Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamics in electrochemical organic oxidation reactions from in situ and operando techniques

A Publisher Correction to this article was published on 10 November 2025

This article has been updated

Abstract

Electrochemical organic oxidation reactions (OORs) play a pivotal role in various industrial processes and sustainable chemical production, transforming small molecules into value-added products. Understanding electrode surface dynamics, catalyst structures, reaction intermediates and product selectivity during OOR is crucial for both fundamental knowledge and the design of high-performance electrocatalysts and economically valuable reactions. The advancement of in situ and operando techniques, especially X-ray absorption and Raman and infrared spectroscopies, as well as differential electrochemical mass spectrometry, provide powerful tools for studying OORs. In situ methods reveal catalyst structural changes under applied bias and reaction-relevant conditions, whereas operando techniques simultaneously monitor both structure and activity in real operating conditions. This Review addresses the achievements towards closing the knowledge gap between fundamental, lab-scale studies and industrial, large-scale applications using in situ and operando techniques to uncover bulk catalyst structures, catalyst–surface–electrolyte dynamics and local transient product formation during anodic OORs. It also highlights the underlying principles of these techniques, offering perspectives on future prospects and challenges for advancing OOR applications, particularly in discovering next-generation efficient catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ and operando probing of electrochemical organic oxidation reactions (OORs).
Fig. 2: In situ and operando techniques used to investigate organic oxidation reactions.
Fig. 3: Overview of the organic oxidation reactions (OORs) explored in hybrid water electrolysers.
Fig. 4: Application of X-ray diffraction and X-ray absorption spectroscopies for electrochemical organic oxidation reactions.
Fig. 5: Application of X-ray photoelectron spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy and electrochemical impedance spectroscopy (EIS) for electrochemical organic oxidation reactions.
Fig. 6: Application of Raman spectroscopy for electrochemical organic oxidation reactions.
Fig. 7: Application of infrared spectroscopy for electrochemical organic oxidation reactions.
Fig. 8: Application of sum frequency generation (SFG) for electrochemical organic oxidation reactions.
Fig. 9: Application of differential electrochemical mass spectrometry (DEMS) for electrochemical organic oxidation reactions.
Fig. 10: Application of NMR, cyclic voltammetry (CV) and inductively coupled plasma mass spectrometry (ICP-MS) for electrochemical organic oxidation reactions.
Fig. 11: Future outlook of in situ and operando techniques for electrochemical organic oxidation reactions.

Similar content being viewed by others

Change history

References

  1. Leech, M. C. & Lam, K. A practical guide to electrosynthesis. Nat. Rev. Chem. 6, 275–286 (2022).

    Article  PubMed  Google Scholar 

  2. Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Malapit, C. A. et al. Advances on the merger of electrochemistry and transition metal catalysis for organic synthesis. Chem. Rev. 122, 3180–3218 (2022).

    Article  PubMed  CAS  Google Scholar 

  4. Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article  PubMed  CAS  Google Scholar 

  5. Ghosh, S. et al. Deciphering the role of nickel in electrochemical organic oxidation reactions. Adv. Energy Mater. 14, 2400696 (2024).

    Article  CAS  Google Scholar 

  6. Chen, G., Li, X. & Feng, X. Upgrading organic compounds through the coupling of electrooxidation with hydrogen evolution. Angew. Chem. Int. Ed. 61, e202209014 (2022).

    Article  CAS  Google Scholar 

  7. Liu, C., Chen, F., Zhao, B.-H., Wu, Y. & Zhang, B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat. Rev. Chem. 8, 277–293 (2024).

    Article  PubMed  CAS  Google Scholar 

  8. Na, J. et al. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. Nat. Commun. 10, 5193 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhong, W. et al. Electrocatalytic reduction of CO2 coupled with organic conversion to selectively synthesize high-value chemicals. Chem. Eur. J. 29, e202203228 (2023).

    Article  PubMed  CAS  Google Scholar 

  10. Bai, J. et al. Glycerol oxidation assisted electrocatalytic nitrogen reduction: ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates. J. Mater. Chem. A 7, 21149–21156 (2019).

    Article  CAS  Google Scholar 

  11. Xu, G.-R. et al. Ruthenium(III) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. J. Mater. Chem. A 7, 25433–25440 (2019).

    Article  CAS  Google Scholar 

  12. Kahlstorf, T., Hausmann, J. N., Sontheimer, T. & Menezes, P. W. Challenges for hybrid water electrolysis to replace the oxygen evolution reaction on an industrial scale. Glob. Chall. 7, 2200242 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, H.-Y., Sun, M.-L., Ren, J.-T. & Yuan, Z.-Y. Circumventing challenges: design of anodic electrocatalysts for hybrid water electrolysis systems. Adv. Energy Mater. 13, 2203568 (2023).

    Article  CAS  Google Scholar 

  14. Wang, T. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 5, 66–73 (2022).

    Article  CAS  Google Scholar 

  15. Deng, C. et al. Earth-abundant metal-based electrocatalysts promoted anodic reaction in hybrid water electrolysis for efficient hydrogen production: recent progress and perspectives. Adv. Energy Mater. 12, 2201047 (2022).

    Article  CAS  Google Scholar 

  16. Wang, T. et al. Transforming electrocatalytic biomass upgrading and hydrogen production from electricity input to electricity output. Angew. Chem. Int. Ed. 61, e202115636 (2022).

    Article  CAS  Google Scholar 

  17. Lee, K. J., Elgrishi, N., Kandemir, B. & Dempsey, J. L. Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts. Nat. Rev. Chem. 1, 0039 (2017).

    Article  CAS  Google Scholar 

  18. Kim, S.-J., Maligal-Ganesh, R. V., Mahmood, J., Babar, P. & Yavuz, C. T. Structural control over single-crystalline oxides for heterogeneous catalysis. Nat. Rev. Chem. 9, 397–414 (2025).

    Article  PubMed  Google Scholar 

  19. Zhu, Y., Wang, J., Chu, H., Chu, Y.-C. & Chen, H. M. In situ/operando studies for designing next-generation electrocatalysts. ACS Energy Lett. 5, 1281–1291 (2020).

    Article  CAS  Google Scholar 

  20. Pastor, E. et al. Complementary probes for the electrochemical interface. Nat. Rev. Chem. 8, 159–178 (2024).

    Article  PubMed  Google Scholar 

  21. Magnussen, O. M. et al. In situ and operando X-ray scattering methods in electrochemistry and electrocatalysis. Chem. Rev. 124, 629–721 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fu, X., Wan, C., Huang, Y. & Duan, X. Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media. Adv. Funct. Mater. 32, 2106401 (2022).

    Article  CAS  Google Scholar 

  23. Zuo, S., Wu, Z., Zhang, H. & Lou, X. W. (D.) Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Adv. Energy Mater. 12, 2103383 (2022).

    Article  CAS  Google Scholar 

  24. Mondal, I. et al. The (in)stability of heterostructures during the oxygen evolution reaction. Adv. Energy Mater. 14, 2400809 (2024).

    Article  CAS  Google Scholar 

  25. Ghosh, S., Dasgupta, B., Walter, C., Menezes, P. W. & Driess, M. New avenues to chemical space for energy materials by the molecular precursor approach. Small Sci. 3, 2200115 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yang, H., An, N., Kang, Z., Menezes, P. W. & Chen, Z. Understanding advanced transition metal-based two electron oxygen reduction electrocatalysts from the perspective of phase engineering. Adv. Mater. 36, 2400140 (2024).

    Article  CAS  Google Scholar 

  27. Chen, Z. et al. Hydrogen-induced disproportionation of samarium-cobalt intermetallics enabling promoted hydrogen evolution reaction activity and durability in alkaline media. Adv. Funct. Mater. 34, 2402699 (2024).

    Article  CAS  Google Scholar 

  28. Bagchi, D., Roy, S., Sarma, S., Ch, C. & Peter, S. Toward unifying the mechanistic concepts in electrochemical CO2 reduction from an integrated material design and catalytic perspective. Adv. Funct. Mater. 32, 2209023 (2022).

    Article  CAS  Google Scholar 

  29. Bagchi, D. et al. Structure-tailored surface oxide on Cu–Ga intermetallics enhances CO2 reduction selectivity to methanol at ultralow potential. Adv. Mater. 34, 2109426 (2022).

    Article  CAS  Google Scholar 

  30. Wu, J. et al. In situ characterization techniques for electrochemical nitrogen reduction reaction. ACS Nano 18, 20934–20956 (2024).

    Article  PubMed  CAS  Google Scholar 

  31. Heidary, N. & Kornienko, N. Operando vibrational spectroscopy for electrochemical biomass valorization. Chem. Commun. 56, 8726–8734 (2020).

    Article  CAS  Google Scholar 

  32. Petrii, O. A. Pt–Ru electrocatalysts for fuel cells: a representative review. J. Solid State Electrochem. 12, 609–642 (2008).

    Article  CAS  Google Scholar 

  33. Mostaghimi, A. H. B., Al-Attas, T. A., Kibria, M. G. & Siahrostami, S. A review on electrocatalytic oxidation of methane to oxygenates. J. Mater. Chem. A 8, 15575–15590 (2020).

    Article  Google Scholar 

  34. Kahlstorf, T. et al. Water-soluble nickel and iron salts for hydroxymethylfurfural (HMF) and water oxidation: the simplest precatalysts? Green Chem. 25, 8679–8686 (2023).

    Article  CAS  Google Scholar 

  35. Ghosh, S. et al. Evolution of carbonate-intercalated γ-NiOOH from a molecularly derived nickel sulfide (pre)catalyst for efficient water and selective organic oxidation. Small 19, 2206679 (2023).

    Article  CAS  Google Scholar 

  36. Dasgupta, B. et al. A soft molecular single-source precursor approach to synthesize a nanostructured Co9S8 (pre)catalyst for efficient water oxidation and biomass valorization. J. Mater. Chem. A 12, 30522–30533 (2024).

    Article  CAS  Google Scholar 

  37. Yang, H. et al. In situ reconstruction of helical iron borophosphate precatalyst toward durable industrial alkaline water electrolysis and selective oxidation of alcohols. Adv. Funct. Mater. 33, 2303702 (2023).

    Article  CAS  Google Scholar 

  38. Yang, Y. et al. Hybrid oxidization of ethylene glycol on defective Ag-PtPd electrocatalyst beyond 3000 h stability at an industrial-scale current density. Adv. Funct. Mater. 35, 2418588 (2025).

    Article  CAS  Google Scholar 

  39. Zhu, Y.-Q. et al. Identification of active sites formed on cobalt oxyhydroxide in glucose electrooxidation. Angew. Chem. Int. Ed. 62, e202219048 (2023).

    Article  CAS  Google Scholar 

  40. Zhou, H. et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 12, 4679 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chen, W. et al. Unveiling the electrooxidation of urea: intramolecular coupling of the N−N bond. Angew. Chem. Int. Ed. 60, 7297–7307 (2021).

    Article  CAS  Google Scholar 

  42. Mondal, I. et al. Nanostructured intermetallic nickel silicide (pre)catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines. Adv. Energy Mater. 12, 2200269 (2022).

    Article  CAS  Google Scholar 

  43. Han, S. et al. Membrane-free selective oxidation of thioethers with water over a nickel phosphide nanocube electrode. Cell Rep. Phys. Sci. 2, 100462 (2021).

    Article  CAS  Google Scholar 

  44. Chung, M. et al. Direct propylene epoxidation via water activation over Pd-Pt electrocatalysts. Science 383, 49–55 (2024).

    Article  PubMed  CAS  Google Scholar 

  45. Huang, C., Huang, Y., Liu, C., Yu, Y. & Zhang, B. Integrating hydrogen production with aqueous selective semi-dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angew. Chem. Int. Ed. 58, 12014–12017 (2019).

    Article  CAS  Google Scholar 

  46. Chong, X., Liu, C., Wang, C., Yang, R. & Zhang, B. Integrating hydrogen production and transfer hydrogenation with selenite promoted electrooxidation of α-nitrotoluenes to E-nitroethenes. Angew. Chem. Int. Ed. 60, 22010–22016 (2021).

    Article  CAS  Google Scholar 

  47. Li, J. et al. Green electrosynthesis of 5,5′-azotetrazolate energetic materials plus energy-efficient hydrogen production using ruthenium single-atom catalysts. Adv. Mater. 34, 2203900 (2022).

    Article  CAS  Google Scholar 

  48. Wu, X., Wang, Y. & Wu, Z.-S. Design principle of electrocatalysts for the electrooxidation of organics. Chem 8, 2594–2629 (2022).

    Article  CAS  Google Scholar 

  49. Fan, Z. et al. Recent developments in electrode materials for the selective upgrade of biomass-derived platform molecules into high-value-added chemicals and fuels. Green Chem. 24, 7818–7868 (2022).

    Article  CAS  Google Scholar 

  50. Román, A. M., Hasse, J. C., Medlin, J. W. & Holewinski, A. Elucidating acidic electro-oxidation pathways of furfural on platinum. ACS Catal. 9, 10305–10316 (2019).

    Article  Google Scholar 

  51. Han, G., Li, G. & Sun, Y. Electrocatalytic dual hydrogenation of organic substrates with a Faradaic efficiency approaching 200%. Nat. Catal. 6, 224–233 (2023).

    Article  CAS  Google Scholar 

  52. Fu, G. et al. Capturing critical gem-diol intermediates and hydride transfer for anodic hydrogen production from 5-hydroxymethylfurfural. Nat. Commun. 14, 8395 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Qian, Q. et al. Electrochemical biomass upgrading coupled with hydrogen production under industrial-level current density. Adv. Mater. 35, 2300935 (2023).

    Article  CAS  Google Scholar 

  54. Dasgupta, B. et al. A knowledge-based molecular single-source precursor approach to nickel chalcogenide precatalysts for electrocatalytic water, alcohol, and aldehyde oxidations. ACS Nano 18, 33964–33976 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yang, H. et al. Activation of nickel foam through in-liquid plasma-induced phosphorus incorporation for efficient quasi-industrial water oxidation and selective oxygenation of organics. Appl. Catal. B Environ. 324, 122249 (2023).

    Article  CAS  Google Scholar 

  56. Yang, M. et al. Correlating the valence state with the adsorption behavior of a Cu-based electrocatalyst for furfural oxidation with anodic hydrogen production reaction. Adv. Mater. 35, 2304203 (2023).

    Article  CAS  Google Scholar 

  57. Menezes, P. W. et al. Combination of highly efficient electrocatalytic water oxidation with selective oxygenation of organic substrates using manganese borophosphates. Adv. Mater. 33, 2004098 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wang, W. et al. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C−N bonds to nitrile C≡N bonds. Angew. Chem. Int. Ed. 59, 16974–16981 (2020).

    Article  CAS  Google Scholar 

  59. Gao, X. et al. Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation. Nat. Commun. 14, 5842 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chung, M., Jin, K., Zeng, J. S., Ton, T. N. & Manthiram, K. Tuning single-atom dopants on manganese oxide for selective electrocatalytic cyclooctene epoxidation. J. Am. Chem. Soc. 144, 17416–17422 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ghosh, S. et al. Nitridated nickel mesh as industrial water and alcohol oxidation catalyst: reconstruction and iron-incorporation matters. Adv. Energy Mater. 14, 2400356 (2024).

    Article  CAS  Google Scholar 

  62. Zhou, H. et al. Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations. Nat. Commun. 14, 5621 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lee, J. H. et al. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat. Commun. 10, 3724 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang, D. & Botte, G. G. In situ X-ray diffraction study of urea electrolysis on nickel catalysts. ECS Electrochem. Lett. 3, H29 (2014).

    Article  CAS  Google Scholar 

  65. Yang, Y. et al. Defect-promoted Ni-based layer double hydroxides with enhanced deprotonation capability for efficient biomass electrooxidation. Adv. Mater. 35, 2305573 (2023).

    Article  CAS  Google Scholar 

  66. Zubair, M. et al. Vacancy mediated electrooxidation of 5-hydroxymethyl furfuryl using defect engineered layered double hydroxide electrocatalysts. Adv. Energy Mater. 14, 2400676 (2024).

    Article  CAS  Google Scholar 

  67. Yang, Y. et al. Double hydroxide nanocatalysts for urea electrooxidation engineered toward environmentally benign products. Adv. Mater. 36, 2403187 (2024).

    Article  CAS  Google Scholar 

  68. Roy, S. et al. Mechanistic insights into the promotional effect of Ni substitution in non-noble metal carbides for highly enhanced water splitting. Appl. Catal. B Environ. 298, 120560 (2021).

    Article  CAS  Google Scholar 

  69. Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).

    Article  PubMed  CAS  Google Scholar 

  70. Bagchi, D. et al. Operando investigation of the origin of C─C coupling in electrochemical CO2 reduction upon releasing bonding strength, structural ordering in Pd─Cu catalyst. Adv. Energy Mater. 14, 2402237 (2024).

    Article  CAS  Google Scholar 

  71. Hausmann, J. N., Mebs, S., Dau, H., Driess, M. & Menezes, P. W. Oxygen evolution activity of amorphous cobalt oxyhydroxides: interconnecting precatalyst reconstruction, long-range order, buffer-binding, morphology, mass transport, and operation temperature. Adv. Mater. 34, 2207494 (2022).

    Article  CAS  Google Scholar 

  72. Wai, M. H. et al. Influence of surface formate species on methane selectivity for carbon dioxide methanation over nickel hydroxyapatite catalyst. ChemCatChem 12, 6410–6419 (2020).

    Article  CAS  Google Scholar 

  73. Reith, L. et al. In situ detection of iron in oxidation states ≥ IV in cobalt-iron oxyhydroxide reconstructed during oxygen evolution reaction. Adv. Energy Mater. 13, 2203886 (2023).

    Article  CAS  Google Scholar 

  74. Holstein, W. L. & Rosenfeld, H. D. In-situ X-ray absorption spectroscopy study of Pt and Ru chemistry during methanol electrooxidation. J. Phys. Chem. B 109, 2176–2186 (2005).

    Article  PubMed  CAS  Google Scholar 

  75. Sakamoto, T. et al. Operando XAFS study of carbon supported Ni, NiZn, and Co catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells. Electrochim. Acta 163, 116–122 (2015).

    Article  CAS  Google Scholar 

  76. Zhou, Z. et al. Strain-induced in situ formation of NiOOH species on Co–Co bond for selective electrooxidation of 5-hydroxymethylfurfural and efficient hydrogen production. Appl. Catal. B Environ. 305, 121072 (2022).

    Article  CAS  Google Scholar 

  77. Zhou, B. et al. Activity origin and alkalinity effect of electrocatalytic biomass oxidation on nickel nitride. J. Energy Chem. 61, 179–185 (2021).

    Article  CAS  Google Scholar 

  78. Manzoli, M. et al. Structure–reactivity relationship in Co3O4 promoted Au/CeO2 catalysts for the CH3OH oxidation reaction revealed by in situ FTIR and operando EXAFS studies. J. Mater. Chem. A 5, 2083–2094 (2017).

    Article  CAS  Google Scholar 

  79. Lin, R. et al. Identification and manipulation of dynamic active site deficiency-induced competing reactions in electrocatalytic oxidation processes. Energy Environ. Sci. 15, 2386–2396 (2022).

    Article  CAS  Google Scholar 

  80. Melke, J. et al. Electrooxidation of ethanol on Pt. An in situ and time-resolved XANES study. J. Phys. Chem. C 116, 2838–2849 (2012).

    Article  CAS  Google Scholar 

  81. Li, Z. et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst. Nat. Commun. 13, 147 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pan, Y. et al. Unveiling the synergistic effect of multi-valence Cu species to promote formaldehyde oxidation for anodic hydrogen production. Chem 9, 963–977 (2023).

    Article  CAS  Google Scholar 

  83. Lum, Y. et al. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nat. Catal. 3, 14–22 (2020).

    Article  CAS  Google Scholar 

  84. Yang, Y. et al. Operando methods in electrocatalysis. ACS Catal. 11, 1136–1178 (2021).

    Article  CAS  Google Scholar 

  85. Chen, Z. et al. Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction. Nat. Commun. 13, 763 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Li, X., Wang, S., Li, L., Sun, Y. & Xie, Y. Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 142, 9567–9581 (2020).

    PubMed  CAS  Google Scholar 

  87. Zhang, D., Wang, R. (J.), Wang, X. & Gogotsi, Y. In situ monitoring redox processes in energy storage using UV–Vis spectroscopy. Nat. Energy 8, 567–576 (2023).

    Article  CAS  Google Scholar 

  88. Yan, Y. et al. Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics. Nat. Commun. 14, 7987 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Lazanas, A. C. & Prodromidis, M. I. Electrochemical impedance spectroscopy─a tutorial. ACS Meas. Sci. Au 3, 162–193 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Song, Y. et al. Bifunctional integrated electrode for high-efficient hydrogen production coupled with 5-hydroxymethylfurfural oxidation. Appl. Catal. B Environ. 312, 121400 (2022).

    Article  CAS  Google Scholar 

  91. Qi, Y. et al. Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 13, 4602 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Chen, W. et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 6, 2974–2993 (2020).

    Article  CAS  Google Scholar 

  93. Li, S. et al. Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat. Commun. 13, 2916 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Zhu, B. et al. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides. Nat. Commun. 14, 1686 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Dasgupta, B. et al. A facile molecular approach to amorphous nickel pnictides and their reconstruction to crystalline potassium-intercalated γ-NiOOHx enabling high-performance electrocatalytic water oxidation and selective oxidation of 5-hydroxymethylfurfural. Small 19, 2301258 (2023).

    Article  CAS  Google Scholar 

  96. Zhao, B. et al. Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen Co-production. Adv. Funct. Mater. 31, 2008812 (2021).

    Article  CAS  Google Scholar 

  97. Mondal, A., Shit, S. C. & Mondal, I. A MnNi-heterometallic perovskite hydroxide (pre)catalyst for electrochemical alcohol oxidation: insight into the active phase. J. Mater. Chem. A 13, 2327–2334 (2025).

    Article  Google Scholar 

  98. Huang, H. et al. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA cm−2. Energy Environ. Sci. 13, 4990–4999 (2020).

    Article  CAS  Google Scholar 

  99. Xie, Y., Zhou, Z., Yang, N. & Zhao, G. An overall reaction integrated with highly selective oxidation of 5-hydroxymethylfurfural and efficient hydrogen evolution. Adv. Funct. Mater. 31, 2102886 (2021).

    Article  CAS  Google Scholar 

  100. Huang, Y., Chong, X., Liu, C., Liang, Y. & Zhang, B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew. Chem. Int. Ed. 57, 13163–13166 (2018).

    Article  CAS  Google Scholar 

  101. Deng, X. et al. Understanding the roles of electrogenerated Co3+ and Co4+ in selectivity-tuned 5-hydroxymethylfurfural oxidation. Angew. Chem. Int. Ed. 60, 20535–20542 (2021).

    Article  CAS  Google Scholar 

  102. Zhang, Y. et al. Coupling glucose-assisted Cu(I)/Cu(II) redox with electrochemical hydrogen production. Adv. Mater. 33, 2104791 (2021).

    Article  CAS  Google Scholar 

  103. Zhao, H.-F. et al. In-situ electrochemical transformed Cu oxide from Cu sulfide for efficient upgrading of biomass derived 5-hydroxymethylfurfural in anion exchange membrane electrolyzer. ChemSusChem 15, e202201625 (2022).

    Article  PubMed  CAS  Google Scholar 

  104. Zhou, B. et al. Room-temperature chemical looping hydrogen production mediated by electrochemically induced heterogeneous Cu(I)/Cu(II) redox. Chem Catal. 1, 1493–1504 (2021).

    CAS  Google Scholar 

  105. Si, D. et al. Hydrogen anode/cathode co-productions-coupled anode alcohol selective oxidation and distinctive H/e transfer pathways. Appl. Catal. B Environ. 331, 122664 (2023).

    Article  CAS  Google Scholar 

  106. Hausmann, J. N. & Menezes, P. W. Effect of surface-adsorbed and intercalated (oxy)anions on the oxygen evolution reaction. Angew. Chem. 134, e202207279 (2022).

    Article  Google Scholar 

  107. Chen, Z., Yang, H., Kang, Z., Driess, M. & Menezes, P. W. The pivotal role of s-, p-, and f-block metals in water electrolysis: status quo and perspectives. Adv. Mater. 34, 2108432 (2022).

    Article  CAS  Google Scholar 

  108. Wen, Q. et al. In situ chalcogen leaching manipulates reactant interface toward efficient amine electrooxidation. ACS Nano 16, 9572–9582 (2022).

    Article  PubMed  CAS  Google Scholar 

  109. Heidary, N. & Kornienko, N. Operando Raman probing of electrocatalytic biomass oxidation on gold nanoparticle surfaces. Chem. Commun. 55, 11996–11999 (2019).

    Article  CAS  Google Scholar 

  110. Heidary, N. & Kornienko, N. Electrochemical biomass valorization on gold-metal oxide nanoscale heterojunctions enables investigation of both catalyst and reaction dynamics with operando surface-enhanced Raman spectroscopy. Chem. Sci. 11, 1798–1806 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Yang, Y.-Y. et al. Electrocatalysis of ethanol on a Pd electrode in alkaline media: an in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study. ACS Catal. 4, 798–803 (2014).

    Article  CAS  Google Scholar 

  112. Monyoncho, E. A. et al. Ethanol electro-oxidation on palladium revisited using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and density functional theory (DFT): why is it difficult to break the C–C bond? ACS Catal. 6, 4894–4906 (2016).

    Article  CAS  Google Scholar 

  113. Chen, D.-J. & Tong, Y. J. Irrelevance of carbon monoxide poisoning in the methanol oxidation reaction on a PtRu electrocatalyst. Angew. Chem. Int. Ed. 54, 9394–9398 (2015).

    Article  CAS  Google Scholar 

  114. Pech-Rodríguez, W. J. et al. Electrochemical and in situ FTIR study of the ethanol oxidation reaction on PtMo/C nanomaterials in alkaline media. Appl. Catal. B Environ. 203, 654–662 (2017).

    Article  Google Scholar 

  115. de Souza, J. P. I., Queiroz, S. L., Bergamaski, K., Gonzalez, E. R. & Nart, F. C. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. a study using DEMS and in-Situ FTIR techniques. J. Phys. Chem. B 106, 9825–9830 (2002).

    Article  Google Scholar 

  116. Torrero, J., Peña, M. A., Retuerto, M., Pascual, L. & Rojas, S. Infrared study of the electrooxidation of ethanol in alkaline electrolyte with Pt/C, PtRu/C and Pt3Sn. Electrochim. Acta 319, 312–322 (2019).

    Article  CAS  Google Scholar 

  117. Fang, X., Wang, L., Shen, P. K., Cui, G. & Bianchini, C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J. Power Sources 195, 1375–1378 (2010).

    Article  CAS  Google Scholar 

  118. García, G. et al. Ethanol oxidation on PtRuMo/C catalysts: in situ FTIR spectroscopy and DEMS studies. Int. J. Hydrog. Energy 37, 7131–7140 (2012).

    Article  Google Scholar 

  119. Wang, L. et al. In situ FTIR spectroelectrochemical study on the mechanism of ethylene glycol electrocatalytic oxidation at a Pd electrode. Phys. Chem. Chem. Phys. 13, 2667–2673 (2011).

    Article  PubMed  CAS  Google Scholar 

  120. Falase, A., Garcia, K., Lau, C. & Atanassov, P. Electrochemical and in situ IR characterization of PtRu catalysts for complete oxidation of ethylene glycol and glycerol. Electrochem. Commun. 13, 1488–1491 (2011).

    Article  CAS  Google Scholar 

  121. Holade, Y., Morais, C., Servat, K., Napporn, T. W. & Kokoh, K. B. Toward the electrochemical valorization of glycerol: Fourier transform infrared spectroscopic and chromatographic studies. ACS Catal. 3, 2403–2411 (2013).

    Article  CAS  Google Scholar 

  122. Schnaidt, J., Heinen, M., Denot, D., Jusys, Z. & Jürgen Behm, R. Electrooxidation of glycerol studied by combined in situ IR spectroscopy and online mass spectrometry under continuous flow conditions. J. Electroanal. Chem. 661, 250–264 (2011).

    Article  CAS  Google Scholar 

  123. Fernández, P. S., Martins, M. E. & Camara, G. A. New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes. Electrochim. Acta 66, 180–187 (2012).

    Article  Google Scholar 

  124. Houache, M. S. E. et al. Electrochemical valorization of glycerol on Ni-rich bimetallic NiPd nanoparticles: insight into product selectivity using in situ polarization modulation infrared-reflection absorption spectroscopy. ACS Sustain. Chem. Eng. 7, 14425–14434 (2019).

    Article  CAS  Google Scholar 

  125. Gomes, J. F. & Tremiliosi-Filho, G. Spectroscopic studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media. Electrocatalysis 2, 96–105 (2011).

    Article  CAS  Google Scholar 

  126. Zalineeva, A. et al. Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media. J. Am. Chem. Soc. 136, 3937–3945 (2014).

    Article  PubMed  CAS  Google Scholar 

  127. Liu, W.-J. et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 11, 265 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Koley, P. et al. Elucidation of active sites and mechanistic pathways of a heteropolyacid/Cu-metal–organic framework catalyst for selective oxidation of 5-hydroxymethylfurfural via ex situ X-ray absorption spectroscopy and in situ attenuated total reflection-infrared studies. ACS Catal. 13, 6076–6092 (2023).

    Article  CAS  Google Scholar 

  129. Zhang, L. et al. A lattice-oxygen-involved reaction pathway to boost urea oxidation. Angew. Chem. Int. Ed. 58, 16820–16825 (2019).

    Article  CAS  Google Scholar 

  130. Kwon, Y., Birdja, Y., Spanos, I., Rodriguez, P. & Koper, M. T. M. Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal. 2, 759–764 (2012).

    Article  CAS  Google Scholar 

  131. Huang, L. et al. Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C. ACS Catal. 6, 7686–7695 (2016).

    Article  CAS  Google Scholar 

  132. Ishiyama, T., Imamura, T. & Morita, A. Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces. Chem. Rev. 114, 8447–8470 (2014).

    Article  PubMed  CAS  Google Scholar 

  133. Yang, Y. & Mu, T. Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chem. 23, 4228–4254 (2021).

    Article  CAS  Google Scholar 

  134. Zhang, N. et al. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem. Int. Ed. 58, 15895–15903 (2019).

    Article  CAS  Google Scholar 

  135. Kutz, R. B., Braunschweig, B., Mukherjee, P., Dlott, D. D. & Wieckowski, A. Study of ethanol electrooxidation in alkaline electrolytes with isotope labels and sum-frequency generation. J. Phys. Chem. Lett. 2, 2236–2240 (2011).

    Article  CAS  Google Scholar 

  136. Jin, L. et al. Boosting the electrocatalytic urea oxidation performance by amorphous–crystalline Ni-TPA@NiSe heterostructures and mechanism discovery. ACS Catal. 13, 837–847 (2023).

    Article  CAS  Google Scholar 

  137. Clark, E. L., Singh, M. R., Kwon, Y. & Bell, A. T. Differential electrochemical mass spectrometer cell design for online quantification of products produced during electrochemical reduction of CO2. Anal. Chem. 87, 8013–8020 (2015).

    Article  PubMed  CAS  Google Scholar 

  138. Kim, C., Weng, L.-C. & Bell, A. T. Impact of pulsed electrochemical reduction of CO2 on the formation of C2+ products over Cu. ACS Catal. 10, 12403–12413 (2020).

    Article  CAS  Google Scholar 

  139. Mondal, S. et al. Distortion-induced interfacial charge transfer at single cobalt atom secured on ordered intermetallic surface enhances pure oxygen production. ACS Nano 17, 23169–23180 (2023).

    Article  PubMed  CAS  Google Scholar 

  140. Queiroz, A. C. et al. Electrochemical mass spectrometry: evolution of the cell setup for on-line investigation of products and screening of electrocatalysts for carbon dioxide reduction. ChemElectroChem 9, e202101408 (2022).

    Article  CAS  Google Scholar 

  141. Wang, H., Rus, E. & Abruña, H. D. New double-band-electrode channel flow differential electrochemical mass spectrometry cell: application for detecting product formation during methanol electrooxidation. Anal. Chem. 82, 4319–4324 (2010).

    Article  PubMed  CAS  Google Scholar 

  142. Hauke, P., Klingenhof, M., Wang, X., de Araújo, J. F. & Strasser, P. Efficient electrolysis of 5-hydroxymethylfurfural to the biopolymer-precursor furandicarboxylic acid in a zero-gap MEA-type electrolyzer. Cell Rep. Phys. Sci. 2, 100650 (2021).

    Article  CAS  Google Scholar 

  143. Zeng, R. et al. Methanol oxidation using ternary ordered intermetallic electrocatalysts: a DEMS study. ACS Catal. 10, 770–776 (2020).

    Article  CAS  Google Scholar 

  144. Dutta, N., Bagchi, D., Chawla, G. & Peter, S. C. A guideline to determine faradaic efficiency in electrochemical CO2 reduction. ACS Energy Lett. 9, 323–328 (2024).

    Article  CAS  Google Scholar 

  145. Zhu, Z., Luo, R. & Zhao, E. W. Operando NMR methods for studying electrocatalysis. Magn. Reson. Lett. 4, 100096 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Boisseau, R., Bussy, U., Giraudeau, P. & Boujtita, M. In situ ultrafast 2D NMR spectroelectrochemistry for real-time monitoring of redox reactions. Anal. Chem. 87, 372–375 (2015).

    Article  PubMed  CAS  Google Scholar 

  147. Wang, J. et al. Small-sized Pt nanoparticles supported on hybrid structures of MoS2 nanoflowers/graphene nanosheets: highly active composite catalyst toward efficient ethanol oxidation reaction studied by in situ electrochemical NMR spectroscopy. Appl. Catal. B Environ. 259, 118060 (2019).

    Article  CAS  Google Scholar 

  148. Beatrice Richter, J., Eßbach, C., Senkovska, I., Kaskel, S. & Brunner, E. Quantitative in situ 13C NMR studies of the electro-catalytic oxidation of ethanol. Chem. Commun. 55, 6042–6045 (2019).

    Article  Google Scholar 

  149. Wang, X. L. et al. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions. Nat. Commun. 7, 11918 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Huffman, B. L., Bredar, A. R. C. & Dempsey, J. L. Origins of non-ideal behaviour in voltammetric analysis of redox-active monolayers. Nat. Rev. Chem. 8, 628–643 (2024).

    Article  PubMed  CAS  Google Scholar 

  151. Rusling, J. F. & Suib, S. L. Characterizing materials with cyclic voltammetry. Adv. Mater. 6, 922–930 (1994).

    Article  CAS  Google Scholar 

  152. Van Acker, T., Theiner, S., Bolea-Fernandez, E., Vanhaecke, F. & Koellensperger, G. Inductively coupled plasma mass spectrometry. Nat. Rev. Methods Primers 3, 52 (2023).

    Article  Google Scholar 

  153. Kasian, O., Geiger, S., Mayrhofer, K. J. J. & Cherevko, S. Electrochemical on-line ICP-MS in electrocatalysis research. Chem. Rec. 19, 2130–2142 (2019).

    Article  PubMed  CAS  Google Scholar 

  154. Yan, K. et al. On-line inductively coupled plasma mass spectrometry reveals material degradation dynamics of Au and Cu catalysts during electrochemical CO2 reduction. J. Am. Chem. Soc. 147, 4079–4088 (2025).

    Article  PubMed  CAS  Google Scholar 

  155. Gentil, T. C. et al. Stability of supported Pd-based ethanol oxidation reaction electrocatalysts in alkaline media. J. Catal. 440, 115816 (2024).

    Article  CAS  Google Scholar 

  156. Kormányos, A., Speck, F. D., Mayrhofer, K. J. J. & Cherevko, S. Influence of fuels and pH on the dissolution stability of bifunctional PtRu/C alloy electrocatalysts. ACS Catal. 10, 10858–10870 (2020).

    Article  Google Scholar 

  157. Minichová, M. et al. Electrochemical dissolution of PtRu/C: effect of potential, fuels, and temperature. Electrochim. Acta 502, 144764 (2024).

    Article  Google Scholar 

  158. Kormányos, A. et al. Electrocatalytic oxidation of 2-propanol on PtxIr100−x bifunctional electrocatalysts – a thin-film materials library study. J. Catal. 396, 387–394 (2021).

    Article  Google Scholar 

  159. Ranninger, J. et al. On-line monitoring of dissolution processes in nonaqueous electrolytes – A case study with platinum. Electrochem. Commun. 114, 106702 (2020).

    Article  CAS  Google Scholar 

  160. Liu, S. et al. Organic matrix effects in inductively coupled plasma mass spectrometry: a tutorial review. Appl. Spectrosc. Rev. 57, 461–489 (2022).

    Article  Google Scholar 

  161. Zheng, Y. et al. Hierarchically structured CuNiP/CuOx-VP nanoarrays construction by heteroatom doping boosting glycerol valorization at industrial-level current density. Adv. Funct. Mater. 35, 2412810 (2025).

    Article  CAS  Google Scholar 

  162. Sun, Y., Wang, J., Qi, Y., Li, W. & Wang, C. Efficient electrooxidation of 5-hydroxymethylfurfural using co-doped Ni3S2 catalyst: promising for H2 production under industrial-level current density. Adv. Sci. 9, 2200957 (2022).

    Article  CAS  Google Scholar 

  163. Li, W. et al. Electrocatalytic upgrading of polyethylene terephthalate plastic to formic acid at an industrial-scale current density via Ni-MOF@MnCo-OH catalyst. Chem. Eng. J. 480, 148087 (2024).

    Article  CAS  Google Scholar 

  164. Mondal, I. et al. In-liquid plasma-mediated manganese oxide electrocatalysts for quasi-industrial water oxidation and selective dehydrogenation. ACS Nano 17, 14043–14052 (2023).

    Article  PubMed  CAS  Google Scholar 

  165. Yu, H. et al. Ambient γ-rays-mediated noble-metal deposition on defect-rich manganese oxide for glycerol-assisted H2 evolution at industrial-level current density. Angew. Chem. Int. Ed. 62, e202314569 (2023).

    Article  CAS  Google Scholar 

  166. Li, S. et al. Doped Mn enhanced NiS electrooxidation performance of HMF into FDCA at industrial-level current density. Adv. Funct. Mater. 33, 2214488 (2023).

    Article  CAS  Google Scholar 

  167. Chen, D., Li, W., Liu, J. & Sun, L. Bio-inspired proton relay for promoting continuous 5-hydroxymethylfurfural electrooxidation in a flowing system. Energy Environ. Sci. 18, 3120–3128 (2025).

    Article  CAS  Google Scholar 

  168. Moysiadou, A., Lee, S., Hsu, C.-S., Chen, H. M. & Hu, X. Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 142, 11901–11914 (2020).

    Article  PubMed  CAS  Google Scholar 

  169. Xie, Y. et al. In situ investigation on life-time dynamic structure–performance correlation toward electrocatalyst service behavior in water splitting. Adv. Funct. Mater. 32, 2111777 (2022).

    Article  CAS  Google Scholar 

  170. Dionigi, F. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Hausmann, J. N. & Menezes, P. W. A rising mismatch between system complexity, characterization, and theory in electrocatalysis: challenges and solutions. Appl. Catal. B Environ. 342, 123447 (2024).

    Article  CAS  Google Scholar 

  172. Spurgeon, S. R. et al. Towards data-driven next-generation transmission electron microscopy. Nat. Mater. 20, 274–279 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Yao, Z. et al. Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2023).

    Article  PubMed  Google Scholar 

  174. Zheng, H., Lu, X. & He, K. In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. J. Energy Chem. 68, 454–493 (2022).

    Article  CAS  Google Scholar 

  175. Li, H., Jiao, Y., Davey, K. & Qiao, S.-Z. Data-driven machine learning for understanding surface structures of heterogeneous catalysts. Angew. Chem. Int. Ed. 62, e202216383 (2023).

    Article  CAS  Google Scholar 

  176. Badreldin, A., Bouhali, O. & Abdel-Wahab, A. Complimentary computational cues for water electrocatalysis: a DFT and ML perspective. Adv. Funct. Mater. 34, 2312425 (2024).

    Article  CAS  Google Scholar 

  177. Dinic, F. et al. Applied machine learning for developing next-generation functional materials. Adv. Funct. Mater. 31, 2104195 (2021).

    Article  CAS  Google Scholar 

  178. Neukermans, S. et al. A versatile in-situ electron paramagnetic resonance spectro-electrochemical approach for electrocatalyst research. ChemElectroChem 7, 4578–4586 (2020).

    Article  CAS  Google Scholar 

  179. Hunger, M. & Weitkamp, J. In situ IR, NMR, EPR, and UV/Vis spectroscopy: tools for new insight into the mechanisms of heterogeneous catalysis. Angew. Chem. Int. Ed. 40, 2954–2971 (2001).

    Article  CAS  Google Scholar 

  180. Hollmann, D. et al. From the precursor to the active state: monitoring metamorphosis of electrocatalysts during water oxidation by in situ spectroscopy. ChemElectroChem 4, 2117–2122 (2017).

    Article  CAS  Google Scholar 

  181. Long, C. et al. Operando toolbox for heterogeneous interface in electrocatalysis. Chem Catal. 1, 509–522 (2021).

    CAS  Google Scholar 

  182. Wang, Y., Skaanvik, S. A., Xiong, X., Wang, S. & Dong, M. Scanning probe microscopy for electrocatalysis. Matter 4, 3483–3514 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the German Federal Ministry of Education and Research (BMBF) in the framework of the project Catlab (03EW0015A/B) and the project PrometH2eus (03HY105C). The authors also acknowledge support from the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) under Germany’s Excellence Strategy – EXC 2008/1 – 390540038 – UniSysCat.

Author information

Authors and Affiliations

Authors

Contributions

P.W.M. conceived the idea, proposed the topic and designed the Review structure. B.D. and D.B. collaboratively planned, organized and co-authored the initial draft. T.S., M.D. and P.W.M. were involved in reviewing, discussing and supervising the Review.

Corresponding authors

Correspondence to Matthias Driess or Prashanth W. Menezes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, B., Bagchi, D., Sontheimer, T. et al. Dynamics in electrochemical organic oxidation reactions from in situ and operando techniques. Nat Rev Chem 9, 766–789 (2025). https://doi.org/10.1038/s41570-025-00767-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00767-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing