nucl. Chem. 39, 87–89 (1977).

    Article  CAS  Google Scholar 

  207. Karraker, D. G. & Stone, J. A. Bis(cyclooctatetraenyl)neptunium(III) and -plutonium(III) compounds. J. Am. Chem. Soc. 96, 6885–6888 (1974).

    Article  CAS  Google Scholar 

  208. Kot, W. K., Shalimoff, G. V., Edelstein, N. M., Edelman, M. A. & Lappert, M. F. [ThIII5-C5H3(SiMe3)2]3], an actinide compound with a 6d1 ground state. J. Am. Chem. Soc. 110, 986–987 (1988).

    Article  CAS  Google Scholar 

  209. Parry, J. S., Cloke, F. G. N., Coles, S. J. & Hursthouse, M. B. Synthesis and characterization of the first sandwich complex of trivalent thorium: a structural comparison with the uranium analogue. J. Am. Chem. Soc. 121, 6867–6871 (1999).

    Article  CAS  Google Scholar 

  210. Hodgson, K. O. & Raymond, K. N. An ion pair complex formed between bis(cyclooctatetraenyl)cerium(III) anion and an ether-coordinated potassium cation. The crystal and molecular structure of [K(CH3OCH2CH2)2O][Ce(C8H8)2]. Inorg. Chem. 11, 3030–3035 (1972).

    Article  CAS  Google Scholar 

  211. Palumbo, C. T., Fieser, M. E., Ziller, J. W. & Evans, W. J. Reactivity of complexes of 4fn5d1 and 4fn+1 Ln2+ ions with cyclooctatetraene. Organometallics 36, 3721–3728 (2017).

    Article  CAS  Google Scholar 

  212. Kotyk, C. M., MacDonald, M. R., Ziller, J. W. & Evans, W. J. Reactivity of the Ln2+ complexes [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln]: reduction of naphthalene and biphenyl. Organometallics 34, 2287–2295 (2015).

    Article  CAS  Google Scholar 

  213. Jena, R. et al. A rare isocyanide derived from an unprecedented neutral yttrium(II) bis(amide) complex. Chem. Sci. 14, 4257–4264 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Billow, B. S. et al. Synthesis and characterization of a neutral U(II) arene sandwich complex. J. Am. Chem. Soc. 140, 17369–17373 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Straub, M. D. et al. A uranium(II) arene complex that acts as a uranium(I) synthon. J. Am. Chem. Soc. 143, 19748–19760 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. Keener, M. et al. Multielectron redox chemistry of uranium by accessing the +II oxidation state and enabling reduction to a U(I) synthon. J. Am. Chem. Soc. 145, 16271–16283 (2023).

    Article  CAS  PubMed  Google Scholar 

  217. Cloke, F. G. N. Zero oxidation state compounds of scandium, yttrium, and the lanthanides. Chem. Soc. Rev. 22, 17–24 (1993).

    Article  CAS  Google Scholar 

  218. La Pierre, H. S., Scheurer, A., Heinemann, F. W., Hieringer, W. & Meyer, K. Synthesis and characterization of a uranium(II) monoarene complex supported by δ backbonding. Angew. Chem. Int. Ed. 53, 7158–7162 (2014).

    Article  Google Scholar 

  219. Dutkiewicz, M. S. et al. Organometallic neptunium(III) complexes. Nat. Chem. 8, 797–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. Ilango, S., Vidjayacoumar, B. & Gambarotta, S. Samarium complexes of a σ-/π-pyrrolide/arene based macrocyclic ligand. Dalton Trans. 39, 6853–6857 (2010).

    Article  CAS  PubMed  Google Scholar 

  221. Murillo, J. et al. Synthesis and comparison of iso-structural f-block metal complexes (Ce, U, Np, Pu) featuring η6-arene interactions. Chem. Sci. 14, 7438–7446 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Pattenaude, S. A., Anderson, N. H., Bart, S. C., Gaunt, A. J. & Scott, B. L. Non-aqueous neptunium and plutonium redox behaviour in THF — access to a rare Np(III) synthetic precursor. Chem. Commun. 54, 6113–6116 (2018).

    Article  CAS  Google Scholar 

  223. Pividori, D. et al. Uranium going the soft way: low-valent uranium(III) coordinated to an arene-anchored tris-thiophenolate ligand. Inorg. Chem. 60, 16455–16465 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. La Pierre, H. S., Kameo, H., Halter, D. P., Heinemann, F. W. & Meyer, K. Coordination and redox isomerization in the reduction of a uranium(III) monoarene complex. Angew. Chem. Int. Ed. 53, 7154–7157 (2014).

    Article  Google Scholar 

  225. Mills, D. P. & Evans, P. f-Block phospholyl and arsolyl chemistry. Chem. Eur. J. 27, 6645–6665 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Le Floch, P. Phosphaalkene, phospholyl and phosphinine ligands: new tools in coordination chemistry and catalysis. Coord. Chem. Rev. 250, 627–681 (2006).

    Article  Google Scholar 

  227. Černá, M. et al. Isostructural σ-hydrocarbyl phospholide complexes of uranium, neptunium, and plutonium. Chem. Commun. 58, 13278–13281 (2022).

    Article  Google Scholar 

  228. Gradoz, P. et al. Synthesis, crystal structure and some derivatives of the chlorotris(tetramethylphospholyl)uranium. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39920001720 (1992).

  229. Izod, K., Liddle, S. T. & Clegg, W. A convenient route to lanthanide triiodide THF solvates. Crystal structures of LnI3(THF)4 [Ln = Pr] and LnI3(THF)3.5 [Ln = Nd, Gd, Y]. Inorg. Chem. 43, 214–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  230. Carpenter, S. H. et al. Employing a template synthesis to access diastereopure Np(IV) and U(IV) complexes and analysis of their 5f orbitals in bonding. Inorg. Chem. Front. 11, 3731–3743 (2024).

    Article  CAS  Google Scholar 

  231. Fichter, S. et al. Enantiomerically pure tetravalent neptunium amidinates: synthesis and characterization. Chem. Eur. J. 26, 8867–8870 (2020).

    Article  CAS  PubMed  Google Scholar 

  232. Kloditz, R. et al. Series of tetravalent actinide amidinates: structure determination and bonding analysis. Inorg. Chem. 59, 15670–15680 (2020).

    Article  CAS  PubMed  Google Scholar 

  233. Zwick, B. D., Sattelberger, A. P. & Avens, L. R. in Transuranium Elements: A Half Century (eds Morss, L. R. & Fuger, J.) 239–246 (American Chemical Society, 1992)

  234. Myers, A. J., Tarlton, M. L., Kelley, S. P., Lukens, W. W. & Walensky, J. R. Synthesis and utility of neptunium(III) hydrocarbyl complex. Angew. Chem. Int. Ed. 58, 14891–14895 (2019).

    Article  CAS  Google Scholar 

  235. Kihara, S. et al. A critical evaluation of the redox properties of uranium, neptunium and plutonium ions in acidic aqueous solutions. Pure Appl. Chem. 71, 1771–1807 (1999).

    Article  CAS  Google Scholar 

  236. Behrle, A. C. et al. Uranium(III) and thorium(IV) alkyl complexes as potential starting materials. Chem. Commun. 52, 14373–14375 (2016).

    Article  CAS  Google Scholar 

  237. Baker, R. J. The coordination and organometallic chemistry of UI3 and U{N(SiMe3)2}3: synthetic reagents par excellence. Coord. Chem. Rev. 256, 2843–2871 (2012).

    Article  CAS  Google Scholar 

  238. Goodwin, C. A. P. & Mills, D. P. in Specialist Periodical Reports: Organometallic Chemistry Organometallic Chemistry Vol. 41, 123–156 (Royal Society of Chemistry, 2017).

  239. Hervé, A. et al. UIII–CN versus UIV–NC coordination in tris(silylamide) complexes. Inorg. Chem. 54, 2474–2490 (2015).

    Article  PubMed  Google Scholar 

  240. Bradley, D. C., Ghotra, J. S. & Hart, F. A. Tris-[bis-trimethylsilylamido]-monochloro-thorium(IV); a 4-coordinated thorium compound. Inorg. Nucl. Chem. Lett. 10, 209–211 (1974).

    Article  CAS  Google Scholar 

  241. Turner, H. W., Andersen, R. A., Zalkin, A. & Templeton, D. H. Chloro-, methyl-, and (tetrahydroborato)tris((hexamethyldisilyl)amido)thorium(IV) and uranium(IV). Crystal structure of (tetrahydroborato)tris((hexamethyldisilyl)amido)thorium(IV). Inorg. Chem. 18, 1221–1224 (1979).

    Article  CAS  Google Scholar 

  242. Smiles, D. E., Wu, G., Kaltsoyannis, N. & Hayton, T. W. Thorium–ligand multiple bonds via reductive deprotection of a trityl group. Chem. Sci. 6, 3891–3899 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Staun, S. L. et al. Expanding the nonaqueous chemistry of neptunium: synthesis and structural characterization of [Np(NR2)3Cl], [Np(NR2)3Cl], and [Np{N(R)(SiMe2CH2)}2(NR2)] (R = SiMe3). Inorg. Chem. 60, 2740–2748 (2021).

    Article  CAS  PubMed  Google Scholar 

  244. Goodwin, C. A. P., Tuna, F., McInnes, E. J. L. & Mills, D. P. Exploring synthetic routes to heteroleptic UIII, UIV, and ThIV bulky bis(silyl) amide complexes. Eur. J. Inorg. Chem. https://doi.org/10.1002/ejic.201800036 (2018).

  245. Roger, M. et al. U(SMes*)n, (n = 3, 4) and Ln(SMes*)3 (Ln = La, Ce, Pr, Nd): lanthanide(III)/actinide(III) differentiation in agostic interactions and an unprecedented η3 ligation mode of the arylthiolate ligand, from X-ray diffraction and DFT analysis. J. Am. Chem. Soc. 128, 8790–8802 (2006).

    Article  CAS  PubMed  Google Scholar 

  246. Berg, J. M. et al. Early actinide alkoxide chemistry. Synthesis, characterization, and molecular structures of Th(IV) and U(IV) aryloxide complexes. J. Am. Chem. Soc. 114, 10811–10821 (1992).

    Article  CAS  Google Scholar 

  247. Simpson, S. J., Turner, H. W. & Andersen, R. A. Hydrogen-deuterium exchange: perdeuteriohydridotris(hexamethyldisilylamido)thorium(IV) and -uranium(IV). J. Am. Chem. Soc. 101, 7728–7729 (1979).

    Article  CAS  Google Scholar 

  248. Bell, N. L., Maron, L. & Arnold, P. L. Thorium mono- and bis(imido) complexes made by reprotonation of cyclo-metalated amides. J. Am. Chem. Soc. 137, 10492–10495 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Gregson, M. et al. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes. Nat. Commun. 8, 14137 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Goodwin, C. A. P. et al. Carbene complexes of neptunium. J. Am. Chem. Soc. 144, 9764–9774 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Murillo, J. et al. Carbene complexes of plutonium: structure, bonding, and divergent reactivity to lanthanide analogs. J. Am. Chem. Soc. 146, 4098–4111 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. de Frémont, P., Marion, N. & Nolan, S. P. Carbenes: synthesis, properties, and organometallic chemistry. Coord. Chem. Rev. 253, 862–892 (2009).

    Article  Google Scholar 

  253. Nelson, D. J. & Nolan, S. P. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chem. Soc. Rev. 42, 6723–6753 (2013).

    Article  CAS  PubMed  Google Scholar 

  254. Arnold, P. L. & Casely, I. J. f-Block N-heterocyclic carbene complexes. Chem. Rev. 109, 3599–3611 (2009).

    Article  CAS  PubMed  Google Scholar 

  255. Gregson, M., Wooles, A. J., Cooper, O. J. & Liddle, S. T. Covalent uranium carbene chemistry. Comments Inorg. Chem. 35, 262–294 (2015).

    Article  CAS  Google Scholar 

  256. Ephritikhine, M. Uranium carbene compounds. C. R. Chim. 16, 391–405 (2013).

    Article  CAS  Google Scholar 

  257. Nakai, H., Hu, X., Zakharov, L. N., Rheingold, A. L. & Meyer, K. Synthesis and characterization of N-heterocyclic carbene complexes of uranium(III). Inorg. Chem. 43, 855–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  258. Mehdoui, T., Berthet, J. C., Thuéry, P. & Ephritikhine, M. The remarkable efficiency of N-heterocyclic carbenes in lanthanide(III)/actinide(III) differentiation. Chem. Commun. https://doi.org/10.1039/B503526K (2005).

  259. Goodwin, C. A. P. et al. Structural and spectroscopic comparison of soft-Se vs. hard-O donor bonding in trivalent americium/neodymium molecules. Angew. Chem. Int. Ed. 60, 9459–9466 (2021).

    Article  CAS  Google Scholar 

  260. Cross, J. N. et al. Comparing the 2,2′-biphenylenedithiophosphinate binding of americium with neodymium and europium. Angew. Chem. Int. Ed. 55, 12755–12759 (2016).

    Article  CAS  Google Scholar 

  261. Cary, S. K. et al. A series of dithiocarbamates for americium, curium, and californium. Dalton Trans. 47, 14452–14461 (2018).

    Article  CAS  PubMed  Google Scholar 

  262. Denning, R. G. et al. Covalency in the uranyl ion: a polarized x-ray spectroscopic study. J. Chem. Phys. 117, 8008–8020 (2002).

    Article  CAS  Google Scholar 

  263. Kovács, A., Konings, R. J., Gibson, J. K., Infante, I. & Gagliardi, L. Quantum chemical calculations and experimental investigations of molecular actinide oxides. Chem. Rev. 115, 1725–1759 (2015).

    Article  PubMed  Google Scholar 

  264. Ephritikhine, M. The vitality of uranium molecular chemistry at the dawn of the XXIst century. Dalton Trans. https://doi.org/10.1039/B603463B (2006).

  265. Hayton, T. W. Metal-ligand multiple bonding in uranium: structure and reactivity. Dalton Trans. 39, 1145–1158 (2010).

    Article  CAS  PubMed  Google Scholar 

  266. Wildman, E. P., Balázs, G., Wooles, A. J., Scheer, M. & Liddle, S. T. Thorium-phosphorus triamidoamine complexes containing Th-P single- and multiple-bond interactions. Nat. Commun. 7, 12884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Du, J. et al. Thorium-nitrogen multiple bonds provide evidence for pushing-from-below for early actinides. Nat. Commun. 10, 4203 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Du, J. et al. Thorium- and uranium-azide reductions: a transient dithorium-nitride versus isolable diuranium-nitrides. Chem. Sci. 10, 3738–3745 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Ren, W., Zi, G., Fang, D.-C. & Walter, M. D. Thorium oxo and sulfido metallocenes: synthesis, structure, reactivity, and computational studies. J. Am. Chem. Soc. 133, 13183–13196 (2011).

    Article  CAS  PubMed  Google Scholar 

  270. Smiles, D. E., Wu, G., Hrobárik, P. & Hayton, T. W. Use of 77Se and 125Te NMR spectroscopy to probe covalency of the actinide-chalcogen bonding in [Th(En){N(SiMe3)2}3] (E = Se, Te; n = 1, 2) and their oxo-uranium(VI) congeners. J. Am. Chem. Soc. 138, 814–825 (2016).

    Article  CAS  PubMed  Google Scholar 

  271. Smiles, D. E., Wu, G., Hrobárik, P. & Hayton, T. W. Synthesis, thermochemistry, bonding, and 13C NMR chemical shift analysis of a phosphorano-stabilized carbene of thorium. Organometallics 36, 4519–4524 (2017).

    Article  CAS  Google Scholar 

  272. Staun, S. L., Sergentu, D.-C., Wu, G., Autschbach, J. & Hayton, T. W. Use of 15N NMR spectroscopy to probe covalency in a thorium nitride. Chem. Sci. 10, 6431–6436 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Sergentu, D.-C. et al. Probing the electronic structure of a thorium nitride complex by solid-state 15N NMR spectroscopy. Inorg. Chem. 59, 10138–10145 (2020).

    Article  CAS  PubMed  Google Scholar 

  274. Ma, G., Ferguson, M. J., McDonald, R. & Cavell, R. G. Actinide metals with multiple bonds to carbon: synthesis, characterization, and reactivity of U(IV) and Th(IV) bis(iminophosphorano)methandiide pincer carbene complexes. Inorg. Chem. 50, 6500–6508 (2011).

    Article  CAS  PubMed  Google Scholar 

  275. Rupasinghe, D. M. R. Y. P. et al. Actinide–oxygen multiple bonds from air: synthesis and characterization of a thorium oxo supported by redox-active ligands. J. Am. Chem. Soc. 144, 17423–17431 (2022).

    Article  CAS  PubMed  Google Scholar 

  276. King, D. M. et al. Synthesis and structure of a terminal uranium nitride complex. Science 337, 717–720 (2012).

    Article  CAS  PubMed  Google Scholar 

  277. King, D. M. et al. Isolation and characterization of a uranium(VI)-nitride triple bond. Nat. Chem. 5, 482–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  278. Hayton, T. W. Recent developments in actinide-ligand multiple bonding. Chem. Commun. 49, 2956–2973 (2013).

    Article  CAS  Google Scholar 

  279. Gibson, J. K. Actinide gas-phase chemistry: reactions of An+ and AnO+ [An = Th, U, Np, Pu, Am] with nitriles and butylamine. Inorg. Chem. 38, 165–173 (1999).

    Article  CAS  Google Scholar 

  280. Marçalo, J. & Gibson, J. K. Gas-phase energetics of actinide oxides: an assessment of neutral and cationic monoxides and dioxides from thorium to curium. J. Phys. Chem. A 113, 12599–12606 (2009).

    Article  PubMed  Google Scholar 

  281. Infante, I. et al. Ionization energies for the actinide mono- and dioxides series, from Th to Cm: theory versus experiment. J. Phys. Chem. A 114, 6007–6015 (2010).

    Article  CAS  PubMed  Google Scholar 

  282. Pereira, C. C., Marsden, C. J., Marçalo, J. & Gibson, J. K. Actinide sulfides in the gas phase: experimental and theoretical studies of the thermochemistry of AnS (An = Ac, Th, Pa, U, Np, Pu, Am and Cm). Phys. Chem. Chem. Phys. 13, 12940–12958 (2011).

    Article  CAS  PubMed  Google Scholar 

  283. Dau, P. D., Vasiliu, M., Peterson, K. A., Dixon, D. A. & Gibson, J. K. Remarkably high stability of late actinide dioxide cations: extending chemistry to pentavalent berkelium and californium. Chem. Eur. J. 23, 17369–17378 (2017).

    Article  CAS  PubMed  Google Scholar 

  284. Dutkiewicz, M. S. et al. A terminal neptunium(V)-mono(oxo) complex. Nat. Chem. 14, 342–349 (2022).

    Article  CAS  PubMed  Google Scholar 

  285. King, D. M. et al. Single-molecule magnetism in a single-ion triamidoamine uranium(V) terminal mono-oxo complex. Angew. Chem. Int. Ed. 52, 4921–4924 (2013).

    Article  CAS  Google Scholar 

  286. Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119, 2326–2337 (2015).

    Article  PubMed  Google Scholar 

  287. La Pierre, H. S. & Meyer, K. Uranium–ligand multiple bonding in uranyl analogues, [L═;U═L]n+, and the inverse trans influence. Inorg. Chem. 52, 529–539 (2013).

    Article  PubMed  Google Scholar 

  288. Lewis, A. J., Carroll, P. J. & Schelter, E. J. Stable uranium(VI) methyl and acetylide complexes and the elucidation of an inverse trans influence ligand series. J. Am. Chem. Soc. 135, 13185–13192 (2013).

    Article  CAS  PubMed  Google Scholar 

  289. Denning, R. G. in Complexes, Clusters and Crystal Chemistry Structure and Bonding Vol. 79, 215–276 (Springer, 1992).

  290. Denning, R. G. Electronic structure and bonding in actinyl ions and their analogs. J. Phys. Chem. A 111, 4125–4143 (2007).

    Article  CAS  PubMed  Google Scholar 

  291. Tatsumi, K. & Hoffmann, R. Bent cis d0 MoO22+ vs. linear trans d0f0 UO22+: a significant role for nonvalence 6p orbitals in uranyl. Inorg. Chem. 19, 2656–2658 (1980).

    Article  CAS  Google Scholar 

  292. Seed, J. A. et al. Anomalous magnetism of uranium(IV)-oxo and -imido complexes reveals unusual doubly degenerate electronic ground states. Chem 7, 1666–1680 (2021).

    Article  CAS  Google Scholar 

  293. Hayton, T. W. et al. Synthesis of imido analogs of the uranyl ion. Science 310, 1941–1943 (2005).

    Article  CAS  PubMed  Google Scholar 

  294. Brown, J. L. et al. A linear trans-bis(imido) neptunium(V) actinyl analog: NpV(NDipp)2(tBu2bipy)2Cl (Dipp = 2,6-iPr2C6H3). J. Am. Chem. Soc. 137, 9583–9586 (2015).

    Article  CAS  PubMed  Google Scholar 

  295. Jilek, R. E. et al. A general and modular synthesis of monoimidouranium(IV) dihalides. Inorg. Chem. 50, 4235–4237 (2011).

    Article  CAS  PubMed  Google Scholar 

  296. Jilek, R. E. et al. A direct route to bis(imido)uranium(V) halides via metathesis of uranium tetrachloride. J. Am. Chem. Soc. 134, 9876–9878 (2012).

    Article  CAS  PubMed  Google Scholar 

  297. Wooles, A. J. et al. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings. Nat. Commun. 9, 2097 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Baker, C. F., Seed, J. A., Adams, R. W., Lee, D. & Liddle, S. T. 13C carbene nuclear magnetic resonance chemical shift analysis confirms CeIV=C double bonding in cerium(IV)–diphosphonioalkylidene complexes. Chem. Sci. 15, 238–249 (2024).

    Article  CAS  Google Scholar 

  299. Cooper, O. J. et al. Uranium-carbon multiple bonding: facile access to the pentavalent uranium carbene [U{C(PPh2NSiMe3)2}(Cl)2(I)] and comparison of UV=C and UIV=C bonds. Angew. Chem. Int. Ed. 50, 2383–2386 (2011).

    Article  CAS  Google Scholar 

  300. Mills, D. P. et al. Synthesis of a uranium(VI)-carbene: reductive formation of uranyl(V)-methanides, oxidative preparation of a [R2C═U═O]2+ analogue of the [O═U═O]2+ uranyl ion (R = Ph2PNSiMe3), and comparison of the nature of UIV═C, U(V)═C, and UVI═C double bonds. J. Am. Chem. Soc. 134, 10047–10054 (2012).

    Article  CAS  PubMed  Google Scholar 

  301. Otte, K. S. et al. Divergent stabilities of tetravalent cerium, uranium, and neptunium imidophosphorane complexes. Angew. Chem. Int. Ed. 62, e202306580 (2023).

    Article  CAS  Google Scholar 

  302. Otte, K. S. et al. Proton-coupled electron transfer at the Pu5+/4+ couple. J. Am. Chem. Soc. 146, 21859–21867 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Morss, L. R. Thermochemical properties of yttrium, lanthanum, and the lanthanide elements and ions. Chem. Rev. 76, 827–841 (1976).

    Article  CAS  Google Scholar 

  304. Niklas, J. E. et al. A tetrahedral neptunium(V) complex. Nat. Chem. 16, 1490–1495 (2024).

    Article  CAS  PubMed  Google Scholar 

  305. Gardner, B. M. et al. Evidence for single metal two electron oxidative addition and reductive elimination at uranium. Nat. Commun. 8, 1898 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Klinkenberg, P. F. A. Spectral structure of trebly ionized thorium, Th IV. Physica B+C 151, 552–567 (1988).

    Article  CAS  Google Scholar 

  307. Guerra, M., Amaro, P., Santos, J. P. & Indelicato, P. Relativistic calculations of screening parameters and atomic radii of neutral atoms. At. Data Nucl. Data Tables 117–118, 439–457 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Royal Society for generously supporting C.A.P.G. with a University Research Fellowship (URF\211271) and the Engineering and Physical Sciences Research Council (EP/Y006534/1) for the funding to B.L.L.R. We also thank the University of Manchester School of Natural Sciences and Department of Chemistry for providing PhD studentships (under EPSRC DTP EP/W524347/1) to R.E.M. and C.N.D.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. C.A.P.G. and B.L.L.R. discussed the content. All authors wrote the article then reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Conrad A. P. Goodwin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Scott Daly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Réant, B.L.L., Deakin, C.N., MacKenzie, R.E. et al. Transuranium organometallic chemistry. Nat Rev Chem 9, 578–600 (2025). https://doi.org/10.1038/s41570-025-00732-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00732-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing