Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transition metal complexes as optical probes for super-resolution microscopy

Abstract

The suite of techniques encompassing optical super-resolution microscopy can facilitate detailed visualization of biological structures and biochemical transformations at unprecedented levels of resolution and contrast; however, they depend on imaging probes with specific biophysical and photophysical properties. In this context, metal complexes with tuneable photo-excited states and stability towards photobleaching are promising candidates for advanced imaging techniques. This Review illustrates how, by selecting appropriate optical properties and luminescence responses, metal complexes can be utilized as probes for a range of super-resolution microscopy techniques, including multimodal imaging, to study subcellular architecture and dynamics with nanoscale resolution. Limitations and challenges of the existing molecular probes are also discussed. By highlighting these recent innovations and providing suggestions for future directions, this Review further underscores the importance of optical probes in pushing the boundaries of super-resolution microscopy and advancing our understanding of complex biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CLSM and STED nanoscopy using RuII-based organelle-targeting probes.
Fig. 2: Multiple imaging modalities of RuII complex 3.
Fig. 3: SRM imaging of bacteria using antimicrobial theragnostic complexes 4 and 5.
Fig. 4: Live MCF-7 cell uptake of Ru/Re complex 7; comparison of d-CLSM images and d-STED microscopic images.
Fig. 5: Examples of the use of OsII and IrIII complexes as super-resolutions live cell probes in both prokaryotes and eukaryotes.
Fig. 6: CLEM can be combined with SRM when using selected metal complexes.
Fig. 7: Imaging cellular processes and sub-organelle structures with late-transition or post-transition metal complexes.
Fig. 8: MnII complexes as multimodal super-resolution microscopy probes.

Similar content being viewed by others

References

  1. Perego, E. et al. Single-photon microscopy to study biomolecular condensates. Nat. Commun. 14, 8224 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Strullu-Derrien, C. et al. A fungal plant pathogen discovered in the Devonian Rhynie Chert. Nat. Commun. 14, 7932 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Niu, X. et al. Corneal confocal microscopy may help to distinguish multiple system atrophy from Parkinson’s disease. npj Parkinsons Dis. 10, 63 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, W., Kaminski Schierle, G. S., Lei, B., Liu, Y. & Kaminski, C. F. Fluorescent nanoparticles for super-resolution imaging. Chem. Rev. 122, 12495–12543 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pramanik, S. K. et al. Nanoparticles for super-resolution microscopy: intracellular delivery and molecular targeting. Chem. Soc. Rev. 51, 9882–9916 (2022).

    CAS  PubMed  Google Scholar 

  6. Monge, R., Delord, T. & Meriles, C. A. Reversible optical data storage below the diffraction limit. Nat. Nanotechnol. 19, 202–207 (2024).

    CAS  PubMed  Google Scholar 

  7. St. Croix, C. M., Shand, S. H. & Watkins, S. C. Confocal microscopy: comparisons, applications, and problems. BioTechniques 39, S2–S5 (2005).

    Google Scholar 

  8. Yu, W., Rush, C., Tingey, M., Junod, S. & Yang, W. Application of super-resolution SPEED microscopy in the study of cellular dynamics. Chem. Biomed. Imaging 1, 356–371 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    CAS  PubMed  Google Scholar 

  10. Berezin, M. Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Datta, R., Gillette, A., Stefely, M. & Skala, M. C. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine. J. Biomed. Opt. 26, 070603 (2021).

    PubMed  PubMed Central  Google Scholar 

  12. Ma, Y., Lee, Y., Best-Popescu, C. & Gao, L. High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells. Proc. Natl Acad. Sci. USA 118, e2004176118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Becker, W. Fluorescence lifetime imaging – techniques and applications. J. Microsc. 247, 119–136 (2012).

    CAS  PubMed  Google Scholar 

  14. Schwehr, B. J., Hartnell, D., Massi, M. & Hackett, M. J. Luminescent metal complexes as emerging tools for lipid imaging. Top. Curr. Chem. 380, 46 (2022).

    CAS  Google Scholar 

  15. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    CAS  PubMed  Google Scholar 

  16. Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl Acad. Sci. USA 102, 17565–17569 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Valli, J. et al. Seeing beyond the limit: a guide to choosing the right super-resolution microscopy technique. J. Biol. Chem. 297, 100791 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lambert, T. J. & Waters, J. C. Navigating challenges in the application of superresolution microscopy. J. Cell Biol. 216, 53–63 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, L. C.-C. & Lo, K. K.-W. Strategic design of luminescent rhenium(I), ruthenium(II), and iridium(III) complexes as activity-based probes for bioimaging and biosensing. Chem. Asian J. 17, e202200840 (2022).

    CAS  PubMed  Google Scholar 

  20. Li, S.-H. et al. Emission wavelength-tunable bicyclic dioxetane chemiluminescent probes for precise in vitro and in vivo imaging. Anal. Chem. https://doi.org/10.1021/acs.analchem.3c02126 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Green, O. et al. Near-infrared dioxetane luminophores with direct chemiluminescence emission mode. J. Am. Chem. Soc. 139, 13243–13248 (2017).

    CAS  PubMed  Google Scholar 

  22. Byrne, A., Burke, C. S. & Keyes, T. E. Precision targeted ruthenium(II) luminophores; highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy. Chem. Sci. 7, 6551–6562 (2016). This paper reports the investigation of the potential of metal complexes for STED microscopy, also demonstrating how they could be appended with established targeting peptides to drive the sub-cellular location of such imaging agents.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Baggaley, E. et al. Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA. Angew. Chem. Int. Ed. 53, 3367–3371 (2014).

    CAS  Google Scholar 

  24. Sreedharan, S. et al. Multimodal super-resolution optical microscopy using a transition-metal-based probe provides unprecedented capabilities for imaging both nuclear chromatin and mitochondria. J. Am. Chem. Soc. 139, 15907–15913 (2017). This highly photostable, cell-permeant complex with a large Stokes shift is found to be a multimodal probe that can be used for imaging mitochondria and nuclear chromatin by SIM, STED and 3D STED in both fixed and live cells, as well as a TEM contrast stain.

    CAS  PubMed  Google Scholar 

  25. Smitten, K. L. et al. Using nanoscopy to probe the biological activity of antimicrobial leads that display potent activity against pathogenic, multidrug resistant, gram-negative bacteria. ACS Nano 13, 5133–5146 (2019). The first such investigation in prokaryotes, it illustrates how the inherent SRM properties of metal complex-based antimicrobial therapeutic leads could be used to probe their mechanism of action against resistant pathogens by directly imaging intracellular targets.

    CAS  PubMed  Google Scholar 

  26. Smitten, K. L. et al. Mononuclear ruthenium(II) theranostic complexes that function as broad-spectrum antimicrobials in therapeutically resistant pathogens through interaction with DNA. Chem. Sci. 11, 8828–8838 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Saeed, H. K. et al. Making the right link to theranostics: the photophysical and biological properties of dinuclear RuII–ReI dppz complexes depend on their tether. J. Am. Chem. Soc. 142, 1101–1111 (2020).

    CAS  PubMed  Google Scholar 

  28. Noakes, F. F. et al. Phenazine cations as anticancer theranostics. J. Am. Chem. Soc. 146, 12836–12849 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jarman, P. J. et al. Exploring the cytotoxicity, uptake, cellular response, and proteomics of mono- and dinuclear DNA light-switch complexes. J. Am. Chem. Soc. 141, 2925–2937 (2019).

    CAS  PubMed  Google Scholar 

  30. Friedman, A. E., Chambron, J. C., Sauvage, J. P., Turro, N. J. & Barton, J. K. A molecular light switch for DNA: Ru(bpy)2(dppz)2+. J. Am. Chem. Soc. 112, 4960–4962 (1990).

    CAS  Google Scholar 

  31. Chambron, J.-C. & Sauvage, J.-P. Ru (bipy)2dppz2+: a highly sensitive luminescent probe for micellar sodium dodecyl sulfate solutions. Chem. Phys. Lett. 182, 603–607 (1991).

    CAS  Google Scholar 

  32. Dröge, F. et al. A dinuclear osmium(II) complex near-infrared nanoscopy probe for nuclear DNA. J. Am. Chem. Soc. 143, 20442–20453 (2021).

    PubMed  Google Scholar 

  33. Smitten, K. L., Scattergood, P. A., Kiker, C., Thomas, J. A. & Elliott, P. I. P. Triazole-based osmium(II) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chem. Sci. 11, 8928–8935 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shaikh, S., Wang, Y., Rehman, F. U., Jiang, H. & Wang, X. Phosphorescent Ir (III) complexes as cellular staining agents for biomedical molecular imaging. Coord. Chem. Rev. 416, 213344 (2020).

    CAS  Google Scholar 

  35. Mishra, P. & Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Q. et al. Super-resolution tracking of mitochondrial dynamics with an iridium(III) luminophore. Small 14, 1802166 (2018). In this study, the low photobleaching and overall photostability of an iridium(III)-based probe allow detailed investigations to be conducted into mitochondria and lysosomes, and into their interactions in different conditions, using SIM.

    Google Scholar 

  37. Friedman, J. R. & Nunnari, J. Mitochondrial form and function. Nature 505, 335–343 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. de Boer, P., Hoogenboom, J. P. & Giepmans, B. N. Correlated light and electron microscopy: ultrastructure lights up! Nat. Methods 12, 503–513 (2015).

    PubMed  Google Scholar 

  39. Tanner, H., Sherwin, O. & Verkade, P. Labelling strategies for correlative light electron microscopy. Microsc. Res. Tech. 86, 901–910 (2023).

    PubMed  Google Scholar 

  40. Shewring, J. R. et al. Multimodal probes: superresolution and transmission electron microscopy imaging of mitochondria, and oxygen mapping of cells, using small-molecule Ir(III) luminescent complexes. Inorg. Chem. 56, 15259–15270 (2017).

    CAS  PubMed  Google Scholar 

  41. Tian, X. et al. A cyclometalated iridium (III) complex as a microtubule probe for correlative super-resolution fluorescence and electron microscopy. Adv. Mater. 32, 2003901 (2020). The first example of a single-molecule probe suitable for CLEM involving both SRM (STED) and TEM.

    CAS  Google Scholar 

  42. Liu, T. et al. An iridium (III) complex revealing cytoskeleton nanostructures under super-resolution nanoscopy and liquid-phase electron microscopy. Sens. Actuators B Chem. 388, 133839 (2023).

    CAS  Google Scholar 

  43. Huang, R. et al. Chiral Os(II) polypyridyl complexes as enantioselective nuclear DNA imaging agents especially suitable for correlative high-resolution light and electron microscopy studies. ACS Appl. Mater. Interfaces 12, 3465–3473 (2020).

    CAS  PubMed  Google Scholar 

  44. Huang, R. et al. Unprecedented enantio-selective live-cell mitochondrial DNA super-resolution imaging and photo-sensitizing by the chiral ruthenium polypyridyl DNA “light-switch”. Nucleic Acids Res. 51, 11981–11998 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dikova, Y. M., Yufit, D. S. & Williams, J. A. G. Platinum(IV) complexes with tridentate, NNC-coordinating ligands: synthesis, structures, and luminescence. Inorg. Chem. 62, 1306–1322 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chaaban, M., Zhou, C., Lin, H., Chyi, B. & Ma, B. Platinum(II) binuclear complexes: molecular structures, photophysical properties, and applications. J. Mater. Chem. C 7, 5910–5924 (2019).

    CAS  Google Scholar 

  47. Mauro, M., Aliprandi, A., Septiadi, D., Kehr, N. S. & De Cola, L. When self-assembly meets biology: luminescent platinum complexes for imaging applications. Chem. Soc. Rev. 43, 4144–4166 (2014).

    CAS  PubMed  Google Scholar 

  48. Johnstone, T. C., Suntharalingam, K. & Lippard, S. J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev. 116, 3436–3486 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, L.-Y. et al. Multiple-color platinum complex with super-large stokes shift for super-resolution imaging of autolysosome escape. Angew. Chem. Int. Ed. 59, 19229–19236 (2020).

    CAS  Google Scholar 

  50. Shen, Y. et al. Visualization of mitochondrial DNA in living cells with super-resolution microscopy using thiophene-based terpyridine Zn(II) complexes. Chem. Commun. 54, 11288–11291 (2018).

    CAS  Google Scholar 

  51. Liu, D. H., Sun, Z. B., Zhao, Z. H., Peng, Q. & Zhao, C. H. 1,1’-Binaphthyl consisting of two donor–π–acceptor subunits: a general skeleton for temperature-dependent dual fluorescence. Chem. Eur. J. 25, 10179–10187 (2019).

    CAS  PubMed  Google Scholar 

  52. Du, W. et al. Terpyridine Zn(II) complexes with azide units for visualization of histone deacetylation in living cells under STED nanoscopy. ACS Sens. 6, 3978–3984 (2021).

    CAS  PubMed  Google Scholar 

  53. Tian, X. et al. A combination of super-resolution fluorescence and magnetic resonance imaging using a Mn(II) compound. Inorg. Chem. Front. 6, 2914–2920 (2019). A study that uses an earth-abundant first-row transition metal ion in a SRM probe that is also MRI active, providing potential to image across a wide range of scales.

    CAS  Google Scholar 

  54. Mallik, R. et al. Folate receptor targeting Mn(II) complex encapsulated porous silica nanoparticle as an MRI contrast agent for early-state detection of cancer. Small https://doi.org/10.1002/smll.202401787 (2025).

  55. Liu, J. et al. Nucleolar RNA in action: ultrastructure revealed during protein translation through a terpyridyl manganese(II) complex. Biosens. Bioelectron. 203, 114058 (2022).

    CAS  PubMed  Google Scholar 

  56. Bastide, A., Yewdell, J. W. & David, A. The RiboPuromycylation method (RPM): an immunofluorescence technique to map translation sites at the sub-cellular level. Bio-protocol 8, e2669 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    CAS  PubMed  Google Scholar 

  58. Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).

    CAS  PubMed  Google Scholar 

  59. Schmidt, R. et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12, 1478 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Prakash, K. At the molecular resolution with MINFLUX? Philos. Trans. R. Soc. A 380, 20200145 (2022).

    CAS  Google Scholar 

  61. van de Linde, S., Heilemann, M. & Sauer, M. Live-cell super-resolution imaging with synthetic fluorophores. Annu. Rev. Phys. Chem. 63, 519–540 (2012).

    PubMed  Google Scholar 

  62. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, B., Jones, S. A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5, 1047–1052 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  PubMed  Google Scholar 

  66. Tang, J. et al. A photoactivatable Znsalen complex for super-resolution imaging of mitochondria in living cells. Chem. Commun. 52, 11583–11586 (2016). This report on a zinc(II)-based probe for STORM demonstrates that the luminescent properties of metal complexes can be compatible with stochastic SRM techniques.

    CAS  Google Scholar 

  67. Fu, P. et al. Super-resolution imaging of non-fluorescent molecules by photothermal relaxation localization microscopy. Nat. Photon. 17, 330–337 (2023).

    CAS  Google Scholar 

  68. Kwon, J., Elgawish, M. S. & Shim, S.-H. Bleaching-resistant super-resolution fluorescence microscopy. Adv. Sci. 9, e2101817 (2022).

    Google Scholar 

  69. Zhuang, Y. & Shi, X. Expansion microscopy: a chemical approach for super-resolution microscopy. Curr. Opin. Struct. Biol. 81, 102614 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sednev, M. V., Belov, V. N. & Hell, S. W. Fluorescent dyes with large stokes shifts for super-resolution optical microscopy of biological objects: a review. Methods Appl. Fluoresc. 3, 042004 (2015).

    PubMed  Google Scholar 

  71. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mortensen, K. I., Churchman, L. S., Spudich, J. A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7, 377–381 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jiang, G. et al. A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy. Nat. Commun. 13, 2264 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, S. et al. Super-resolved snapshot hyperspectral imaging of solid-state quantum emitters for high-throughput integrated quantum technologies. Nat. Photon. https://doi.org/10.1038/s41566-024-01449-4 (2024).

    Article  Google Scholar 

  76. Möckl, L. & Moerner, W. E. Super-resolution microscopy with single molecules in biology and beyond–essentials, current trends, and future challenges. J. Am. Chem. Soc. 142, 17828–17844 (2020).

    PubMed  PubMed Central  Google Scholar 

  77. Tholen, M. M. E., Tas, R. P., Wang, Y. & Albertazzi, L. Beyond DNA: new probes for PAINT super-resolution microscopy. Chem. Commun. 59, 8332–8342 (2023).

    CAS  Google Scholar 

  78. Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).

    CAS  PubMed  Google Scholar 

  79. Xiao, J. & Dufrêne, Y. F. Optical and force nanoscopy in microbiology. Nat. Microbiol. 1, 16186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nicovich, P. R., Owen, D. M. & Gaus, K. Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nat. Protoc. 12, 453–460 (2017).

    CAS  PubMed  Google Scholar 

  81. Egner, A. & Hell, S. W. Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 15, 207–215 (2005).

    CAS  PubMed  Google Scholar 

  82. Dedecker, P., Flors, C., Hotta, J.-i, Uji-i, H. & Hofkens, J. 3D nanoscopy: bringing biological nanostructures into sharp focus. Angew. Chem. Int. Ed. 46, 8330–8332 (2007).

    CAS  Google Scholar 

  83. Wu, D. et al. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct. Target. Ther. 8, 217 (2023).

    PubMed  PubMed Central  Google Scholar 

  84. Dhiman, S. et al. Can super-resolution microscopy become a standard characterization technique for materials chemistry? Chem. Sci. 13, 2152–2166 (2022).

    CAS  PubMed  Google Scholar 

  85. Bond, C., Santiago-Ruiz, A. N., Tang, Q. & Lakadamyali, M. Technological advances in super-resolution microscopy to study cellular processes. Mol. Cell 82, 315–332 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bon, P. & Cognet, L. On some current challenges in high-resolution optical bioimaging. ACS Photonics 9, 2538–2546 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zwettler, F. U. et al. Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM). Nat. Commun. 11, 3388 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu, X., Testa, B. & Fahr, A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res. 28, 962–977 (2011).

    CAS  PubMed  Google Scholar 

  90. Augustine, R. et al. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 25, 101692 (2020).

    CAS  Google Scholar 

  91. Jin, Y., Tan, Y., Wu, J. & Ren, Z. Lipid droplets: a cellular organelle vital in cancer cells. Cell Death Discov. 9, 254 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dankovich, T. M. & Rizzoli, S. O. Challenges facing quantitative large-scale optical super-resolution, and some simple solutions. iScience 24, 102134 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jin, D. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 15, 415–423 (2018).

    CAS  PubMed  Google Scholar 

  94. Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).

    CAS  PubMed  Google Scholar 

  95. Kiepas, A., Voorand, E., Mubaid, F., Siegel, P. M. & Brown, C. M. Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. J. Cell Sci. https://doi.org/10.1242/jcs.242834 (2020).

  96. Kasprzycka, W., Szumigraj, W., Wachulak, P. & Trafny, E. A. New approaches for low phototoxicity imaging of living cells and tissues. BioEssays 46, e2300122 (2024).

    PubMed  Google Scholar 

  97. Foote, C. S. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54, 659 (1991).

    CAS  PubMed  Google Scholar 

  98. Garcia-Diaz, M., Huang, Y.-Y. & Hamblin, M. R. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 109, 158–166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Juarranz, A., Jaén, P., Sanz-Rodríguez, F., Cuevas, J. & González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol. 10, 148–154 (2008).

    CAS  PubMed  Google Scholar 

  100. Celli, J. P. et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110, 2795–2838 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Icha, J., Weber, M., Waters, J. C. & Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays https://doi.org/10.1002/bies.201700003 (2017).

  102. Glazer, E. C., Magde, D. & Tor, Y. Ruthenium complexes that break the rules: structural features controlling dual emission. J. Am. Chem. Soc. 129, 8544–8551 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gill, M. R. & Thomas, J. A. Ruthenium(II) polypyridyl complexes and DNA—from structural probes to cellular imaging and therapeutics. Chem. Soc. Rev. 41, 3179–3192 (2012).

    CAS  PubMed  Google Scholar 

  104. Reddy, U. G. et al. A novel fluorescence probe for estimation of cysteine/histidine in human blood plasma and recognition of endogenous cysteine in live Hct116 cells. Chem. Commun. 50, 9899–9902 (2014).

    Google Scholar 

  105. Shum, J., Leung, P. K.-K. & Lo, K. K.-W. Luminescent ruthenium(II) polypyridine complexes for a wide variety of biomolecular and cellular applications. Inorg. Chem. 58, 2231–2247 (2019).

    CAS  PubMed  Google Scholar 

  106. Conti, L., Macedi, E., Giorgi, C., Valtancoli, B. & Fusi, V. Combination of light and Ru(II) polypyridyl complexes: recent advances in the development of new anticancer drugs. Coord. Chem. Rev. 469, 214656 (2022).

    CAS  Google Scholar 

  107. Jing, S. et al. Recent advances in organometallic NIR iridium(III) complexes for detection and therapy. Molecules https://doi.org/10.3390/molecules29010256 (2024).

  108. Zanoni, K. P. S. et al. Blue-green iridium(III) emitter and comprehensive photophysical elucidation of heteroleptic cyclometalated iridium(III) complexes. Inorg. Chem. 53, 4089–4099 (2014).

    CAS  PubMed  Google Scholar 

  109. Ghosh, H. N. & Das, A. in Advances in Inorganic Chemistry, Vol. 81 (eds Chatterjee, D. & van Eldik, R.) 305–343 (Academic Press, 2023).

  110. Puckett, C. A. & Barton, J. K. Methods to explore cellular uptake of ruthenium complexes. J. Am. Chem. Soc. 129, 46–47 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Notaro, A. et al. Ruthenium(II) complex containing a redox-active semiquinonate ligand as a potential chemotherapeutic agent: from synthesis to in vivo studies. J. Med. Chem. 63, 5568–5584 (2020).

    CAS  PubMed  Google Scholar 

  112. Lee, H. & Dutta, P. K. Charge transport through a novel zeolite Y membrane by a self-exchange process. J. Phys. Chem. B 106, 11898–11904 (2002).

    CAS  Google Scholar 

  113. Gonzalez-Vazquez, J. P., Burn, P. L. & Powell, B. J. Interplay of zero-field splitting and excited state geometry relaxation in fac-Ir(ppy)3. Inorg. Chem. 54, 10457–10461 (2015).

    CAS  PubMed  Google Scholar 

  114. Pramanik, S. K. & Das, A. Fluorescent probes for imaging bioactive species in subcellular organelles. Chem. Commun. 57, 12058–12073 (2021).

    CAS  Google Scholar 

  115. Singh, H., Tiwari, K., Tiwari, R., Pramanik, S. K. & Das, A. Small molecule as fluorescent probes for monitoring intracellular enzymatic transformations. Chem. Rev. 119, 11718–11760 (2019).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for and wrote the article. S.K.P., A.D. and J.A.T. discussed the content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Amitava Das or Jim A. Thomas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Mark Hackett, Jun-Long Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, S.K., Sreedharan, S., Kandoth, N. et al. Transition metal complexes as optical probes for super-resolution microscopy. Nat Rev Chem 9, 733–748 (2025). https://doi.org/10.1038/s41570-025-00764-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00764-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing