Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Steering towards safe self-driving laboratories

Abstract

The past decade has witnessed remarkable advancements in autonomous systems, such as automobiles that are evolving from traditional vehicles to ones capable of navigating complex environments without human intervention. Similarly, the rise of self-driving laboratories (SDLs), which leverage robotics and artificial intelligence to accelerate discovery, is driving a paradigm shift in scientific research. As SDLs evolve to expand the scope of chemical processes that can be performed, it is essential to bring safety to the forefront to ensure that the necessary safeguards are in place to mitigate against potential accidents that range from near-misses to catastrophic failures. This Perspective examines the development trajectory of SDLs, juxtaposing their development with those of other autonomous technologies, with a particular focus on safety. We explore current safety status and concerns, identify opportunities for innovation to shape this rapidly evolving landscape, and reflect on the actions the SDL community can take moving forward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Safety features that are important in different self-driving laboratory (SDL) components.
Fig. 2: A two-pillared approach to closing the safety gap.
Fig. 3: Strategies for enhanced robotic vision-based safety.
Fig. 4: Hypothetical risk assessment matrix for classifying self-driving laboratory (SDL) risk levels.

Similar content being viewed by others

References

  1. Teshome Kumsa Kurse, G. G. & Daba, G. F. Assessment of the state of the art in the performance and utilisation level of automated vehicles. Int. J. Sustain. Eng. 17, 1–17 (2024).

    Google Scholar 

  2. Burnett, K. et al. Building a winning self-driving car in six months. In 2019 International Conference on Robotics and Automation (ICRA), 9583–9589 (ICRA, 2019).

  3. Talpes, E. et al. Compute solution for Tesla’s full self-driving computer. IEEE Micro 40, 25–35 (2020).

    Article  Google Scholar 

  4. Jebessa, E., Olana, K., Getachew, K., Isteefanos, S. & Mohd, T. K. Analysis of reinforcement learning in autonomous vehicles. In 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), 0087–0091 (IEEE, 2022).

  5. Cummings, M. L. & Bauchwitz, B. Safety implications of variability in autonomous driving assist alerting. IEEE Trans. Intell. Transp. Syst. 23, 12039–12049 (2022).

    Article  Google Scholar 

  6. Gillmore, S. C. & Tenhundfeld, N. L. The good, the bad, and the ugly: evaluating Tesla’s human factors in the wild west of self-driving cars. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 64, 67–71 (2020).

    Article  Google Scholar 

  7. Xu, J., Kendrick, K. & Bowers, A. R. Clinical report: experiences of a driver with vision impairment when using a Tesla car. Optom. Vis. Sci. 99, 417–421 (2022).

    Article  PubMed  Google Scholar 

  8. Kusano, K. D. et al. Comparison of Waymo Rider-only crash data to human benchmarks at 7.1 million miles. Traffic Inj Prev. 25 (sup1), S66-S77 (2024).

    PubMed  Google Scholar 

  9. Stilgoe, J. How can we know a self-driving car is safe? Ethics Inf. Technol. 23, 635–647 (2021).

    Article  Google Scholar 

  10. National Transport Safety Board. Collision between vehicle controlled by developmental automated driving system and pedestrian, Tempe, Arizona (National Transport Safety Board, 2019).

  11. National Transport Safety Board. Collision between a sport utility vehicle operating with partial driving automation and a crash attenuator, Mountain View, California (National Transport Safety Board, 2020).

  12. Wang, W. et al. I can see the light: attacks on autonomous vehicles using invisible lights. In Proc. 2021 ACM SIGSAC Conference on Computer and Communications Security, 1930–1944 (ACM SIGSAC, 2021).

  13. Brown, B., Broth, M. & Vinkhuyzen, E. The halting problem: video analysis of self-driving cars in traffic. In Proc. 2023 CHI Conference on Human Factors in Computing Systems (ACM, 2023).

  14. Penmetsa, P., Sheinidashtegol, P., Musaev, A., Adanu, E. K. & Hudnall, M. Effects of the autonomous vehicle crashes on public perception of the technology. IATSS Res. 45, 485–492 (2021).

    Article  Google Scholar 

  15. Nguyen, T.-H., Vu, T. G., Tran, H.-L. & Wong, K.-S. Emerging privacy and trust issues for autonomous vehicle systems. In 2022 International Conference on Information Networking (ICOIN), 52–57 (IEEE, 2022).

  16. Marson, J. & Ferris, K. The lexicon of self-driving vehicles and the fuliginous obscurity of ‘autonomous’ vehicles. Statut. Law Rev. 44, 016 (2021).

    Google Scholar 

  17. Christensen, M. et al. Automation isn’t automatic. Chem. Sci. 12, 15473–15490 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dunn, A. L. et al. Reducing risk: strategies to advance laboratory safety through diversity, equity, inclusion, and respect. J. Am. Chem. Soc. 145, 11468–11471 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. United Nations Secretariat. Report of the Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification and Labelling of Chemicals on its eleventh session standard ST/SG/AC.10/50/Add.3 (United Nations, 2011).

  20. Hill, R. H. GHS and its impact on laboratory safety. J. Chem. Health Saf. 17, 5–11 (2010).

    Article  CAS  Google Scholar 

  21. Jonai, H. Impact of the GHS on chemical management in Japan. ACS Chem. Health Saf. 28, 320–325 (2021).

    Article  CAS  Google Scholar 

  22. Rashidi, M. A. et al. Application of social media in chemical safety training: a case study of training GHS standards to students and laboratory staff at a university. J. Chem. Educ. 100, 517–527 (2023).

    Article  CAS  Google Scholar 

  23. Safety at Dow. DOW Inc. https://corporate.dow.com/en-us/about-dow/ambition/innovation/lab-safety.html.

  24. Sigmann, S. B., McEwen, L. R. & Stuart, R. A community approach to academic research safety. Trends Chem. 1, 275–278 (2019).

    Article  CAS  Google Scholar 

  25. Hill, R. H. Building strong cultures with chemical safety education. J. Chem. Educ. 98, 113–117 (2021).

    Article  CAS  Google Scholar 

  26. Abedsoltan, H. & Shiflett, M. B. Mitigation of potential risks in chemical laboratories: a focused review. ACS Chem. Health Saf. 31, 104–120 (2024).

    Article  CAS  Google Scholar 

  27. International Organization for Standardization. I.O. ISO12100:2010: safety of machinery — general principles for design — risk assessment and risk reduction (ISO, 2022).

  28. Breivold, H. P. & Sandstrom, K. Internet of Things for industrial automation — challenges and technical solutions. In 2015 IEEE International Conference on Data Science and Data Intensive Systems, 532–539 (IEEE, 2015).

  29. Kriaa, S., Pietre-Cambacedes, L., Bouissou, M. & Halgand, Y. A survey of approaches combining safety and security for industrial control systems. Reliab. Eng. Syst. Saf. 139, 156–178 (2015).

    Article  Google Scholar 

  30. Vysocky, A. & Novak, P. Human–robot collaboration in industry. MM Sci. J. https://doi.org/10.17973/MMSJ.2016_06_201611 (2016).

  31. Segura, P., Lobato-Calleros, O., Ramírez-Serrano, A. & Hernández Martínez, E. G. Safety assurance in human-robot collaborative systems: a survey in the manufacturing industry. Procedia CIRP 107, 740–745 (2022).

    Article  Google Scholar 

  32. Martin, H. G. et al. Perspectives for self-driving labs in synthetic biology. Curr. Opin. Biotechnol. 79, 102881 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Stach, E. et al. Autonomous experimentation systems for materials development: a community perspective. Matter 4, 2702–2726 (2021).

    Article  Google Scholar 

  34. Bayley, O., Savino, E., Slattery, A. & Noël, T. Autonomous chemistry: navigating self-driving labs in chemical and material sciences. Matter 7, 2382–2398 (2024).

    Article  CAS  Google Scholar 

  35. Scott, R. T. et al. Biomonitoring and precision health in deep space supported by artificial intelligence. Nat. Mach. Intell. 5, 196–207 (2023).

    Article  Google Scholar 

  36. Sanders, L. M. et al. Biological research and self-driving labs in deep space supported by artificial intelligence. Nat. Mach. Intell. 5, 208–219 (2023).

    Article  Google Scholar 

  37. Aspuru-Guzik, A. et al. Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-throughput Methods with Artificial Intelligence. Report of the Clean Energy Materials Innovation Challenge Expert Workshop (CIFAR, 2018).

  38. Topham, S. A. in The History of the Catalytic Synthesis of Ammonia (eds Anderson, J. R. & Boudart, M.) 1–50 (Springer, 1985).

  39. Merrifield, R. B., Stewart, J. M. & Jernberg, N. Instrument for automated synthesis of peptides. Anal. Chem. 38, 1905–1914 (1966).

    Article  CAS  PubMed  Google Scholar 

  40. Owens, G. D., Eckstein, R. J. & Franz, T. P. Laboratory robotics — past, present, and future. Microchim. Acta 89, 15–30 (1986).

    Article  Google Scholar 

  41. Little, J. N. Advances in laboratory robotics for automated sample preparation. Chemom. Intell. Lab. Syst. 21, 199–205 (1993).

    Article  CAS  Google Scholar 

  42. King, R. D. et al. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. King, R. D. et al. The automation of science. Science 324, 85–89 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Darvish, K. et al. ORGANA: a robotic assistant for automated chemistry experimentation and characterization. Matter 8, 101897 (2024).

    Article  Google Scholar 

  45. Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang, Y. et al. Autonomous biomimetic solid dispensing using a dual-arm robotic manipulator. Digit. Discov. 2, 1733–1744 (2023).

    Article  Google Scholar 

  47. Butterworth, A., Pizzuto, G., Pecyna, L., Cooper, A. I. & Luo, S. Leveraging multi-modal sensing for robotic insertion tasks in R & D laboratories. In 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), 1–8 (IEEE, 2023).

  48. Pizzuto, G. et al. Accelerating laboratory automation through robot skill learning for sample scraping. In 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), 2103–2110 (IEEE, 2024).

  49. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Fakhruldeen, H., Pizzuto, G., Glowacki, J. & Cooper, A. I. ARChemist: autonomous robotic chemistry system architecture. In 2022 International Conference on Robotics and Automation (ICRA), 6013–6019 (IEEE, 2022).

  51. Wang, Y. R. et al. MVTrans: multi-view perception of transparent objects. In 2023 IEEE International Conference on Robotics and Automation (ICRA), 3771–3778 (IEEE, 2023).

  52. Yoshikawa, N. et al. Chemistry lab automation via constrained task and motion planning. Preprint at https://doi.org/10.48550/arXiv.2212.09672 (2023).

  53. Tom, G. et al. Self-driving laboratories for chemistry and materials science. Chem. Rev. 124, 9633–9732 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roch, L. M. et al. ChemOS: orchestrating autonomous experimentation. Sci. Robot. 3, 5559 (2018).

    Article  Google Scholar 

  55. Sim, M. et al. ChemOS 2.0: an orchestration architecture for chemical self-driving laboratories. Matter 7, 2959–2977 (2024).

    Article  CAS  Google Scholar 

  56. Fitzpatrick, D. E., Battilocchio, C. & Ley, S. V. A novel internet-based reaction monitoring, control and autonomous self-optimization platform for chemical synthesis. Org. Process Res. Dev. 20, 386–394 (2016).

    Article  CAS  Google Scholar 

  57. Air Force Research Laboratory. ARES OS™. Github https://github.com/AFRL-ARES/ARES-OS (2021).

  58. Nikolaev, P. et al. Autonomy in materials research: a case study in carbon nanotube growth. NPJ Comput. Mater. 2, 16031 (2016).

    Article  Google Scholar 

  59. Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11, 5966 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bédard, A.-C. et al. Reconfigurable system for automated optimization of diverse chemical reactions. Science 361, 1220–1225 (2018).

    Article  PubMed  Google Scholar 

  61. Grizou, J., Points, L. J., Sharma, A. & Cronin, L. A curious formulation robot enables the discovery of a novel protocell behavior. Sci. Adv. 6, eaay4237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Epps, R. W. et al. Artificial chemist: an autonomous quantum dot synthesis bot. Adv. Mater. 32, 2001626 (2020).

    Article  CAS  Google Scholar 

  63. Strieth-Kalthoff, F. et al. Delocalized, asynchronous, closed-loop discovery of organic laser emitters. Science 384, 756 (2024).

    Article  Google Scholar 

  64. Guevarra, D. et al. Orchestrating nimble experiments across interconnected labs. Digit. Discov. 2, 1806–1812 (2023).

    Article  Google Scholar 

  65. Manzano, C., Aspuru-Guzik, A., Vasquez, E. & Sparks, D. T. Review of low-cost self-driving laboratories in chemistry and materials science: the ’frugal twin’ concept. Digit. Discov. 3, 842–868 (2024).

    Article  Google Scholar 

  66. Fei, Y. et al. AlabOS: a python-based reconfigurable workflow management framework for autonomous laboratories. Digit. Discov. 3, 2275–2288 (2024).

    Article  Google Scholar 

  67. Lerner, R. M. At the forge: MongoDB. Linux Journal https://www.linuxjournal.com/article/10743 (2010).

  68. Colvin, S. Pydantic: data validation and settings management using Python type annotations https://github.com/pydantic/pydantic (GitHub 2025).

  69. Yoshikawa, N. et al. Large language models for chemistry robotics. Auton. Robot. 47, 1057–1086 (2023).

    Article  Google Scholar 

  70. Bran, A. M. et al. Augmenting large language models with chemistry tools. Nat. Mach. Intell. 6, 525–535 (2024).

    Article  Google Scholar 

  71. Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with large language models. Nature 624, 570–578 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, W. et al. Leveraging GPT-4 to transform chemistry from paper to practice. Digit. Discov. 3, 2367–2376 (2024).

    Article  Google Scholar 

  73. Pagel, S., Jirasek, M. & Cronin, L. Validation of the scientific literature via chemputation augmented by large language models. Preprint at https://doi.org/10.48550/arXiv.2410.06384 (2024)

  74. Breen, C. P., Nambiar, A. M. K., Jamison, T. F. & Jensen, K. F. Ready, set, flow! Automated continuous synthesis and optimization. Trends Chem. 3, 373–386 (2021).

    Article  Google Scholar 

  75. Pieber, B., Glasnov, T. & Kappe, C. O. Flash carboxylation: fast lithiation–carboxylation sequence at room temperature in continuous flow. RSC Adv. 4, 13430–13433 (2014).

    Article  CAS  Google Scholar 

  76. Wong, J. Y. F., Tobin, J. M., Vilela, F. & Barker, G. Batch versus flow lithiation–substitution of 1,3,4-oxadiazoles: exploitation of unstable intermediates using flow chemistry. Chem. Eur. J. 25, 12439–12445 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Gutmann, B., Cantillo, D. & Kappe, C. O. Continuous-flow technology — a tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem. Int. Ed. 54, 6688–6728 (2015).

    Article  CAS  Google Scholar 

  78. Movsisyan, M. et al. Taming hazardous chemistry by continuous flow technology. Chem. Soc. Rev. 45, 4892–4928 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Starr, J. & Quick, C. Robotic Safety Systems: An Applied Approach 1st edn (CRC, 2024).

  80. Occupational Safety and Health Standards: general requirements for all machines (1910 subpart O). Occupational Safety and Health Administration https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.212.

  81. ISO 10218-1:2011: robots and robotic devices — safety requirements for industrial robots. International Organization for Standardization https://www.iso.org/standard/51330.html (2011).

  82. Standard IISO/TS 15066:2016: robots and robotic devices — collaborative robots. International Organization for Standardization https://www.iso.org/standard/62996.html (2016).

  83. Ajoudani, A. et al. Progress and prospects of the human–robot collaboration. Auton. Robot. 42, 957–975 (2018).

    Article  Google Scholar 

  84. Garrett, C. R., Lozano-Pérez, T. & Kaelbling, L. P. PDDLStream: integrating symbolic planners and blackbox samplers via optimistic adaptive planning. In Proc. International Conference on Automated Planning and Scheduling 440–448 (AAAI, 2020).

  85. Vescovi, R. et al. Towards a modular architecture for science factories. Digit. Discov. 2, 1980–1998 (2023).

    Article  Google Scholar 

  86. Dasari, S. et al. RB2: robotic manipulation benchmarking with a twist. In 2021 Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks) https://openreview.net/forum?id=e82_BlJL43M (NeurIPS, 2021).

  87. Xian, Z. et al. FluidLab: a differentiable environment for benchmarking complex fluid manipulation. In 2023 International Conference on Learning Representations (ICLR) https://openreview.net/forum?id=Cp-io_BoFaE (ICLR, 2023).

  88. Wattoo, Z. S. et al. RABIT, a robot arm bug intervention tool for self-driving labs. In 2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 353–361 (IEEE Computer Society, 2024).

  89. Amyotte, P. R. et al. Why major accidents are still occurring. Curr. Opin. Chem. Eng. 14, 1–8 (2016).

    Article  Google Scholar 

  90. Ménard, A. D. & Trant, J. F. A review and critique of academic lab safety research. Nat. Chem. 12, 17–25 (2020).

    Article  PubMed  Google Scholar 

  91. Malm, T. et al. Safety of interactive robotics — learning from accidents. Int. J. Soc. Robot. 2, 221–227 (2010).

    Article  Google Scholar 

  92. Yang, S. et al. Robot application and occupational injuries: are robots necessarily safer? Saf. Sci. 147, 105623 (2022).

    Article  Google Scholar 

  93. Kim, S., Lee, J. & Kang, C. Analysis of industrial accidents causing through jamming or crushing accidental deaths in the manufacturing industry in South Korea: focus on non-routine work on machinery. Saf. Sci. 133, 104998 (2021).

    Article  Google Scholar 

  94. Arnold, C. Cloud labs: where robots do the research. Nature https://www.nature.com/articles/d41586-022-01618-x (2022).

  95. Quarta, D. et al. An experimental security analysis of an industrial robot controller. In 2017 IEEE Symposium on Security and Privacy (SP), 268–286 (IEEE, 2017).

  96. Giaretta, A., De Donno, M. & Dragoni, N. Adding salt to pepper: a structured security assessment over a humanoid robot. In Proc. 13th International Conference on Availability, Reliability and Security, 1–8 (ACM, 2018).

  97. Maher, B. Research integrity: sabotage! Nature 467, 516–518 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Bromig, L. et al. The SiLA 2 manager for rapid device integration and workflow automation. SoftwareX 17, 100991 (2022).

    Article  Google Scholar 

  99. Bai, J. et al. A dynamic knowledge graph approach to distributed self-driving laboratories. Nat. Commun. 15, 462 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wei, A., Haghtalab, N. & Steinhardt, J. Jailbroken: how does LLM safety training fail? In Advances in Neural Information Processing Systems 36, 80079–80110 (2023).

  101. Shayegani, E. et al. Survey of vulnerabilities in large language models revealed by adversarial attacks. Preprint at https://doi.org/10.48550/arXiv.2310.10844 (2023).

  102. Wei, Z., Wang, Y., Li, A., Mo, Y. & Wang, Y. Jailbreak and guard aligned language models with only few in-context demonstrations. Preprint at https://doi.org/10.48550/arXiv.2310.06387 (2024).

  103. The Bletchley Declaration by countries attending the AI Safety Summit, 1–2 November 2023. Gov.UK https://www.gov.uk/government/publications/ai-safety-summit-2023-the-bletchley-declaration/the-bletchley-declaration-by-countries-attending-the-ai-safety-summit-1-2-november-2023/ (2023).

  104. Seoul Ministerial Statement for advancing AI safety, innovation and inclusivity: AI Seoul Summit 2024. Gov.UK https://www.gov.uk/government/publications/seoul-ministerial-statement-for-advancing-ai-safety-innovation-and-inclusivity-ai-seoul-summit-2024/seoul-ministerial-statement-for-advancing-ai-safety-innovation-and-inclusivity-ai-seoul-summit-2024/ (2024).

  105. Bengio, Y. et al. International AI safety report 2025. https://www.gov.uk/government/publications/international-scientific-report-on-the-safety-of-advanced-ai (Department for Science, Innovation and Technology, AI Safety Institute, 2025).

  106. Peppin, A. et al. The reality of AI and biorisk. Preprint at https://doi.org/10.48550/arXiv.2412.01946 (2024).

  107. Urbina, F., Lentzos, F., Invernizzi, C. & Ekins, S. Dual use of artificial intelligence-powered drug discovery. Nat. Mach. Intell. 4, 189–191 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Grinbaum, A. & Adomaitis, L. Dual use concerns of generative AI and large language models. J. Responsible Innov. 11, 2304381 (2024).

    Article  Google Scholar 

  109. Barrett, A. M., Jackson, K., Murphy, E. R., Madkour, N. & Newman, J. Benchmark early and red team often: a framework for assessing and managing dual-use hazards of AI foundation models. In Center for Long-Term Cybersecurity (CLTC) White Paper Series. https://cltc.berkeley.edu/wp-content/uploads/2024/05/Dual-Use-Benchmark-Early-Red-Team-Often.pdf (CLTC, 2024).

  110. Esmradi, A., Yip, D. W. & Chan, C. F. A comprehensive survey of attack techniques, implementation, and mitigation strategies in large language models. In Ubiquitous Security: Third International Conference (eds Wang, G. et al.) 76–95 (Springer Nature, 2024).

  111. Liu, F., Jiang, J., Lu, Y., Huang, Z. & Jiang, J. The ethical security of large language models: a systematic review. Front. Eng. Manag. 12, 128–140 (2025).

    Article  Google Scholar 

  112. Wang, H. et al. A survey on responsible LLMs: inherent risk, malicious use, and mitigation strategy. Preprint at https://doi.org/10.48550/arXiv.2501.09431 (2025).

  113. Eppel, S., Xu, H., Bismuth, M. & Aspuru-Guzik, A. Computer vision for recognition of materials and vessels in chemistry lab settings and the Vector-LabPics data set. ACS Cent. Sci. 6, 1743–1752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tang, X. et al. Prioritizing safeguarding over autonomy: risks of LLM agents for science. Preprint at https://doi.org/10.48550/arXiv.2402.04247 (2024).

  115. Amodei, D. et al. Concrete problems in AI safety. Preprint at https://doi.org/10.48550/arXiv.1606.06565 (2016).

  116. Hendrycks, D., Carlini, N., Schulman, J. & Steinhardt, J. Unsolved problems in ML safety. Preprint at https://doi.org/10.48550/arXiv.2109.13916 (2022).

  117. Domkundwar, I., S, M. N. & Bhola, I. Safeguarding AI agents: developing and analyzing safety architectures. Preprint at https://doi.org/10.48550/arXiv.2409.03793 (2024).

  118. He, J. et al. Control risk for potential misuse of artificial intelligence in science. Preprint at https://doi.org/10.48550/arXiv.2312.06632 (2023).

  119. Cao, S. et al. Agents for self-driving laboratories applied to quantum computing. Preprint at https://doi.org/10.48550/arXiv.2412.07978 (2024).

  120. Nguyen, T. T., Nguyen, N. D. & Nahavandi, S. Deep reinforcement learning for multiagent systems: a review of challenges, solutions, and applications. IEEE Trans. Cybern. 50, 3826–3839 (2020).

    Article  PubMed  Google Scholar 

  121. Sypherd, C. & Belle, V. Practical considerations for agentic LLM systems. Preprint at https://doi.org/10.48550/arXiv.2412.04093 (2024).

  122. Amirkhani, A. & Barshooi, A. H. Consensus in multi-agent systems: a review. Artif. Intell. Rev. 55, 3897–3935 (2022).

    Article  Google Scholar 

  123. Hawizy, L., Jessop, D. M., Adams, N. & Murray-Rust, P. ChemicalTagger: a tool for semantic text-mining in chemistry. J. Cheminf. 3, 17 (2011).

    Article  CAS  Google Scholar 

  124. Leaman, R., Wei, C.-H. & Lu, Z. tmChem: high performance approach for chemical named entity recognition and normalization. J. Cheminf. 7, 3 (2015).

    Article  Google Scholar 

  125. Weston, L. et al. Named entity recognition and normalization applied to large-scale information extraction from the materials science literature. J. Chem. Inf. Model. 59, 3692–3702 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Mavračić, J., Court, C. J., Isazawa, T., Elliott, S. R. & Cole, J. M. ChemDataExtractor 2.0: autopopulated ontologies for materials science. J. Chem. Inf. Model. 61, 4280–4289 (2021).

    Article  PubMed  Google Scholar 

  127. Constantin, A., Pettifer, S. & Voronkov, A. PDFX: fully-automated pdf-to-xml conversion of scientific literature. In Proc. 2013 ACM Symposium on Document Engineering, 177–180 (ACM, 2013).

  128. Tkaczyk, D., Szostek, P., Fedoryszak, M., Dendek, P. J. & Bolikowski, L. CERMINE: automatic extraction of structured metadata from scientific literature. Int. J. Doc. Anal. Recognit. 18, 317–335 (2015).

    Article  Google Scholar 

  129. Zheng, Z., Zhang, O., Borgs, C., Chayes, J. T. & Yaghi, O. M. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J. Am. Chem. Soc. 145, 18048–18062 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gilligan, L. P. J., Cobelli, M., Taufour, V. & Sanvito, S. A rule-free workflow for the automated generation of databases from scientific literature. NPJ Comput. Mater. 9, 222 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Polak, M. P. & Morgan, D. Extracting accurate materials data from research papers with conversational language models and prompt engineering. Nat. Commun. 15, 1569 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ai, Q., Meng, F., Shi, J., Pelkie, B. & Coley, C. W. Extracting structured data from organic synthesis procedures using a fine-tuned large language model. Digit. Discov. 3, 1822–1831 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zheng, Z. et al. Image and data mining in reticular chemistry powered by GPT-4V. Digit. Discov. 3, 491–501 (2024).

    Article  Google Scholar 

  134. Leong, S. X., Pablo-García, S., Zhang, Z. & Aspuru-Guzik, A. Automated electrosynthesis reaction mining with multimodal large language models (MLLMs). Chem. Sci. 15, 17881–17891 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang, Y. et al. Potential of multimodal large language models for data mining of medical images and free-text reports. Meta-Radiology 2, 100103 (2024).

    Article  Google Scholar 

  136. Wang, Z. et al. Dataset of solution-based inorganic materials synthesis procedures extracted from the scientific literature. Sci. Data 9, 231 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Dong, Q. & Cole, J. M. Auto-generated database of semiconductor band gaps using ChemDataExtractor. Sci. Data 9, 193 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Beard, E. J. & Cole, J. M. Perovskite- and dye-sensitized solar-cell device databases auto-generated using ChemDataExtractor. Sci. Data 9, 329 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Baker, H., Smith, S., Masterton, G. & Hewlett, B. Data-led learning: using natural language processing (NLP) and machine learning to learn from construction site safety failures. In Proc. 36th Annual ARCOM Conference, 356–365 (ARCOM, 2020).

  140. Feng, X., Dai, Y., Ji, X., Zhou, L. & Dang, Y. Application of natural language processing in HAZOP reports. Process Saf. Environ. Prot. 155, 41–48 (2021).

    Article  CAS  Google Scholar 

  141. Ricketts, J., Barry, D., Guo, W. & Pelham, J. A scoping literature review of natural language processing application to safety occurrence reports. Safety 9, 22 (2023).

    Article  Google Scholar 

  142. Landman, R. et al. Using large language models for safety-related table summarization in clinical study reports. JAMIA Open 7, 043 (2024).

    Article  Google Scholar 

  143. Urben, P. G. (ed.) Brethericks Handbook of Reactive Chemical Hazards 8th edn (Elsevier, 2017).

  144. Tamascelli, N., Solini, R., Paltrinieri, N. & Cozzani, V. Learning from major accidents: a machine learning approach. Comput. Chem. Eng. 162, 107786 (2022).

    Article  CAS  Google Scholar 

  145. Hickman, R., Aldeghi, M. & Aspuru-Guzik, A. Anubis: Bayesian optimization with unknown feasibility constraints for scientific experimentation. Digit. Discov. https://doi.org/10.1039/D5DD00018A (2025).

  146. Gelbart, M. A., Snoek, J. & Adams, R. P. Bayesian optimization with unknown constraints. In Proc. 13th Conference on Uncertainty in Artificial Intelligence, 250–259 (AUAI, 2014).

  147. Ariafar, S., Coll-Font, J., Brooks, D. & Dy, J. ADMMBO: Bayesian optimization with unknown constraints using ADMM. J. Mach. Learn. Res. 20, 1–26 (2019).

    Google Scholar 

  148. Bergmann, D. & Graichen, K. Safe Bayesian optimization under unknown constraints. In 2020 59th IEEE Conference on Decision and Control (CDC), 3592–3597 (IEEE, 2020).

  149. Hickman, R. J., Aldeghi, M., Häse, F. & Aspuru-Guzik, A. Bayesian optimization with known experimental and design constraints for chemistry applications. Digit. Discov. 1, 732–744 (2022).

    Article  CAS  Google Scholar 

  150. Tian, Y. et al. Boundary exploration for Bayesian optimization with unknown physical constraints. Preprint at https://doi.org/10.48550/arXiv.2402.07692 (2024).

  151. Isele, D., Nakhaei, A. & Fujimura, K. Safe reinforcement learning on autonomous vehicles. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1–6 (IEEE, 2018).

  152. Dalal, G. et al. Safe exploration in continuous action spaces. Preprint at https://doi.org/10.48550/arXiv.1801.08757 (2018).

  153. Wen, L., Duan, J., Li, S. E., Xu, S. & Peng, H. Safe reinforcement learning for autonomous vehicles through parallel constrained policy optimization. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 1–7 (IEEE, 2020).

  154. Gu, S. et al. A review of safe reinforcement learning: methods, theory and applications. IEEE Trans. Pattern Anal. Mach. Intell. 46, 11216–11235 (2024).

  155. Tuo, R. & Wang, W. Uncertainty quantification for Bayesian optimization. In Proc. 25th International Conference on Artificial Intelligence and Statistics. Proc. Machine Learning Research (eds Camps-Valls, G. et al.) Vol. 151, 2862–2884 (Society for Artificial Intelligence and Statistics, 2022).

  156. Kennedy, M. et al. Autonomous precision pouring from unknown containers. IEEE Robot. Autom. Lett. 4, 2317–2324 (2019).

    Article  Google Scholar 

  157. Huang, Y., Wilches, J. & Sun, Y. Robot gaining accurate pouring skills through self-supervised learning and generalization. Robot. Auton. Syst. 136, 103692 (2021).

    Article  Google Scholar 

  158. Shiri, P. et al. Automated solubility screening platform using computer vision. iScience 24, 102176 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xu, H. et al. Seeing glass: joint point-cloud and depth completion for transparent objects. In Proc. 5th Conference on Robot Learning 164 (eds Faust, A. et al.) 827–838 (PMLR, 2022).

  160. Eppel, S., Xu, H., Wang, Y. R. & Aspuru-Guzik, A. Predicting 3D shapes, masks, and properties of materials inside transparent containers, using the TransProteus CGI dataset. Digit. Discov. 1, 45–60 (2022).

    Article  Google Scholar 

  161. El-Khawaldeh, R. et al. Keeping an “eye” on the experiment: computer vision for real-time monitoring and control. Chem. Sci. 15, 1271–1282 (2024).

    Article  CAS  PubMed  Google Scholar 

  162. El-Khawaldeh, R. et al. From eyes to cameras: computer vision for high-throughput liquid-liquid separation. Device 2, 100404 (2024).

    Article  Google Scholar 

  163. Walker, M., Pizzuto, G., Fakhruldeen, H. & Cooper, A. I. Go with the flow: deep learning methods for autonomous viscosity estimations. Digit. Discov. 2, 1540–1547 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, H. & Li, M. A new era of indoor scene reconstruction: a survey. IEEE Access 12, 110160–110192 (2024).

    Article  Google Scholar 

  165. Wang, G. et al. NeRF in robotics: a survey. Preprint at https://doi.org/10.48550/arXiv.2405.01333 (2024).

  166. Chen, T., Culbertson, P. & Schwager, M. CATNIPS: collision avoidance through neural implicit probabilistic scenes. IEEE Trans. Robot. 40, 2712–2728 (2024).

    Article  Google Scholar 

  167. Torne, M. et al. Reconciling reality through simulation: a real-to-sim-to-real approach for robust manipulation. In Robotics: Science and Systems 2024 https://www.roboticsproceedings.org/rss20/p015.pdf (RSS, 2024).

  168. Manley, M. Near-infrared spectroscopy and hyperspectral imaging: nondestructive analysis of biological materials. Chem. Soc. Rev. 43, 8200–8214 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. El-Sharkawy, Y. H. & Elbasuney, S. Hyperspectral imaging: anew prospective for remote recognition of explosive materials. Remote Sens. Appl. Soc. Environ. 13, 31–38 (2019).

    Google Scholar 

  170. Warren, R. E. & Cohn, D. B. Chemical detection on surfaces by hyperspectral imaging. J. Appl. Remote Sens. 11, 015013 (2017).

    Article  Google Scholar 

  171. Abdar, M. et al. A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021).

    Article  Google Scholar 

  172. Kendall, A. & Gal, Y. What uncertainties do we need in Bayesian deep learning for computer vision? In Proc. 31st Conference on Neural Information Processing Systems https://papers.nips.cc/paper_files/paper/2017/hash/2650d6089a6d640c5e85b2b88265dc2b-Abstract.html (NIPS, 2017).

  173. Filos, A. et al. Can autonomous vehicles identify, recover from, and adapt to distribution shifts? In International Conference on Machine Learning 3145–3153 (ICML, 2020).

  174. Girdhar, R. et al. ImageBind: one embedding space to bind them all. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 15180–15190 (IEEE, 2023).

  175. Plunkett, K. N. A simple and practical method for incorporating augmented reality into the classroom and laboratory. J. Chem. Educ. 96, 2628–2631 (2019).

    Article  CAS  Google Scholar 

  176. Zhao, Y. et al. AnyPlace: learning generalized object placement for robot manipulation. Preprint at https://doi.org/10.48550/arXiv.2502.04531 (2025).

  177. Muchacho, R. I. C., Laha, R., Figueredo, L. F. & Haddadin, S. A solution to slosh-free robot trajectory optimization. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 223–230 (IEEE, 2022).

  178. Bao, C., Xu, H., Qin, Y. & Wang, X. DexArt: benchmarking generalizable dexterous manipulation with articulated objects. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 21190–21200 (IEEE, 2023).

  179. O’Neill, A. et al. Open X-embodiment: robotic learning datasets and RT-X models. In 2024 IEEE International Conference on Robotics and Automation 6892–6903 (IEEE, 2024).

  180. Chi, C. et al. Diffusion policy: visuomotor policy learning via action diffusion. Int. J. Robot. Res. https://doi.org/10.1177/02783649241273668 (2023).

  181. Chi, C. et al. Universal manipulation interface: in-the-wild robot teaching without in-the-wild robots. In Robotics: Science and Systems 2024. https://www.roboticsproceedings.org/rss20/p045.pdf (RSS, 2024).

  182. Levine, S., Finn, C., Darrell, T. & Abbeel, P. End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17, 1–40 (2016).

    Google Scholar 

  183. Zitkovich, B. et al. RT-2: vision-language-action models transfer web knowledge to robotic control. In Proc. 7th Conference on Robot Learning. Proc. Machine Learning Research Vol. 229, 2165–2183 (CoRL, 2023).

  184. Liu, H. X. & Feng, S. Curse of rarity for autonomous vehicles. Nat. Commun. 15, 4808 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Feng, S. et al. Dense reinforcement learning for safety validation of autonomous vehicles. Nature 615, 620–627 (2023).

    Article  CAS  PubMed  Google Scholar 

  186. MIT Technology Review Insights. Digital twins improve real-life manufacturing. MIT Technology Review https://www.technologyreview.com/2022/01/05/1042981/digital-twins-improve-real-life-manufacturing/ (2022).

  187. InterTwin: Co-Designing and Prototyping an Interdisciplinary Digital Twin Engine (CERN, 2024); https://openlab.cern/intertwin/.

  188. Beeler, C. et al. Chem-GymRL: a customizable interactive framework for reinforcement learning for digital chemistry. Digit. Discov. 3, 742–758 (2024).

    Article  CAS  Google Scholar 

  189. Leike, J. et al. AI safety gridworlds. Preprint at https://doi.org/10.48550/arXiv.1711.09883 (2017).

  190. Rivera, C. G. et al. TanksWorld: a multi-agent environment for AI safety research. Preprint at https://doi.org/10.48550/arXiv.2002.11174 (2020).

  191. Zhao, W. et al. GUARD: a safe reinforcement learning benchmark. In Transactions of Machine Learning Research (TMLR, 2024); https://openreview.net/forum?id=kZFKwApeQO.

  192. Häse, F., Roch, L. M. & Aspuru-Guzik, A. Next-generation experimentation with self-driving laboratories. Trends Chem. 1, 282–291 (2019).

    Article  Google Scholar 

  193. Chung, A. B., Moyle, A. B., Hensley, M. S. & Powell, J. A. Shifting culture from blame to gain: a call for papers to openly discuss chemical incidents. ACS Chem. Health Saf. 29, 240–241 (2022).

    Article  CAS  Google Scholar 

  194. Chung, A. B., Moyle, A. B., Hensley, M. S. & Powell, J. A. Shifting culture from blame to gain: challenges and encouragements. ACS Chem. Health Saf. 30, 139–141 (2023).

    Article  CAS  Google Scholar 

  195. National Research Council. Safe science: promoting a culture of safety in academic chemical research (National Academies Press, 2014).

  196. Zacharaki, A., Kostavelis, I., Gasteratos, A. & Dokas, I. Safety bounds in human robot interaction: a survey. Saf. Sci. 127, 104667 (2020).

    Article  Google Scholar 

  197. Sveinbjornsson, B. R. & Gizurarson, S. in Handbook for Laboratory Safety Ch. 2, 9–24 (Elsevier, 2022).

  198. Sveinbjornsson, B. R. & Gizurarson, S. in Handbook for Laboratory Safety Ch. 4, 41–83 (Elsevier, 2022).

  199. Sveinbjornsson, B. R. & Gizurarson, S. in Handbook for Laboratory Safety Ch. 8, 121–128 (Elsevier, 2022).

  200. Interagency Working Group of the Subcommittee on the MGI. Accelerated materials experimentation enabled by the autonomous materials innovation infrastructure (AMII): a workshop report (Materials Genome Initiative, 2024).

  201. Martinetti, A., Chemweno, P. K., Nizamis, K. & Fosch-Villaronga, E. Redefining safety in light of human-robot interaction: a critical review of current standards and regulations. Front. Chem. Eng. 3, 666237 (2021).

    Article  Google Scholar 

  202. Yang, Q.-Z., Deng, X.-L. & Yang, S.-Y. Laboratory explosion accidents: case analysis and preventive measures. ACS Chem. Health Saf. 30, 72–82 (2023).

    Article  CAS  Google Scholar 

  203. Gronvall, G. K. & Bouri, N. Biosafety laboratories. Biosecur. Bioterror. 6, 299–308 (2008).

    Article  Google Scholar 

  204. Mills, R. W. The interaction of private and public regulatory governance: the case of association-led voluntary aviation safety programs. Policy Soc. 35, 43–55 (2016).

    Article  Google Scholar 

  205. Donaghy, C. M. et al. Empowering student laboratory safety officer programs to strengthen academic safety culture. ACS Chem. Health Saf. 31, 291–299 (2024).

    Article  CAS  Google Scholar 

  206. Remmel, A. How to capture and use near-miss lab-incident reports in academia. ACS Chem. Health Saf. 29, 114–116 (2022).

    Article  CAS  Google Scholar 

  207. Winfield, A. F. T. & Jirotka, M. The case for an ethical black box. In Towards Autonomous Robotic Systems: 18th Annual Conference 262–273 (Springer, 2017).

  208. Winfield, A. F. T., Maris, A., Salvini, P. & Jirotka, M. An ethical black box for social robots: a draft open standard. In 7th International Conference on Robot Ethics and Standards (ICRES 2022) 99–110 (CLAWAR Association, 2022).

  209. Jiao, Z., Hu, P., Xu, H. & Wang, Q. Machine learning and deep learning in chemical health and safety: a systematic review of techniques and applications. ACS Chem. Health Saf. 27, 316–334 (2020).

    Article  CAS  Google Scholar 

  210. Mulks, F. F. et al. Continuous, stable, and safe organometallic reactions in flow at room temperature assisted by deep eutectic solvents. Chem 8, 3382–3394 (2022).

    Article  CAS  Google Scholar 

  211. Mennen, S. M. et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org. Process Res. Dev. 23, 1213–1242 (2019).

    Article  CAS  Google Scholar 

  212. Kleoff, M., Schwan, J., Christmann, M. & Heretsch, P. A modular, argon-driven flow platform for natural product synthesis and late-stage transformations. Org. Lett. 23, 2370–2374 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Bell, N. L. et al. Autonomous execution of highly reactive chemical transformations in the Schlenkputer. Nat. Chem. Eng. 1, 180–189 (2024).

    Article  Google Scholar 

  214. Zhang, T. et al. Optimization-based motion planning method for a robot manipulator under the conditions of confined space and heavy load. In Intelligent Robotics and Applications: 16th International Conference (eds Yang, H. et al.) 128–138 (Springer, 2023).

  215. Tokatli, O. et al. Robot-assisted glovebox teleoperation for nuclear industry. Robotics 10, 85 (2021).

    Article  Google Scholar 

  216. Roth, N. & Schneider, B. Clean room industrial robot for handling and assembly in semiconductor industry. CIRP Ann. 42, 21–24 (1993).

    Article  Google Scholar 

  217. Gygax, R. Chemical reaction engineering for safety. Chem. Eng. Sci. 43, 1759–1771 (1988).

    Article  CAS  Google Scholar 

  218. Theis, A. E. Case study: T2 laboratories explosion. J. Loss Prev. Process Ind. 30, 296–300 (2014).

    Article  CAS  Google Scholar 

  219. Zhao, J. et al. Research on the risk of thermal runaway in the industrial process of styrene solution polymerization. Org. Process Res. Dev. 25, 1366–1374 (2021).

    Article  CAS  Google Scholar 

  220. Power, M., Alcock, E. & McGlacken, G. P. Organolithium bases in flow chemistry: a review. Org. Process Res. Dev. 24, 1814–1838 (2020).

    Article  CAS  Google Scholar 

  221. Atkeson, C. G. et al. in The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue 667–684 (Springer, 2018).

  222. MacLeod, B. P. et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6, 8867 (2020).

    Article  Google Scholar 

  223. Zhu, Q. et al. Automated synthesis of oxygen-producing catalysts from Martian meteorites by a robotic AI chemist. Nat. Syn. 3, 319–328 (2023).

    Article  Google Scholar 

  224. Bennett, J. A. et al. Autonomous reaction pareto-front mapping with a self-driving catalysis laboratory. Nat. Chem. Eng. 1, 240–250 (2024).

    Article  Google Scholar 

  225. Deneault, J. R. et al. Toward autonomous additive manufacturing: Bayesian optimization on a 3D printer. MRS Bull. 46, 566–575 (2021).

    Article  Google Scholar 

  226. Skilton, R. A. et al. Remote-controlled experiments with cloud chemistry. Nat. Chem. 7, 1–5 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was carried out thanks in part to funding provided to the University of Toronto Acceleration Consortium from the CFREF-2022-00042 Canada First Research Excellence Fund. A.A.-G and V.B. thank Z. Kean, T. Senecal, I. Yakavets, A. Yudin and F. Shkurti for the helpful feedback and discussions. A.A.-G. thanks A. G. Frøseth for his generous support. A.A.-G also acknowledges the generous support of the Canada 150 Research Chairs programme. S.X.L. acknowledges support from Nanyang Technological University, Singapore, and the Ministry of Education, Singapore, for the Overseas Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.X.L., C.E.G., R.Z., K.D., Y. Zhao, A.M., Y. Zou and V.B. researched data for the article. All authors contributed substantially to discussion of the content. S.X.L., C.E.G., R.Z., K.D., Y. Zhao, A.M., Y. Zou and V.B. wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Varinia Bernales or Alán Aspuru-Guzik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Sandra Keyser, Milad Abolhasani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, S.X., Griesbach, C.E., Zhang, R. et al. Steering towards safe self-driving laboratories. Nat Rev Chem 9, 707–722 (2025). https://doi.org/10.1038/s41570-025-00747-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00747-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing