Abstract
The suite of techniques encompassing optical super-resolution microscopy can facilitate detailed visualization of biological structures and biochemical transformations at unprecedented levels of resolution and contrast; however, they depend on imaging probes with specific biophysical and photophysical properties. In this context, metal complexes with tuneable photo-excited states and stability towards photobleaching are promising candidates for advanced imaging techniques. This Review illustrates how, by selecting appropriate optical properties and luminescence responses, metal complexes can be utilized as probes for a range of super-resolution microscopy techniques, including multimodal imaging, to study subcellular architecture and dynamics with nanoscale resolution. Limitations and challenges of the existing molecular probes are also discussed. By highlighting these recent innovations and providing suggestions for future directions, this Review further underscores the importance of optical probes in pushing the boundaries of super-resolution microscopy and advancing our understanding of complex biological systems.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
References
Perego, E. et al. Single-photon microscopy to study biomolecular condensates. Nat. Commun. 14, 8224 (2023).
Strullu-Derrien, C. et al. A fungal plant pathogen discovered in the Devonian Rhynie Chert. Nat. Commun. 14, 7932 (2023).
Niu, X. et al. Corneal confocal microscopy may help to distinguish multiple system atrophy from Parkinson’s disease. npj Parkinsons Dis. 10, 63 (2024).
Li, W., Kaminski Schierle, G. S., Lei, B., Liu, Y. & Kaminski, C. F. Fluorescent nanoparticles for super-resolution imaging. Chem. Rev. 122, 12495–12543 (2022).
Pramanik, S. K. et al. Nanoparticles for super-resolution microscopy: intracellular delivery and molecular targeting. Chem. Soc. Rev. 51, 9882–9916 (2022).
Monge, R., Delord, T. & Meriles, C. A. Reversible optical data storage below the diffraction limit. Nat. Nanotechnol. 19, 202–207 (2024).
St. Croix, C. M., Shand, S. H. & Watkins, S. C. Confocal microscopy: comparisons, applications, and problems. BioTechniques 39, S2–S5 (2005).
Yu, W., Rush, C., Tingey, M., Junod, S. & Yang, W. Application of super-resolution SPEED microscopy in the study of cellular dynamics. Chem. Biomed. Imaging 1, 356–371 (2023).
Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).
Berezin, M. Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010).
Datta, R., Gillette, A., Stefely, M. & Skala, M. C. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine. J. Biomed. Opt. 26, 070603 (2021).
Ma, Y., Lee, Y., Best-Popescu, C. & Gao, L. High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells. Proc. Natl Acad. Sci. USA 118, e2004176118 (2021).
Becker, W. Fluorescence lifetime imaging – techniques and applications. J. Microsc. 247, 119–136 (2012).
Schwehr, B. J., Hartnell, D., Massi, M. & Hackett, M. J. Luminescent metal complexes as emerging tools for lipid imaging. Top. Curr. Chem. 380, 46 (2022).
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).
Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl Acad. Sci. USA 102, 17565–17569 (2005).
Valli, J. et al. Seeing beyond the limit: a guide to choosing the right super-resolution microscopy technique. J. Biol. Chem. 297, 100791 (2021).
Lambert, T. J. & Waters, J. C. Navigating challenges in the application of superresolution microscopy. J. Cell Biol. 216, 53–63 (2017).
Lee, L. C.-C. & Lo, K. K.-W. Strategic design of luminescent rhenium(I), ruthenium(II), and iridium(III) complexes as activity-based probes for bioimaging and biosensing. Chem. Asian J. 17, e202200840 (2022).
Li, S.-H. et al. Emission wavelength-tunable bicyclic dioxetane chemiluminescent probes for precise in vitro and in vivo imaging. Anal. Chem. https://doi.org/10.1021/acs.analchem.3c02126 (2023).
Green, O. et al. Near-infrared dioxetane luminophores with direct chemiluminescence emission mode. J. Am. Chem. Soc. 139, 13243–13248 (2017).
Byrne, A., Burke, C. S. & Keyes, T. E. Precision targeted ruthenium(II) luminophores; highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy. Chem. Sci. 7, 6551–6562 (2016). This paper reports the investigation of the potential of metal complexes for STED microscopy, also demonstrating how they could be appended with established targeting peptides to drive the sub-cellular location of such imaging agents.
Baggaley, E. et al. Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA. Angew. Chem. Int. Ed. 53, 3367–3371 (2014).
Sreedharan, S. et al. Multimodal super-resolution optical microscopy using a transition-metal-based probe provides unprecedented capabilities for imaging both nuclear chromatin and mitochondria. J. Am. Chem. Soc. 139, 15907–15913 (2017). This highly photostable, cell-permeant complex with a large Stokes shift is found to be a multimodal probe that can be used for imaging mitochondria and nuclear chromatin by SIM, STED and 3D STED in both fixed and live cells, as well as a TEM contrast stain.
Smitten, K. L. et al. Using nanoscopy to probe the biological activity of antimicrobial leads that display potent activity against pathogenic, multidrug resistant, gram-negative bacteria. ACS Nano 13, 5133–5146 (2019). The first such investigation in prokaryotes, it illustrates how the inherent SRM properties of metal complex-based antimicrobial therapeutic leads could be used to probe their mechanism of action against resistant pathogens by directly imaging intracellular targets.
Smitten, K. L. et al. Mononuclear ruthenium(II) theranostic complexes that function as broad-spectrum antimicrobials in therapeutically resistant pathogens through interaction with DNA. Chem. Sci. 11, 8828–8838 (2020).
Saeed, H. K. et al. Making the right link to theranostics: the photophysical and biological properties of dinuclear RuII–ReI dppz complexes depend on their tether. J. Am. Chem. Soc. 142, 1101–1111 (2020).
Noakes, F. F. et al. Phenazine cations as anticancer theranostics. J. Am. Chem. Soc. 146, 12836–12849 (2024).
Jarman, P. J. et al. Exploring the cytotoxicity, uptake, cellular response, and proteomics of mono- and dinuclear DNA light-switch complexes. J. Am. Chem. Soc. 141, 2925–2937 (2019).
Friedman, A. E., Chambron, J. C., Sauvage, J. P., Turro, N. J. & Barton, J. K. A molecular light switch for DNA: Ru(bpy)2(dppz)2+. J. Am. Chem. Soc. 112, 4960–4962 (1990).
Chambron, J.-C. & Sauvage, J.-P. Ru (bipy)2dppz2+: a highly sensitive luminescent probe for micellar sodium dodecyl sulfate solutions. Chem. Phys. Lett. 182, 603–607 (1991).
Dröge, F. et al. A dinuclear osmium(II) complex near-infrared nanoscopy probe for nuclear DNA. J. Am. Chem. Soc. 143, 20442–20453 (2021).
Smitten, K. L., Scattergood, P. A., Kiker, C., Thomas, J. A. & Elliott, P. I. P. Triazole-based osmium(II) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chem. Sci. 11, 8928–8935 (2020).
Shaikh, S., Wang, Y., Rehman, F. U., Jiang, H. & Wang, X. Phosphorescent Ir (III) complexes as cellular staining agents for biomedical molecular imaging. Coord. Chem. Rev. 416, 213344 (2020).
Mishra, P. & Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–646 (2014).
Chen, Q. et al. Super-resolution tracking of mitochondrial dynamics with an iridium(III) luminophore. Small 14, 1802166 (2018). In this study, the low photobleaching and overall photostability of an iridium(III)-based probe allow detailed investigations to be conducted into mitochondria and lysosomes, and into their interactions in different conditions, using SIM.
Friedman, J. R. & Nunnari, J. Mitochondrial form and function. Nature 505, 335–343 (2014).
de Boer, P., Hoogenboom, J. P. & Giepmans, B. N. Correlated light and electron microscopy: ultrastructure lights up! Nat. Methods 12, 503–513 (2015).
Tanner, H., Sherwin, O. & Verkade, P. Labelling strategies for correlative light electron microscopy. Microsc. Res. Tech. 86, 901–910 (2023).
Shewring, J. R. et al. Multimodal probes: superresolution and transmission electron microscopy imaging of mitochondria, and oxygen mapping of cells, using small-molecule Ir(III) luminescent complexes. Inorg. Chem. 56, 15259–15270 (2017).
Tian, X. et al. A cyclometalated iridium (III) complex as a microtubule probe for correlative super-resolution fluorescence and electron microscopy. Adv. Mater. 32, 2003901 (2020). The first example of a single-molecule probe suitable for CLEM involving both SRM (STED) and TEM.
Liu, T. et al. An iridium (III) complex revealing cytoskeleton nanostructures under super-resolution nanoscopy and liquid-phase electron microscopy. Sens. Actuators B Chem. 388, 133839 (2023).
Huang, R. et al. Chiral Os(II) polypyridyl complexes as enantioselective nuclear DNA imaging agents especially suitable for correlative high-resolution light and electron microscopy studies. ACS Appl. Mater. Interfaces 12, 3465–3473 (2020).
Huang, R. et al. Unprecedented enantio-selective live-cell mitochondrial DNA super-resolution imaging and photo-sensitizing by the chiral ruthenium polypyridyl DNA “light-switch”. Nucleic Acids Res. 51, 11981–11998 (2023).
Dikova, Y. M., Yufit, D. S. & Williams, J. A. G. Platinum(IV) complexes with tridentate, NNC-coordinating ligands: synthesis, structures, and luminescence. Inorg. Chem. 62, 1306–1322 (2023).
Chaaban, M., Zhou, C., Lin, H., Chyi, B. & Ma, B. Platinum(II) binuclear complexes: molecular structures, photophysical properties, and applications. J. Mater. Chem. C 7, 5910–5924 (2019).
Mauro, M., Aliprandi, A., Septiadi, D., Kehr, N. S. & De Cola, L. When self-assembly meets biology: luminescent platinum complexes for imaging applications. Chem. Soc. Rev. 43, 4144–4166 (2014).
Johnstone, T. C., Suntharalingam, K. & Lippard, S. J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev. 116, 3436–3486 (2016).
Liu, L.-Y. et al. Multiple-color platinum complex with super-large stokes shift for super-resolution imaging of autolysosome escape. Angew. Chem. Int. Ed. 59, 19229–19236 (2020).
Shen, Y. et al. Visualization of mitochondrial DNA in living cells with super-resolution microscopy using thiophene-based terpyridine Zn(II) complexes. Chem. Commun. 54, 11288–11291 (2018).
Liu, D. H., Sun, Z. B., Zhao, Z. H., Peng, Q. & Zhao, C. H. 1,1’-Binaphthyl consisting of two donor–π–acceptor subunits: a general skeleton for temperature-dependent dual fluorescence. Chem. Eur. J. 25, 10179–10187 (2019).
Du, W. et al. Terpyridine Zn(II) complexes with azide units for visualization of histone deacetylation in living cells under STED nanoscopy. ACS Sens. 6, 3978–3984 (2021).
Tian, X. et al. A combination of super-resolution fluorescence and magnetic resonance imaging using a Mn(II) compound. Inorg. Chem. Front. 6, 2914–2920 (2019). A study that uses an earth-abundant first-row transition metal ion in a SRM probe that is also MRI active, providing potential to image across a wide range of scales.
Mallik, R. et al. Folate receptor targeting Mn(II) complex encapsulated porous silica nanoparticle as an MRI contrast agent for early-state detection of cancer. Small https://doi.org/10.1002/smll.202401787 (2025).
Liu, J. et al. Nucleolar RNA in action: ultrastructure revealed during protein translation through a terpyridyl manganese(II) complex. Biosens. Bioelectron. 203, 114058 (2022).
Bastide, A., Yewdell, J. W. & David, A. The RiboPuromycylation method (RPM): an immunofluorescence technique to map translation sites at the sub-cellular level. Bio-protocol 8, e2669 (2018).
Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).
Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).
Schmidt, R. et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12, 1478 (2021).
Prakash, K. At the molecular resolution with MINFLUX? Philos. Trans. R. Soc. A 380, 20200145 (2022).
van de Linde, S., Heilemann, M. & Sauer, M. Live-cell super-resolution imaging with synthetic fluorophores. Annu. Rev. Phys. Chem. 63, 519–540 (2012).
Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).
Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).
Huang, B., Jones, S. A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5, 1047–1052 (2008).
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
Tang, J. et al. A photoactivatable Znsalen complex for super-resolution imaging of mitochondria in living cells. Chem. Commun. 52, 11583–11586 (2016). This report on a zinc(II)-based probe for STORM demonstrates that the luminescent properties of metal complexes can be compatible with stochastic SRM techniques.
Fu, P. et al. Super-resolution imaging of non-fluorescent molecules by photothermal relaxation localization microscopy. Nat. Photon. 17, 330–337 (2023).
Kwon, J., Elgawish, M. S. & Shim, S.-H. Bleaching-resistant super-resolution fluorescence microscopy. Adv. Sci. 9, e2101817 (2022).
Zhuang, Y. & Shi, X. Expansion microscopy: a chemical approach for super-resolution microscopy. Curr. Opin. Struct. Biol. 81, 102614 (2023).
Sednev, M. V., Belov, V. N. & Hell, S. W. Fluorescent dyes with large stokes shifts for super-resolution optical microscopy of biological objects: a review. Methods Appl. Fluoresc. 3, 042004 (2015).
Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).
Mortensen, K. I., Churchman, L. S., Spudich, J. A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7, 377–381 (2010).
Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).
Jiang, G. et al. A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy. Nat. Commun. 13, 2264 (2022).
Liu, S. et al. Super-resolved snapshot hyperspectral imaging of solid-state quantum emitters for high-throughput integrated quantum technologies. Nat. Photon. https://doi.org/10.1038/s41566-024-01449-4 (2024).
Möckl, L. & Moerner, W. E. Super-resolution microscopy with single molecules in biology and beyond–essentials, current trends, and future challenges. J. Am. Chem. Soc. 142, 17828–17844 (2020).
Tholen, M. M. E., Tas, R. P., Wang, Y. & Albertazzi, L. Beyond DNA: new probes for PAINT super-resolution microscopy. Chem. Commun. 59, 8332–8342 (2023).
Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).
Xiao, J. & Dufrêne, Y. F. Optical and force nanoscopy in microbiology. Nat. Microbiol. 1, 16186 (2016).
Nicovich, P. R., Owen, D. M. & Gaus, K. Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nat. Protoc. 12, 453–460 (2017).
Egner, A. & Hell, S. W. Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 15, 207–215 (2005).
Dedecker, P., Flors, C., Hotta, J.-i, Uji-i, H. & Hofkens, J. 3D nanoscopy: bringing biological nanostructures into sharp focus. Angew. Chem. Int. Ed. 46, 8330–8332 (2007).
Wu, D. et al. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct. Target. Ther. 8, 217 (2023).
Dhiman, S. et al. Can super-resolution microscopy become a standard characterization technique for materials chemistry? Chem. Sci. 13, 2152–2166 (2022).
Bond, C., Santiago-Ruiz, A. N., Tang, Q. & Lakadamyali, M. Technological advances in super-resolution microscopy to study cellular processes. Mol. Cell 82, 315–332 (2022).
Bon, P. & Cognet, L. On some current challenges in high-resolution optical bioimaging. ACS Photonics 9, 2538–2546 (2022).
Zwettler, F. U. et al. Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM). Nat. Commun. 11, 3388 (2020).
Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).
Liu, X., Testa, B. & Fahr, A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res. 28, 962–977 (2011).
Augustine, R. et al. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 25, 101692 (2020).
Jin, Y., Tan, Y., Wu, J. & Ren, Z. Lipid droplets: a cellular organelle vital in cancer cells. Cell Death Discov. 9, 254 (2023).
Dankovich, T. M. & Rizzoli, S. O. Challenges facing quantitative large-scale optical super-resolution, and some simple solutions. iScience 24, 102134 (2021).
Jin, D. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 15, 415–423 (2018).
Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).
Kiepas, A., Voorand, E., Mubaid, F., Siegel, P. M. & Brown, C. M. Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. J. Cell Sci. https://doi.org/10.1242/jcs.242834 (2020).
Kasprzycka, W., Szumigraj, W., Wachulak, P. & Trafny, E. A. New approaches for low phototoxicity imaging of living cells and tissues. BioEssays 46, e2300122 (2024).
Foote, C. S. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54, 659 (1991).
Garcia-Diaz, M., Huang, Y.-Y. & Hamblin, M. R. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 109, 158–166 (2016).
Juarranz, A., Jaén, P., Sanz-Rodríguez, F., Cuevas, J. & González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol. 10, 148–154 (2008).
Celli, J. P. et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110, 2795–2838 (2010).
Icha, J., Weber, M., Waters, J. C. & Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays https://doi.org/10.1002/bies.201700003 (2017).
Glazer, E. C., Magde, D. & Tor, Y. Ruthenium complexes that break the rules: structural features controlling dual emission. J. Am. Chem. Soc. 129, 8544–8551 (2007).
Gill, M. R. & Thomas, J. A. Ruthenium(II) polypyridyl complexes and DNA—from structural probes to cellular imaging and therapeutics. Chem. Soc. Rev. 41, 3179–3192 (2012).
Reddy, U. G. et al. A novel fluorescence probe for estimation of cysteine/histidine in human blood plasma and recognition of endogenous cysteine in live Hct116 cells. Chem. Commun. 50, 9899–9902 (2014).
Shum, J., Leung, P. K.-K. & Lo, K. K.-W. Luminescent ruthenium(II) polypyridine complexes for a wide variety of biomolecular and cellular applications. Inorg. Chem. 58, 2231–2247 (2019).
Conti, L., Macedi, E., Giorgi, C., Valtancoli, B. & Fusi, V. Combination of light and Ru(II) polypyridyl complexes: recent advances in the development of new anticancer drugs. Coord. Chem. Rev. 469, 214656 (2022).
Jing, S. et al. Recent advances in organometallic NIR iridium(III) complexes for detection and therapy. Molecules https://doi.org/10.3390/molecules29010256 (2024).
Zanoni, K. P. S. et al. Blue-green iridium(III) emitter and comprehensive photophysical elucidation of heteroleptic cyclometalated iridium(III) complexes. Inorg. Chem. 53, 4089–4099 (2014).
Ghosh, H. N. & Das, A. in Advances in Inorganic Chemistry, Vol. 81 (eds Chatterjee, D. & van Eldik, R.) 305–343 (Academic Press, 2023).
Puckett, C. A. & Barton, J. K. Methods to explore cellular uptake of ruthenium complexes. J. Am. Chem. Soc. 129, 46–47 (2007).
Notaro, A. et al. Ruthenium(II) complex containing a redox-active semiquinonate ligand as a potential chemotherapeutic agent: from synthesis to in vivo studies. J. Med. Chem. 63, 5568–5584 (2020).
Lee, H. & Dutta, P. K. Charge transport through a novel zeolite Y membrane by a self-exchange process. J. Phys. Chem. B 106, 11898–11904 (2002).
Gonzalez-Vazquez, J. P., Burn, P. L. & Powell, B. J. Interplay of zero-field splitting and excited state geometry relaxation in fac-Ir(ppy)3. Inorg. Chem. 54, 10457–10461 (2015).
Pramanik, S. K. & Das, A. Fluorescent probes for imaging bioactive species in subcellular organelles. Chem. Commun. 57, 12058–12073 (2021).
Singh, H., Tiwari, K., Tiwari, R., Pramanik, S. K. & Das, A. Small molecule as fluorescent probes for monitoring intracellular enzymatic transformations. Chem. Rev. 119, 11718–11760 (2019).
Author information
Authors and Affiliations
Contributions
All authors researched data for and wrote the article. S.K.P., A.D. and J.A.T. discussed the content and reviewed and/or edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Mark Hackett, Jun-Long Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pramanik, S.K., Sreedharan, S., Kandoth, N. et al. Transition metal complexes as optical probes for super-resolution microscopy. Nat Rev Chem 9, 733–748 (2025). https://doi.org/10.1038/s41570-025-00764-w
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41570-025-00764-w


