Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ion migration in perovskite solar cells

Abstract

Metal halide perovskite solar cells have considerable potential for next-generation solar power production. However, if not controlled, the migration of mobile ions can hamper the stability of perovskite solar cells. Intensive research efforts have devised methods of suppressing ion migration and degradation in perovskite materials, resulting in solar cells that are stable over thousands of hours during accelerated ageing testing. Here, we review the chemical origins of ion migration, its effect on material and device performance and stability, and strategies to mitigate its impact. Ion migration originates in the soft lattice of the halide perovskite framework and its low defect-formation energy, but there are many different strategies to reduce its effects, from compositional engineering of materials and device architecture changes to additives and strain engineering. The field has made great progress in understanding the origin and properties of mobile ions in halide perovskites and has improved operational stability beyond expectations. Nonetheless, there are still ample opportunities to further improve the long-term durability of perovskite solar cells, either by reducing ion migration or its effect on solar cell efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of ion migration pathways and effects in metal halide perovskites.
Fig. 2: Schematic overview of different measurement techniques to study ion migration in metal halide perovskites.
Fig. 3: Mobile ion-induced device degradation and efficiency losses.
Fig. 4: Pathways towards achieving durable and efficient perovskite solar cells.

Similar content being viewed by others

References

  1. Photovoltaic Research — best research-cell efficiency chart. National Laboratory of the Rockies https://www.nrel.gov/pv/cell-efficiency (2025).

  2. Ahangharnejhad, R. H. et al. Impact of lifetime on the levelized cost of electricity from perovskite single junction and tandem solar cells. Sustain. Energy Fuels 6, 2718–2726 (2022).

    Article  CAS  Google Scholar 

  3. Bag, M. et al. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 137, 13130–13137 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Lang, F. et al. Radiation hardness and self-healing of perovskite solar cells. Adv. Mater. 28, 8726–8731 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Xiao, Z. & Huang, J. Energy-efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater. 2, 1600100 (2016).

    Article  Google Scholar 

  6. Thiesbrummel, J. et al. Ion-induced field screening as a dominant factor in perovskite solar cell operational stability. Nat. Energy 9, 664–676 (2024). This study shows that performance degradation in perovskite solar cells is dominated by mobile-ion-induced losses at the early timescales.

    Article  CAS  Google Scholar 

  7. Duan, L. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).

    Article  CAS  Google Scholar 

  8. Mizusaki, J., Arai, K. & Fueki, K. Ionic conduction of the perovskite-type halides. Solid State Ion. 11, 203–211 (1983).

    Article  CAS  Google Scholar 

  9. Tress, W. Metal halide perovskites as mixed electronic–ionic conductors: challenges and opportunities—from hysteresis to memristivity. J. Phys. Chem. Lett. 8, 3106–3114 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Walsh, A. & Stranks, S. D. Taking control of ion transport in halide perovskite solar cells. ACS Energy Lett. 3, 1983–1990 (2018).

    Article  CAS  Google Scholar 

  11. Senocrate, A. & Maier, J. Solid state ionics of hybrid halide perovskites. J. Am. Chem. Soc. 141, 8382–8396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Futscher, M. H. & Milić, J. V. Mixed conductivity of hybrid halide perovskites: emerging opportunities and challenges. Front. Energy Res. 9, 629074 (2021).

    Article  Google Scholar 

  13. Munro, L. J. & Wales, D. J. Defect migration in crystalline silicon. Phys. Rev. B 59, 3969–3980 (1999).

    Article  CAS  Google Scholar 

  14. Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1, 360–366 (2016).

    Article  CAS  Google Scholar 

  15. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. deQuilettes, D. W. et al. Photo-induced halide redistribution in organic–inorganic perovskite films. Nat. Commun. 7, 11683 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun, Q. et al. Role of microstructure in oxygen induced photodegradation of methylammonium lead triiodide perovskite films. Adv. Energy Mater. 7, 1700977 (2017).

    Article  Google Scholar 

  18. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015). Early work on the mechanisms of ionic transport and deriving Ea values for ionic migration in metal halide perovskites.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, T. Y., Gregori, G., Pellet, N., Grätzel, M. & Maier, J. The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015).

    Article  CAS  Google Scholar 

  20. Azpiroz, J. M., Mosconi, E., Bisquert, J. & Angelis, F. D. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  CAS  Google Scholar 

  21. Tyagi, V., Pols, M., Brocks, G. & Tao, S. Tracing ion migration in halide perovskites with machine learned force fields. J. Phys. Chem. Lett. 16, 5153–5159 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016). Early evidence of degradation caused by migration from the metal electrodes.

    Article  CAS  PubMed  Google Scholar 

  23. Futscher, M. H. et al. Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements. Mater. Horiz. 6, 1497–1503 (2019).

    Article  CAS  Google Scholar 

  24. Clark, C. P. et al. Formation of stable metal halide perovskite/perovskite heterojunctions. ACS Energy Lett. 5, 3443–3451 (2020).

    Article  CAS  Google Scholar 

  25. Meloni, S. et al. Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7, 10334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Senocrate, A. et al. The nature of ion conduction in methylammonium lead iodide: a multimethod approach. Angew. Chem. Int. Ed. 56, 7755–7759 (2017). Complementary methods enable pinpointing of the dominant ionic conductivity of iodine vacancies (and the limited contribution of MA).

    Article  CAS  Google Scholar 

  27. Senocrate, A. et al. Charge carrier chemistry in methylammonium lead iodide. Solid State Ion. 321, 69–74 (2018).

    Article  CAS  Google Scholar 

  28. Pols, M., Brouwers, V., Calero, S. & Tao, S. How fast do defects migrate in halide perovskites: insights from on-the-fly machine-learned force fields. Chem. Commun. 59, 4660–4663 (2023).

    Article  CAS  Google Scholar 

  29. Zhou, Y. et al. How photogenerated I2 induces I-rich phase formation in lead mixed halide perovskites. Adv. Mater. 36, 2305567 (2024).

    Article  CAS  Google Scholar 

  30. Xue, H., Vicent-Luna, J. M., Tao, S. & Brocks, G. Compound defects in halide perovskites: a first-principles study of CsPbI3. J. Phys. Chem. C 127, 1189–1197 (2023).

    Article  CAS  Google Scholar 

  31. Kim, G. Y. et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17, 445–449 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Brennan, M. C., Ruth, A., Kamat, P. V. & Kuno, M. Photoinduced anion segregation in mixed halide perovskites. Trends Chem. 2, 282–301 (2020).

    Article  CAS  Google Scholar 

  33. Seitz, M. et al. Halide mixing inhibits exciton transport in two-dimensional perovskites despite phase purity. ACS Energy Lett. 7, 358–365 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Rolston, N. et al. Mechanical integrity of solution-processed perovskite solar cells. Extreme Mech. Lett. 9, 353–358 (2016).

    Article  Google Scholar 

  35. Rolston, N. et al. Effect of cation composition on the mechanical stability of perovskite solar cells. Adv. Energy Mater. 8, 1702116 (2018).

    Article  Google Scholar 

  36. Liu, D. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Muscarella, L. A. & Ehrler, B. The influence of strain on phase stability in mixed-halide perovskites. Joule 6, 2016–2031 (2022).

    Article  CAS  Google Scholar 

  38. Xue, D. J. et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muscarella, L. A. et al. Lattice compression increases the activation barrier for phase segregation in mixed-halide perovskites. ACS Energy Lett. 5, 3152–3158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Batatia, I. et al. A foundation model for atomistic materials chemistry. J. Chem. Phys. 163, 184110 (2025).

    Article  CAS  PubMed  Google Scholar 

  42. Ahlawat, P. et al. Atomistic mechanism of the nucleation of methylammonium lead iodide perovskite from solution. Chem. Mater. 32, 529–536 (2020).

    Article  CAS  Google Scholar 

  43. Bolhuis, P. G. & Swenson, D. W. H. Transition path sampling as Markov chain Monte Carlo of trajectories: recent algorithms, software, applications, and future outlook. Adv. Theory Simul. 4, 2000237 (2021).

    Article  Google Scholar 

  44. Lu, H. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt, M. C., Alvarez, A. O., de Boer, J. J., van de Ven, L. J. M. & Ehrler, B. Consistent interpretation of time- and frequency-domain traces of ion migration in perovskite semiconductors. ACS Energy Lett. 9, 5850–5858 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Futscher, M. H., Gangishetty, M. K., Congreve, D. N. & Ehrler, B. Quantifying mobile ions in perovskite-based devices with temperature-dependent capacitance measurements: frequency versus time domain. J. Chem. Phys. 152, 044202 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Luo, Y. et al. Direct observation of halide migration and its effect on the photoluminescence of methylammonium lead bromide perovskite single crystals. Adv. Mater. 29, 1703451 (2017).

    Article  Google Scholar 

  48. Klein-Kedem, N., Cahen, D. & Hodes, G. Effects of light and electron beam irradiation on halide perovskites and their solar cells. Acc. Chem. Res. 49, 347–354 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Vidon, G. et al. The impact of X-ray radiation on chemical and optical properties of triple-cation lead halide perovskite: from the surface to the bulk. Adv. Funct. Mater. 33, 2304730 (2023).

    Article  CAS  Google Scholar 

  50. Wieghold, S., Bieber, A. S., Mardani, M., Siegrist, T. & Nienhaus, L. Understanding the effect of light and temperature on the optical properties and stability of mixed-ion halide perovskites. J. Mater. Chem. C 8, 9714–9723 (2020).

    Article  CAS  Google Scholar 

  51. Ruan, S. et al. Light induced degradation in mixed-halide perovskites. J. Mater. Chem. C 7, 9326–9334 (2019).

    Article  CAS  Google Scholar 

  52. Sharma, R. et al. Effect of air exposure on electron-beam-induced degradation of perovskite films. ACS Nanosci. Au 3, 230–240 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. von Hauff, E. Impedance spectroscopy for emerging photovoltaics. J. Phys. Chem. C 123, 11329–11346 (2019).

    Article  Google Scholar 

  54. Heath, J. T., Cohen, J. D. & Shafarman, W. N. Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95, 1000–1010 (2004).

    Article  CAS  Google Scholar 

  55. Ravishankar, S., Unold, T. & Kirchartz, T. Comment on ‘Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells’. Science 371, eabd8014 (2021). Publication that highlights the limits of capacitance-based methods to determine charged defect density.

    Article  CAS  PubMed  Google Scholar 

  56. Guerrero, A., Bisquert, J. & Garcia-Belmonte, G. Impedance spectroscopy of metal halide perovskite solar cells from the perspective of equivalent circuits. Chem. Rev. 121, 14430–14484 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Alvarez, A. O., Ravishankar, S. & Fabregat-Santiago, F. Combining modulated techniques for the analysis of photosensitive devices. Small Methods 5, e2100661 (2021).

    Article  PubMed  Google Scholar 

  58. Pockett, A. et al. Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy. J. Phys. Chem. C 119, 3456–3465 (2015).

    Article  CAS  Google Scholar 

  59. Futscher, M. H. & Deibel, C. Defect spectroscopy in halide perovskites is dominated by ionic rather than electronic defects. ACS Energy Lett. 7, 140 (2022).

    Article  CAS  Google Scholar 

  60. Lang, D. V. Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023–3032 (1974).

    Article  CAS  Google Scholar 

  61. Heiser, T. & Weber, E. R. Transient ion-drift-induced capacitance signals in semiconductors. Phys. Rev. B 58, 3893 (1998).

    Article  CAS  Google Scholar 

  62. Reichert, S. et al. Probing the ionic defect landscape in halide perovskite solar cells. Nat. Commun. 11, 6098 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reichert, S. et al. Ionic-defect distribution revealed by improved evaluation of deep-level transient spectroscopy on perovskite solar cells. Phys. Rev. Appl. 13, 034018 (2020).

    Article  CAS  Google Scholar 

  64. Tammireddy, S. et al. Temperature dependent ionic conductivity and properties of iodine related defects in metal halide perovskites. ACS Energy Lett. 7, 310–319 (2022).

    Article  CAS  Google Scholar 

  65. Barboni, D. & De Souza, R. A. The thermodynamics and kinetics of iodine vacancies in the hybrid perovskite methylammonium lead iodide. Energy Environ. Sci. 11, 3266–3274 (2018).

    Article  CAS  Google Scholar 

  66. Schmidt, M. C., Gutierrez-Partida, E., Stolterfoht, M. & Ehrler, B. Impact of mobile ions on transient capacitance measurements of perovskite solar cells. PRX Energy 2, 043011 (2023).

    Article  Google Scholar 

  67. Tammireddy, S. et al. Hysteresis and its correlation to ionic defects in perovskite solar cells. J. Phys. Chem. Lett. 15, 1363–1372 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leupold, N., Seibel, A. L., Moos, R. & Panzer, F. Electrical conductivity of halide perovskites follows expectations from classical defect chemistry. Eur. J. Inorg. Chem. 2021, 2882–2889 (2021).

    Article  CAS  Google Scholar 

  69. Dieterich, W., Dürr, O., Pendzig, P., Bunde, A. & Nitzan, A. Percolation concepts in solid state ionics. Phys. A Stat. Mech. Appl. 266, 229–237 (1999).

    Article  CAS  Google Scholar 

  70. Kodur, M. et al. X-ray microscopy of halide perovskites: techniques, applications, and prospects. Adv. Energy Mater. 10, 1903170 (2020).

    Article  CAS  Google Scholar 

  71. Ran, J. et al. Electron-beam-related studies of halide perovskites: challenges and opportunities. Adv. Energy Mater. 10, 1903191 (2020).

    Article  CAS  Google Scholar 

  72. Szostak, R. et al. In situ and operando characterizations of metal halide perovskite and solar cells: insights from lab-sized devices to upscaling processes. Chem. Rev. 123, 3160–3236 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Aristidou, N. et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jeangros, Q. et al. In situ TEM analysis of organic–inorganic metal-halide perovskite solar cells under electrical bias. Nano Lett. 16, 7013–7018 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Xiao, C. et al. Operando characterizations of light-induced junction evolution in perovskite solar cells. ACS Appl. Mater. Interfaces 15, 20909–20916 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zohar, A. et al. In operando, photovoltaic, and microscopic evaluation of recombination centers in halide perovskite-based solar cells. ACS Appl. Mater. Interfaces 14, 34171–34179 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Jung, H. J. et al. Stability of halide perovskite solar cell devices: in situ observation of oxygen diffusion under biasing. Adv. Mater. 30, 1802769 (2018).

    Article  Google Scholar 

  78. Jariwala, S. et al. Dimethylammonium addition to halide perovskite precursor increases vertical and lateral heterogeneity. ACS Energy Lett. 7, 204–210 (2022).

    Article  CAS  Google Scholar 

  79. Emelianov, N. A. et al. Direct nanoscale visualization of the electric-field-induced aging dynamics of MAPbI3 thin films. Materials 16, 4277 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tennyson, E. M. et al. Correlated electrical and chemical nanoscale properties in potassium-passivated, triple-cation perovskite solar cells. Adv. Mater. Interfaces 7, 2000515 (2020).

    Article  CAS  Google Scholar 

  81. Szostak, R. et al. Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite films. Sci. Adv. 5, eaaw6619 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xie, Q. & Xu, X. G. What do different modes of AFM-IR mean for measuring soft matter surfaces? Langmuir 39, 17593–17599 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gross, E. Challenges and opportunities in IR nanospectroscopy measurements of energy materials. Nano Res. 12, 2200–2210 (2019).

    Article  Google Scholar 

  84. Ledinský, M. et al. Raman spectroscopy of organic–inorganic halide perovskites. J. Phys. Chem. Lett. 6, 401–406 (2015).

    Article  PubMed  Google Scholar 

  85. Franssen, W. M. J. & Kentgens, A. P. M. Solid–state NMR of hybrid halide perovskites. Solid State Nucl. Magn. Reson. 100, 36–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Weber, S. A. L. et al. How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energy Environ. Sci. 11, 2404–2413 (2018).

    Article  CAS  Google Scholar 

  87. Usiobo, O. J. et al. Nanoscale mass-spectrometry imaging of grain boundaries in perovskite semiconductors. J. Phys. Chem. C 124, 23230–23236 (2020).

    Article  CAS  Google Scholar 

  88. Harvey, S. P. et al. Probing perovskite inhomogeneity beyond the surface: TOF-SIMS analysis of halide perovskite photovoltaic devices. ACS Appl. Mater. Interfaces 10, 28541–28552 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Akriti et al. Anion diffusion in two-dimensional halide perovskites. APL Mater. 10, 040903 (2022).

    Article  CAS  Google Scholar 

  90. Song, K. et al. Atomic-resolution imaging of halide perovskites using electron microscopy. Adv. Energy Mater. 10, 1904006 (2020).

    Article  CAS  Google Scholar 

  91. Rothmann, M. U. et al. Atomic-scale microstructure of metal halide perovskite. Science 370, eabb5940 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Dang, Z. et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 11, 2124–2132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kumar, S., Houben, L., Rechav, K. & Cahen, D. Halide perovskite dynamics at work: large cations at 2D-on-3D interfaces are mobile. Proc. Natl Acad. Sci. 119, e2114740119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim, T. et al. Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nat. Commun. 14, 1846 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Peng, S. et al. Kinetics and mechanism of light-induced phase separation in a mixed-halide perovskite. Matter 6, 2052–2065 (2023).

    Article  CAS  Google Scholar 

  96. Peña-Camargo, F. et al. Revealing the doping density in perovskite solar cells and its impact on device performance. Appl. Phys. Rev. 9, 021409 (2022).

    Article  Google Scholar 

  97. Würfel, P. Physics of Solar Cells: From Basic Principles to Advanced Concepts 2nd edn (Wiley-VCH, 2009).

  98. Tress, W., Leo, K. & Riede, M. Influence of hole-transport layers and donor materials on open-circuit voltage and shape of I–V curves of organic solar cells. Adv. Funct. Mater. 21, 2140–2149 (2011).

    Article  CAS  Google Scholar 

  99. Calado, P. et al. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016). An important paper showing that the absence of hysteresis in a perovskite solar cell does not mean there are no mobile ions in the device.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tessler, N. & Vaynzof, Y. Insights from device modeling of perovskite solar cells. ACS Energy Lett. 5, 1260–1270 (2020).

    Article  CAS  Google Scholar 

  101. Le Corre, V. M. et al. Quantification of efficiency losses due to mobile ions in perovskite solar cells via fast hysteresis measurements. Sol. RRL 6, 2100772 (2022).

    Article  Google Scholar 

  102. Thiesbrummel, J. et al. Universal current losses in perovskite solar cells due to mobile ions. Adv. Energy Mater. 11, 2101447 (2021).

    Article  CAS  Google Scholar 

  103. Ginting, R. T. et al. Degradation mechanism of planar-perovskite solar cells: correlating evolution of iodine distribution and photocurrent hysteresis. J. Mater. Chem. A 5, 4527–4534 (2017).

    Article  CAS  Google Scholar 

  104. Domanski, K. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017).

    Article  CAS  Google Scholar 

  105. Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015). This study provides strong suggestion for a link between ion migration and device ageing.

    Article  CAS  Google Scholar 

  106. Torre Cachafeiro, M. A. et al. Ion migration in mesoscopic perovskite solar cells: effects on electroluminescence, open circuit voltage, and photovoltaic quantum efficiency. Adv. Energy Mater. 15, 2403850 (2025).

    Article  CAS  Google Scholar 

  107. Zhao, Y. et al. Mobile-ion-induced degradation of organic hole-selective layers in perovskite solar cells. J. Phys. Chem. C 121, 14517–14523 (2017).

    Article  CAS  Google Scholar 

  108. Kim, S. et al. Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Sci. Rep. 7, 1200 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Guerrero, A. et al. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218–224 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Besleaga, C. et al. Iodine migration and degradation of perovskite solar cells enhanced by metallic electrodes. J. Phys. Chem. Lett. 7, 5168–5175 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Li, J., Dong, Q., Li, N. & Wang, L. Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv. Energy Mater. 7, 1602922 (2017).

    Article  Google Scholar 

  112. Zhang, T. et al. Profiling the organic cation-dependent degradation of organolead halide perovskite solar cells. J. Mater. Chem. A 5, 1103–1111 (2017).

    Article  CAS  Google Scholar 

  113. Zhao, L. et al. Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett. 1, 595–602 (2016).

    Article  CAS  Google Scholar 

  114. Mosconi, E., Azpiroz, J. M. & De Angelis, F. Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem. Mater. 27, 4885–4892 (2015).

    Article  CAS  Google Scholar 

  115. Ke, J. C.-R. et al. In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure. Chem. Commun. 53, 5231–5234 (2017).

    Article  Google Scholar 

  116. Hu, S. et al. Formation and stabilization of metastable halide perovskite phases for photovoltaics. Cell Rep. Phys. Sci. 5, 101825 (2024).

    Article  CAS  Google Scholar 

  117. Zhang, X., Turiansky, M. E., Shen, J.-X. & Van de Walle, C. G. Defect tolerance in halide perovskites: a first-principles perspective. J. Appl. Phys. 131, 090901 (2022).

    Article  CAS  Google Scholar 

  118. Datta, K. et al. Effect of light-induced halide segregation on the performance of mixed-halide perovskite solar cells. ACS Appl. Energy Mater. 4, 6650–6658 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yuan, H. et al. Degradation of methylammonium lead iodide perovskite structures through light and electron beam driven ion migration. J. Phys. Chem. Lett. 7, 561–566 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim, G. Y., Senocrate, A., Wang, Y., Moia, D. & Maier, J. Photo-effect on ion transport in mixed cation and halide perovskites and implications for photo-demixing. Angew. Chem. Int. Ed. 60, 820–826 (2020).

    Article  Google Scholar 

  122. DuBose, J. T. & Kamat, P. V. TiO2-assisted halide ion segregation in mixed halide perovskite films. J. Am. Chem. Soc. 142, 5362–5370 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Apergi, S., Koch, C., Brocks, G., Olthof, S. & Tao, S. Decomposition of organic perovskite precursors on MoO3: role of halogen and surface defects. ACS Appl. Mater. Interfaces 14, 34208–34219 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jacobs, D. A. et al. Lateral ion migration accelerates degradation in halide perovskite devices. Energy Environ. Sci. 15, 5324–5339 (2022).

    Article  CAS  Google Scholar 

  125. Koopmans, M., Corre, V. & Koster, L. SIMsalabim: an open-source drift-diffusion simulator for semiconductor devices. J. Open Source Softw. 7, 3727 (2022).

    Article  Google Scholar 

  126. Liu, J. et al. Correlations between electrochemical ion migration and anomalous device behaviors in perovskite solar cells. ACS Energy Lett. 6, 1003–1014 (2021).

    Article  CAS  Google Scholar 

  127. Cave, J. M. et al. Deducing transport properties of mobile vacancies from perovskite solar cell characteristics. J. Appl. Phys. 128, 184501 (2020).

    Article  CAS  Google Scholar 

  128. Clarke, W. et al. IonMonger 2.0: software for free, fast and versatile simulation of current, voltage and impedance response of planar perovskite solar cells. J. Comput. Electron. 22, 364–382 (2023).

    CAS  Google Scholar 

  129. Zhang, J. et al. Precise control of process parameters for > 23% efficiency perovskite solar cells in ambient air using an automated device acceleration platform. Energy Environ. Sci. 17, 5490–5499 (2024).

    Article  CAS  Google Scholar 

  130. Hart, L. J. F. et al. More is different: mobile ions improve the design tolerances of perovskite solar cells. Energy Environ. Sci. 17, 7107–7118 (2024). This study shows that mobile ions can also have positive effects, for example by improving design tolerances.

    Article  CAS  Google Scholar 

  131. Zhu, H. et al. Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8, 569–586 (2023).

    Article  Google Scholar 

  132. Tong, C.-J., Li, L., Liu, L.-M. & Prezhdo, O. V. Synergy between ion migration and charge carrier recombination in metal-halide perovskites. J. Am. Chem. Soc. 142, 3060–3068 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Saliba, M., Stolterfoht, M., Wolff, C. M., Neher, D. & Abate, A. Measuring aging stability of perovskite solar cells. Joule 2, 1019–1024 (2018).

    Article  CAS  Google Scholar 

  134. Shin, S. & Shin, H. Aging of perovskite solar cells: a mini review. Mater. Today Energy 37, 101381 (2023).

    CAS  Google Scholar 

  135. Zhao, X. et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377, 307–310 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Pockett, A. et al. Microseconds, milliseconds and seconds: deconvoluting the dynamic behaviour of planar perovskite solar cells. Phys. Chem. Chem. Phys. 19, 5959–5970 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Ehrler, B. & Hutter, E. M. Routes toward long-term stability of mixed-halide perovskites. Matter 2, 800–802 (2020).

    Article  Google Scholar 

  138. Ferdani, D. W. et al. Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells. Energy Environ. Sci. 12, 2264–2272 (2019).

    Article  CAS  Google Scholar 

  139. Lin, Y. et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2, 1571–1572 (2017).

    Article  CAS  Google Scholar 

  140. Huang, Z. et al. Suppressed ion migration in reduced-dimensional perovskites improves operating stability. ACS Energy Lett. 4, 1521–1527 (2019).

    Article  CAS  Google Scholar 

  141. Futscher, M. H., Gangishetty, M. K., Congreve, D. N. & Ehrler, B. Manganese doping stabilizes perovskite light-emitting diodes by reducing ion migration. ACS Appl. Electron. Mater. 2, 1522–1528 (2020).

    Article  CAS  Google Scholar 

  142. García-Rodríguez, R., Ferdani, D., Pering, S., Baker, P. J. & Cameron, P. J. Influence of bromide content on iodide migration in inverted MAPb(I1−xBrx)3 perovskite solar cells. J. Mater. Chem. A 7, 22604–22614 (2019).

    Article  Google Scholar 

  143. Lin, C., Li, S., Zhang, W., Shao, C. & Yang, Z. Effect of bromine substitution on the ion migration and optical absorption in MAPbI3 perovskite solar cells: the first-principles study. ACS Appl. Energy Mater. 1, 1374–1380 (2018).

    Article  CAS  Google Scholar 

  144. Dey, K. et al. Substitution of lead with tin suppresses ionic transport in halide perovskite optoelectronics. Energy Environ. Sci. 17, 760–769 (2024).

    Article  CAS  PubMed  Google Scholar 

  145. Kang, Y. et al. Stability-enhanced perovskite heterointerfaces and solar cells via strongly anchored and sterically hindered ligands. Nano Energy 120, 109178 (2024).

    Article  CAS  Google Scholar 

  146. Zhao, Y. et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396–1402 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  CAS  Google Scholar 

  148. Pering, S. R. & Cameron, P. J. The effect of multiple ion substitutions on halide ion migration in perovskite solar cells. Mater. Adv. 3, 7918–7924 (2022).

    Article  CAS  Google Scholar 

  149. Li, Z. et al. Inhibiting ion migration by guanidinium cation doping for efficient perovskite solar cells with enhanced operational stability. Sol. RRL 6, 2200003 (2022).

    Article  CAS  Google Scholar 

  150. Minussi, F. B., da Silva, R. M. J. & Araújo, E. B. Differing effects of mixed a-site composition on the properties of hybrid lead iodide perovskites. J. Phys. Chem. C 127, 8814–8824 (2023).

    Article  CAS  Google Scholar 

  151. Mahapatra, A. et al. Elucidation of the role of guanidinium incorporation in single-crystalline MAPbI3 perovskite on ion migration and activation energy. Phys. Chem. Chem. Phys. 22, 11467–11473 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Nandi, P. et al. Stabilizing mixed halide lead perovskites against photoinduced phase segregation by A-site cation alloying. ACS Energy Lett. 6, 837–847 (2021).

    Article  CAS  Google Scholar 

  153. Ruiz Preciado, M. A. et al. Supramolecular modulation of hybrid perovskite solar cells via bifunctional halogen bonding revealed by two-dimensional 19F solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 1645–1654 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Luo, W., AlSabeh, G. & Milić, J. V. in Photochemistry, Vol. 50 (eds Crespi, S. & Protti, S.) 346–370 (The Royal Society of Chemistry, 2022).

  155. Ferdowsi, P. et al. Host–guest complexation in wide bandgap perovskite solar cells. Sol. RRL 8, 2300655 (2024).

    Article  CAS  Google Scholar 

  156. Ghasemi, M. et al. Dual-ion-diffusion induced degradation in lead-free Cs2AgBiBr6 double perovskite solar cells. Adv. Funct. Mater. 30, 2002342 (2020).

    Article  CAS  Google Scholar 

  157. Bhawna, Roy, M., Kaur, A., Alam, A. & Aslam, M. BiOBr surface-functionalized halide double-perovskite films for slow ion migration and improved stability. ACS Appl. Mater. Interfaces 15, 18473–18481 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Lan, C., Zhao, S., Luo, J. & Fan, P. First-principles study of anion diffusion in lead-free halide double perovskites. Phys. Chem. Chem. Phys. 20, 24339–24344 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Cho, J., DuBose, J. T., Le, A. N. T. & Kamat, P. V. Suppressed halide ion migration in 2D lead halide perovskites. ACS Mater. Lett. 2, 565–570 (2020).

    Article  CAS  Google Scholar 

  160. Mathew, P., Cho, J. & Kamat, P. V. Ramifications of ion migration in 2D lead halide perovskites. ACS Energy Lett. 9, 1103–1114 (2024).

    Article  CAS  Google Scholar 

  161. deQuilettes, D. W. et al. Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 1, 438–444 (2016).

    Article  CAS  Google Scholar 

  162. You, S. et al. Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat. Energy 8, 515–525 (2023).

    Article  CAS  Google Scholar 

  163. Lin, Y.-H. et al. Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss. Science 384, 767–775 (2024).

    Article  CAS  PubMed  Google Scholar 

  164. Fu, L. et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 13, 4017–4056 (2020).

    Article  CAS  Google Scholar 

  165. Zhang, Z. et al. Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem. Soc. Rev. 52, 163–195 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Xu, J. et al. Anion optimization for bifunctional surface passivation in perovskite solar cells. Nat. Mater. 22, 1507–1514 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Zhang, H., Nazeeruddin, M. K. & Choy, W. C. H. Perovskite photovoltaics: the significant role of ligands in film formation, passivation, and stability. Adv. Mater. 31, 1805702 (2019).

    Article  Google Scholar 

  168. Milić, J. V. Supramolecular engineering of hybrid materials in photovoltaics and beyond. Chimia 76, 784–791 (2022).

    Article  PubMed  Google Scholar 

  169. Pothoof, J., Westbrook, R. J. E., Giridharagopal, R., Breshears, M. D. & Ginger, D. S. Surface passivation suppresses local ion motion in halide perovskites. J. Phys. Chem. Lett. 14, 6092–6098 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Wang, H. et al. Ion migration inhibition and defect passivation via sulfonate salt coordination for high-performance perovskite solar cells with enhanced phase stability. J. Mater. Chem. C 11, 13518–13525 (2023).

    Article  CAS  Google Scholar 

  171. Chen, L. et al. Surface passivation of MAPbBr3 perovskite single crystals to suppress ion migration and enhance photoelectronic performance. ACS Appl. Mater. Interfaces 14, 10917–10926 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. McGovern, L., Koschany, I., Grimaldi, G., Muscarella, L. A. & Ehrler, B. Grain size influences activation energy and migration pathways in MAPbBr3 perovskite solar cells. J. Phys. Chem. Lett. 12, 2423–2428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shan, W. & Saidi, W. A. Segregation of native defects to the grain boundaries in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 8, 5935–5942 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Hua, Y. et al. Suppressed ion migration for high-performance X-ray detectors based on atmosphere-controlled EFG-grown perovskite CsPbBr3 single crystals. Nat. Photonics 18, 870–877 (2024).

    Article  CAS  Google Scholar 

  175. Li, C. & Chen, C. Single-crystal perovskite for solar cell applications. Small 20, 2402759 (2024).

    Article  CAS  Google Scholar 

  176. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Uddin, M. A. et al. Iodide manipulation using zinc additives for efficient perovskite solar minimodules. Nat. Commun. 15, 1355 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chen, S., Xiao, X., Gu, H. & Huang, J. Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 7, eabe8130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lu, X. et al. Dynamic reversible oxidation-reduction of iodide ions for operationally stable perovskite solar cells under ISOS-L-3 protocol. Adv. Mater. 36, 2400852 (2024).

    Article  CAS  Google Scholar 

  180. Hutter, E. M. et al. Thermodynamic stabilization of mixed-halide perovskites against phase segregation. Cell Rep. Phys. Sci. 1, 100120 (2020).

    Article  CAS  Google Scholar 

  181. Córdoba, M. & Taretto, K. Insight into the dependence of photovoltaic performance on interfacial energy alignment in solar cells with mobile ions. Sol. RRL 8, 2300742 (2024).

    Article  Google Scholar 

  182. Courtier, N. E., Cave, J. M., Foster, J. M., Walker, A. B. & Richardson, G. How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy Environ. Sci. 12, 396–409 (2019).

    Article  CAS  Google Scholar 

  183. Mozaffari, N. et al. Unraveling the role of energy band alignment and mobile ions on interfacial recombination in perovskite solar cells. Sol. RRL 6, 2101087 (2022).

    Article  CAS  Google Scholar 

  184. Pallotta, R., Cavalli, S., Degani, M. & Grancini, G. Smart materials to empowering perovskite solar cells with self-healing capability. Small Struct. 5, 2300448 (2024).

    Article  CAS  Google Scholar 

  185. Bowring, A. R., Bertoluzzi, L., O’Regan, B. C. & McGehee, M. D. Reverse bias behavior of halide perovskite solar cells. Adv. Energy Mater. 8, 1702365 (2018).

    Article  Google Scholar 

  186. Sakhatskyi, K. et al. Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Lett. 7, 3401–3414 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Xu, J. et al. Ion-migration inhibitor for Spiro-OMeTAD/perovskite contact toward stable perovskite solar cells. ACS Energy Lett. 9, 1073–1081 (2024).

    Article  CAS  Google Scholar 

  188. Suo, J. et al. Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nat. Energy 9, 172–183 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ren, G. et al. Organic iodides in efficient and stable perovskite solar cells: strong surface passivation and interaction. Energy Environ. Sci. 16, 565–573 (2023).

    Article  CAS  Google Scholar 

  190. Grancini, G. et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Shen, Z. et al. Efficient and stable perovskite solar cells with regulated depletion region. Nat. Photon. 18, 450–457 (2024).

    Article  CAS  Google Scholar 

  192. Yang, Y. et al. Inverted perovskite solar cells with over 2,000 h operational stability at 85 °C using fixed charge passivation. Nat. Energy 9, 37–46 (2024).

    Article  CAS  Google Scholar 

  193. Kato, Y. et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015).

    Article  Google Scholar 

  194. Jiang, C. et al. Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 15, 12 (2023).

    Article  CAS  Google Scholar 

  195. Ehrler, B. DD parameters ion migration simulations. GitHub https://github.com/AMOLF-Hybrid-Solar-Cells/DD-parameters-ion-migration-simulations (2025).

  196. Clarke, W., Cameron, P. & Richardson, G. Predicting long-term stability from short-term measurement: insights from modeling degradation in perovskite solar cells during voltage scans and impedance spectroscopy. J. Phys. Chem. Lett. 15, 11730–11736 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zou, Y. & Holmes, R. J. Temperature-dependent bias poling and hysteresis in planar organo-metal halide perovskite photovoltaic cells. Adv. Energy Mater. 6, 1501994 (2016).

    Article  Google Scholar 

  198. Bruno, A. et al. Temperature and electrical poling effects on ionic motion in MAPbI3 photovoltaic cells. Adv. Energy Mater. 7, 1700265 (2017).

    Article  Google Scholar 

  199. Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 4, 779–785 (2019).

    Article  CAS  Google Scholar 

  200. Xue, H., Brocks, G. & Tao, S. Intrinsic defects in primary halide perovskites: A first-principles study of the thermodynamic trends. Phys. Rev. Mater. 6, 055402 (2022).

    Article  CAS  Google Scholar 

  201. Moia, D. et al. Ionic-to-electronic current amplification in hybrid perovskite solar cells: ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices. Energy Environ. Sci. 12, 1296–1308 (2019).

    Article  CAS  Google Scholar 

  202. Birkhold, S. T. et al. Direct observation and quantitative analysis of mobile Frenkel defects in metal halide perovskites using scanning Kelvin probe microscopy. J. Phys. Chem. C 122, 12633–12639 (2018).

    Article  CAS  Google Scholar 

  203. Arber, A. N., Vikram, Mocanu, F. C. & Islam, M. S. Ion migration and dopant effects in the gamma-CsPbI3 perovskite photovoltaic material: Atomistic insights through ab initio and machine learning methods. Chem. Mater. 37, 4416–4424 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Almora, O., García-Batlle, M. & Garcia-Belmonte, G. Utilization of temperature-sweeping capacitive techniques to evaluate band gap defect densities in photovoltaic perovskites. J. Phys. Chem. Lett. 10, 3661–3669 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Wang, H., Guerrero, A., Bou, A., Al-Mayouf, A. M. & Bisquert, J. Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells. Energy Environ. Sci. 12, 2054–2079 (2019).

    Article  CAS  Google Scholar 

  206. Bertoluzzi, L. et al. In situ measurement of electric-field screening in hysteresis-free PTAA/FA0.83Cs0.17Pb(I0.83Br0.17)3/C60 perovskite solar cells gives an ion mobility of ~3 × 10−7 cm2/(V s), 2 orders of magnitude faster than reported for metal-oxide-contacted perovskite cells with hysteresis. J. Am. Chem. Soc. 140, 12775–12784 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Almora, O., Guerrero, A. & Garcia-Belmonte, G. Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites. Appl. Phys. Lett. 108, 043903 (2016).

    Article  Google Scholar 

  208. De Souza, R. A., Kemp, D., Wolf, M. J. & Ramadan, A. H. H. Caution! Static supercell calculations of defect migration in higher symmetry ABX3 perovskite halides may be unreliable: a case study of methylammonium lead iodide. J. Phys. Chem. Lett. 13, 11363–11368 (2022).

    Article  PubMed  Google Scholar 

  209. McGovern, L., Futscher, M. H., Muscarella, L. A. & Ehrler, B. Understanding the stability of MAPbBr3 versus MAPbI3: suppression of methylammonium migration and reduction of halide migration. J. Phys. Chem. Lett. 11, 7127–7132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of J.T., E.C.G. and B.E. is part of the Dutch Research Council and was performed at the AMOLF research institute. J.V.M. appreciates the support of the Swiss National Science Foundation via PRIMA project no. 193174 and European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme for project no. 101114653. S.T. acknowledges funding from Vidi (Project VI.Vidi.213.091) from the Dutch Research Council (NWO). The work of W.T. received funding from the ERC programme under Grant Agreement no. 851676. C.D. thanks the Deutsche Forschungsgemeinschaft (DFG) for generous support within the framework of SPP 2196 project (PERFECT PVs). A.G. thanks Grant PID2022-141850OB-C21 funded by MICIU/AEI /10.13039/501100011033 and by ERDF/EU. The related work of M.S.I. received funding from the UK Engineering and Physical Sciences Research Council (EP/X038777/1; EP/X012263/1). The work of B.E. received funding from the ERC under Grant Agreement no. 947221. E.C.G. received funding from the ERC under Grant Agreement no. 101043783.

Author information

Authors and Affiliations

Authors

Contributions

Sections were primarily written by the authors specified as follows. The chemistry of ion migration in halide perovskites: J.V.M., M.S.I. and S.T. Measurement techniques and visualization of ion migration: C.D. and E.C.G. Effects of ion migration on solar cell performance: A.G., J.T., S.T. and T.K. Suppression of ion migration effects in materials and solar cell devices: A.G., M.S.I., P.C. and W.T. J.T. and B.E. integrated the different sections and coordinated the project. All authors contributed to editing and revision of the manuscript.

Corresponding author

Correspondence to Bruno Ehrler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Xiaopeng Zheng, Guoqing Tong and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiesbrummel, J., Milić, J.V., Deibel, C. et al. Ion migration in perovskite solar cells. Nat Rev Chem (2026). https://doi.org/10.1038/s41570-025-00790-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41570-025-00790-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing