Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Substitution and electrochemistry in layered oxide cathode materials for sodium-ion batteries

Subjects

Abstract

Substitution is a vital strategy for developing high-performance sodium layered oxides (SLOs), which demonstrates great potential for making sodium-ion batteries a viable alternative to lithium-ion batteries. Numerous studies have been conducted on substituted SLOs; however, each substitute exhibits varied effects on the structure and electrochemical performance of the SLOs, and no clear design principles have been established. Clarifying the relationship among substitution, structure and performance is therefore important to enable a rational design strategy for high-performance SLOs. In this Review, the up-to-date substitution guidelines and the current understanding of how substitution affects the structure and electrochemistry in SLOs are discussed, and the site preference and characteristic redox features of different types of substitutes are outlined. The inherent challenges and opportunities for the innovation of better-performing SLOs are summarized, paving the way for accelerating the commercialization of SLO-based sodium-ion batteries and the realization of their applications ranging from electric vehicles to grid energy storage systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The promise and structure of sodium layered oxides.
Fig. 2: Substitution design and preparation.
Fig. 3: The effect of substitution on the structure and electrochemistry of sodium layered oxides.
Fig. 4: Summary of sodium layered oxides with anionic redox reactions.
Fig. 5: Summary of substitution chemistry and its effect on electrochemical properties.

Similar content being viewed by others

References

  1. Usiskin, R. et al. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6, 1020–1035 (2021).

    Article  CAS  Google Scholar 

  2. Zhao, Y. et al. Recycling of sodium-ion batteries. Nat. Rev. Mater. 8, 623–634 (2023).

    Article  CAS  Google Scholar 

  3. Nayak, P. K., Yang, L., Brehm, W. & Adelhelm, P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57, 102–120 (2018).

    Article  CAS  Google Scholar 

  4. Orangi, S. et al. Historical and prospective lithium-ion battery cost trajectories from a bottom-up production modeling perspective. J. Energy Storage 76, 109800 (2024).

    Article  Google Scholar 

  5. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Darga, J., Lamb, J. & Manthiram, A. Industrialization of layered oxide cathodes for lithium-ion and sodium-ion batteries: a comparative perspective. Energy Technol. 8, 2000723 (2020).

    Article  CAS  Google Scholar 

  7. Innocenti, A., Beringer, S. & Passerini, S. Cost and performance analysis as a valuable tool for battery material research. Nat. Rev. Mater. 9, 347–357 (2024).

    Article  CAS  Google Scholar 

  8. Peters, J. F., Peña Cruz, A. & Weil, M. Exploring the economic potential of sodium-ion batteries. Batteries 5, 10 (2019).

    Article  CAS  Google Scholar 

  9. Zhu, Z. et al. Comparative study of performance and hybrid battery configuration of sodium-ion and lithium-ion batteries. J. Energy Storage 140, 118904 (2025).

    Article  Google Scholar 

  10. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, X. et al. Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox. Nat. Energy 9, 184–196 (2024).

    Article  CAS  Google Scholar 

  12. Rudola, A., Sayers, R., Wright, C. J. & Barker, J. Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nat. Energy 8, 215–218 (2023).

    Article  Google Scholar 

  13. Cheng, C. et al. Stabilized oxygen vacancy chemistry toward high-performance layered oxide cathodes for sodium-ion batteries. ACS Nano 18, 35052–35065 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Z. et al. Achieving a deeply desodiated stabilized cathode material by the high entropy strategy for sodium-ion batteries. Angew. Chem. Int. Ed. 63, e202405620 (2024).

    Article  CAS  Google Scholar 

  15. Wang, Q. et al. Fast-charge high-voltage layered cathodes for sodium-ion batteries. Nat. Sustain. 7, 338–347 (2024).

    Article  Google Scholar 

  16. Yang, Y. et al. Decoupling the air sensitivity of Na-layered oxides. Science 385, 744–752 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, C. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020). This article introduces the concept of cation potential to design P2-layered and O3-layered oxide materials.

    Article  CAS  PubMed  Google Scholar 

  18. Rong, X. et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition. Joule 3, 503–517 (2019).

    Article  CAS  Google Scholar 

  19. Han, M. H., Gonzalo, E., Singh, G. & Rojo, T. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8, 81–102 (2015).

    Article  Google Scholar 

  20. Guo, Y.-J. et al. Sodium layered oxide cathodes: properties, practicality and prospects. Chem. Soc. Rev. 53, 7828–7874 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Hwang, J.-Y., Myung, S.-T. & Sun, Y.-K. Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 8, 1703137 (2018).

    Article  Google Scholar 

  23. Mishra, N., Boral, R. & Paul, T. Designing layered oxides as cathodes for sodium-ion batteries: machine learning and density functional theory based modeling. Mater. Today Phys. 51, 101634 (2025).

    Article  CAS  Google Scholar 

  24. Cai, C. et al. Transition metal vacancy and position engineering enables reversible anionic redox reaction for sodium storage. Nat. Commun. 16, 100 (2025). This article proposes a strategy for Mg ion and vacancy dual doping with partial transition metal ions pinned in Na layers, which simultaneously improves the oxygen redox activity and structural stability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, Y. et al. Competing mechanisms determine oxygen redox in doped Ni–Mn based layered oxides for Na-ion batteries. Adv. Mater. 36, 2309842 (2024).

    Article  CAS  Google Scholar 

  26. Sada, K., Kmiec, S. & Manthiram, A. Mitigating sodium ordering for enhanced solid solution behavior in layered NaNiO2 cathodes. Angew. Chem. Int. Ed. 63, e202403865 (2024).

    Article  CAS  Google Scholar 

  27. Yu, Y. et al. Triggering reversible anion redox chemistry in O3-type cathodes by tuning Na/Mn anti-site defects. Energy Environ. Sci. 16, 584–597 (2023).

    Article  CAS  Google Scholar 

  28. Gabriel, E. et al. Influence of interlayer cation ordering on Na transport in P2-type Na0.67–xLiyNi0.33–zMn0.67+zO2 for sodium-ion batteries. J. Am. Chem. Soc. 146, 15108–15118 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang, N. et al. Surface gradient desodiation chemistry in layered oxide cathode materials. Angew. Chem. Int. Ed. 63, e202410080 (2024). This article proposes a surface gradient desodiation strategy to enhance reversibility, effectively constraining surface transition metal ion migration.

    CAS  Google Scholar 

  30. Tang, A. et al. Ligand-to-metal charge transfer motivated the whole-voltage-range anionic redox in P2-type layered oxide cathodes. Adv. Funct. Mater. 34, 2402639 (2024).

    Article  CAS  Google Scholar 

  31. Mao, Q. et al. A unique wide-spacing fence-type superstructure for robust high-voltage O3-type sodium layered cathode. Angew. Chem. Int. Ed. 63, e202404330 (2024).

    Article  CAS  Google Scholar 

  32. Rong, X. et al. Boosting reversible anionic redox reaction with Li/Cu dual honeycomb centers. eScience 3, 100159 (2023).

    Article  Google Scholar 

  33. Yu, Y. et al. Ribbon-ordered superlattice enables reversible anion redox and stable high-voltage Na-ion battery cathodes. J. Am. Chem. Soc. 146, 22220–22235 (2024). This article designs high-voltage NaLi0.1Ni0.35Mn0.3Ti0.25O2 cathode with a ribbon-ordered superlattice and explores intrinsic coupling mechanism between structure evolution and anion redox reaction.

    Article  CAS  PubMed  Google Scholar 

  34. Peng, B. et al. Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries. Adv. Energy Mater. 13, 2300334 (2023).

    Article  CAS  Google Scholar 

  35. Zhang, H. et al. Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems. Adv. Energy Mater. 13, 2300149 (2023).

    Article  CAS  Google Scholar 

  36. Jia, X. B. et al. Facilitating layered oxide cathodes based on orbital hybridization for sodium-ion batteries: marvelous air stability, controllable high voltage, and anion redox chemistry. Adv. Mater. 36, 2307938 (2024).

    Article  CAS  Google Scholar 

  37. Gao, H. et al. Revealing the potential and challenges of high-entropy layered cathodes for sodium-based energy storage. Adv. Energy Mater. 14, 2304529 (2024).

    Article  CAS  Google Scholar 

  38. Wang, J. et al. Routes to high-performance layered oxide cathodes for sodium-ion batteries. Chem. Soc. Rev. 53, 4230–4301 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Braconnier, J.-J., Delmas, C., Fouassier, C. & Hagenmuller, P. Comportement electrochimique des phases NaxCoO2. Mater. Res. Bull. 15, 1797–1804 (1980).

    Article  CAS  Google Scholar 

  40. Fouassier, C., Delmas, C. & Hagenmuller, P. Evolution structurale et proprietes physiques des phases AxMO2 (A = Na, K; M = Cr, Mn, Co) (x ≤ 1). Mater. Res. Bull. 10, 443–449 (1975).

    Article  CAS  Google Scholar 

  41. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C 99, 81–85 (1980). This article categorizes the structure of layered oxides.

    Article  CAS  Google Scholar 

  42. Jacobsson, T. J., Pazoki, M., Hagfeldt, A. & Edvinsson, T. Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: theory and preliminary experiments on CH3NH3SrI3. J. Phys. Chem. C 119, 25673–25683 (2015).

    Article  CAS  Google Scholar 

  43. Tosun, S. G., Uzun, D. & Yeşilot, S. Novel K+-doped Na0.6Mn0.35Fe0.35Co0.3O2 cathode materials for sodium-ion batteries: synthesis, structures, and electrochemical properties. J. Solid State Electrochem. 25, 1271–1281 (2021).

    Article  CAS  Google Scholar 

  44. Zhang, X.-Y. et al. Expediting layered oxide cathodes based on electronic structure engineering for sodium-ion batteries: reversible phase transformation, abnormal structural regulation, and stable anionic redox. Nano Energy 128, 109905 (2024).

    Article  CAS  Google Scholar 

  45. Zhang, Q. et al. Mitigating the voltage fading and air sensitivity of O3-type NaNi0.4Mn0.4Cu0.1Ti0.1O2 cathode material via La doping. Chem. Eng. J. 431, 133456 (2022).

    Article  CAS  Google Scholar 

  46. Li, P. et al. Investigation of cation doping on the structure and electrochemical properties of K0.5MnO2 cathode materials based on first-principles calculation. J. Energy Storage 98, 113042 (2024).

    Article  Google Scholar 

  47. Zhang, K. et al. Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries. Nat. Commun. 10, 5203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, D., Cho, M. & Cho, K. Rational design of NaLi1/3Mn2/3O2 operated by anionic redox reactions for advanced sodium-ion batteries. Adv. Mater. 29, 1701788 (2017).

    Article  Google Scholar 

  49. You, Y. & Yuan, M. Theoretical study on the synergistic mechanism of Fe–Mn in sodium-ion batteries. Particuology 93, 284–290 (2024).

    Article  CAS  Google Scholar 

  50. Ma, Y. et al. High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14, 2883–2905 (2021).

    Article  Google Scholar 

  51. Hsu, W.-L., Tsai, C.-W., Yeh, A.-C. & Yeh, J.-W. Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8, 471–485 (2024).

    Article  PubMed  Google Scholar 

  52. Fu, F. et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat. Commun. 13, 2826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, S. et al. A high-entropy engineering on sustainable anionic redox Mn-based cathode with retardant stress for high-rate sodium-ion batteries. Angew. Chem. Int. Ed. 64, e202421089 (2025). This article demonstrates that robust lattice with high-entropy framework considerably improves structural integrity and reduces the formation of intragranular fractures.

    Article  CAS  Google Scholar 

  54. Wang, H. et al. Halting oxygen evolution to achieve long cycle life in sodium layered cathodes. Angew. Chem. Int. Ed. 64, e202418605 (2025).

    Article  CAS  Google Scholar 

  55. Hao, D. et al. Design of high-entropy P2/O3 hybrid layered oxide cathode material for high-capacity and high-rate sodium-ion batteries. Nano Energy 125, 109562 (2024).

    Article  CAS  Google Scholar 

  56. Berthelot, R., Carlier, D. & Delmas, C. Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat. Mater. 10, 74–80 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Li, M. et al. Thermodynamically stable low-Na O3 cathode materials driven by intrinsically high ionic potential discrepancy. Energy Environ. Sci. 17, 7058–7068 (2024).

    Article  CAS  Google Scholar 

  58. Risthaus, T. et al. P3 Na0.9Ni0.5Mn0.5O2 cathode material for sodium ion batteries. Chem. Mater. 31, 5376–5383 (2019).

    Article  CAS  Google Scholar 

  59. Xu, G.-L. et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy Environ. Sci. 10, 1677–1693 (2017).

    Article  CAS  Google Scholar 

  60. Azambou, C. I. et al. Electrochemical performance and structural evolution of layered oxide cathodes materials for sodium-ion batteries: a review. J. Energy Storage 94, 112506 (2024).

    Article  Google Scholar 

  61. Bianchini, M. et al. The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat. Mater. 19, 1088–1095 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, C. et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat. Commun. 12, 2256 (2021). This article reveals the effects of Sb on the microstructure and coordination environment and elucidates the structural evolution during repeated Na+ extraction and insertion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang, Z.-X. et al. Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries. Sci. China Mater. 66, 79–87 (2022).

    Article  Google Scholar 

  64. Wu, Z. et al. Realizing high capacity and zero strain in layered oxide cathodes via lithium dual-site substitution for sodium-ion batteries. J. Am. Chem. Soc. 145, 9596–9606 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Yan, L. et al. Dual-site doping in transition metal oxide cathode enables high-voltage stability of Na-ion batteries. Small 20, 2401915 (2024).

    Article  CAS  Google Scholar 

  66. Sun, L. et al. Insight into Ca-substitution effects on O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries application. Small 14, e1704523 (2018).

    Article  PubMed  Google Scholar 

  67. Huang, W. et al. Ba-doped Na0.16MnO2 with ultra-long cycling life and highly reversible insertion/extraction mechanism for aqueous rechargeable sodium ion batteries. J. Energy Storage 98, 112983 (2024).

    Article  Google Scholar 

  68. Zhang, X. et al. Mitigating the Jahn–Teller distortion and phase transition in the P2-Na0.67Ni0.33Mn0.67O2 cathode through large Sr2+ ion substitution for improved performance. J. Mater. Chem. A 12, 19440–19451 (2024).

    Article  CAS  Google Scholar 

  69. Li, X. et al. Internal vanadium doping and external modification design of P2-type layered Mn-based oxides as competitive cathodes toward sodium-ion batteries. Chem. Eur. J. 30, e202400088 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Xi, K. et al. A high-performance layered Cr-based cathode for sodium-ion batteries. Nano Energy 67, 104215 (2020).

    Article  CAS  Google Scholar 

  71. Jia, S. et al. Chemical speed dating: the impact of 52 dopants in Na–Mn–O cathodes. Chem. Mater. 34, 11047–11061 (2022). This article elucidates the impact of dopants on layered structure and investigates how different dopants influence the battery performance.

    Article  CAS  Google Scholar 

  72. Zhang, L. et al. Suppressing interlayer-gliding and Jahn–Teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries. Chem. Eng. J. 426, 130813 (2021).

    Article  CAS  Google Scholar 

  73. Zhao, H. et al. Rare earth incorporated electrode materials for advanced energy storage. Coord. Chem. Rev. 390, 32–49 (2019).

    Article  CAS  Google Scholar 

  74. Kumar, K. & Kundu, R. Doping engineering in electrode material for boosting the performance of sodium ion batteries. ACS Appl. Mater. Interfaces 16, 37346–37362 (2024).

    Article  CAS  PubMed  Google Scholar 

  75. Feng, L. et al. La-doped O3-type layered oxide cathode with enhanced cycle stability for sodium-ion batteries. Chem. Eng. J. 496, 154298 (2024).

    Article  CAS  Google Scholar 

  76. Jia, X.-B. et al. Facilitating layered oxide cathodes based on orbital hybridization for sodium-ion batteries: marvelous air stability, controllable high voltage, and anion redox chemistry. Adv. Mater. 36, 2307938 (2024).

    Article  CAS  Google Scholar 

  77. Zhang, G. et al. Suppressed P2–P2’ phase transition of Fe/Mn-based layered oxide cathode for high-performance sodium-ion batteries. Energy Storage Mater. 51, 559–567 (2022).

    Article  Google Scholar 

  78. Li, J. et al. The effect of Sn substitution on the structure and oxygen activity of Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries. J. Power Sources 449, 227554 (2020).

    Article  CAS  Google Scholar 

  79. Yuan, T. et al. A high-rate, durable cathode for sodium-ion batteries: Sb-doped O3-type Ni/Mn-based layered oxides. ACS Nano 16, 18058–18070 (2022). This article reveals the effects of Sb on the microstructure and coordination environment and elucidates the structural evolution during repeated Na+ extraction and insertion.

    Article  CAS  PubMed  Google Scholar 

  80. Min, K. Dual doping with cations and anions for enhancing the structural stability of the sodium-ion layered cathode. Phys. Chem. Chem. Phys. 24, 13006–13014 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, X. et al. In-plane BO3 configuration in P2 layered oxide enables outstanding long cycle performance for sodium ion batteries. Small Methods 7, 2201201 (2022).

    Article  Google Scholar 

  82. Nie, R., Chen, H., Yang, Y., Li, C. & Zhou, H. High-voltage layered manganese-based oxide cathode with excellent rate capability enabled by K/F co-doping. ACS Appl. Energy Mater. 6, 2358–2369 (2023).

    Article  CAS  Google Scholar 

  83. Nie, Z. et al. Constructing multiphase junction towards layer-structured cathode material for enhanced sodium ion batteries. Energy Storage Mater. 74, 103971 (2025).

    Article  Google Scholar 

  84. Matsui, M., Mizukoshi, F., Hasegawa, H. & Imanishi, N. Ca-substituted P3-type NaxNi1/3Mn1/3Co1/3O2 as a potential high voltage cathode active material for sodium-ion batteries. J. Power Sources 485, 229346 (2021).

    Article  CAS  Google Scholar 

  85. Yu, T.-Y. et al. High-energy O3-Na1−2xCax[Ni0.5Mn0.5]O2 cathodes for long-life sodium-ion batteries. J. Mater. Chem. A 8, 13776–13786 (2020).

    Article  CAS  Google Scholar 

  86. Maurya, D. et al. High valent cation/anion co-doped O3 NaNiO2 high performing cathode for sodium battery. Comput. Condens. Matter 42, e01000 (2025).

    Article  Google Scholar 

  87. Guo, Y.-J. et al. Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nat. Commun. 12, 5267 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang, L. et al. A co- and Ni-free P2/O3 biphasic lithium stabilized layered oxide for sodium-ion batteries and its cycling behavior. Adv. Funct. Mater. 30, 2003364 (2020).

    Article  CAS  Google Scholar 

  89. Chen, C. et al. P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy 90, 106504 (2021).

    Article  CAS  Google Scholar 

  90. Wang, Y. et al. Completely suppressed high-voltage phase transition of P2/O3-Na0.7Li0.1Ni0.1Fe0.2Mn0.6O2 via Li/Ni co-doping for sodium storage. Inorg. Chem. Front. 9, 5231–5239 (2022).

    Article  CAS  Google Scholar 

  91. Zhang, Y. et al. P2/O3 biphasic cathode material through magnesium substitution for sodium-ion batteries. ACS Appl. Mater. Interfaces 16, 11349–11360 (2024).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, T. et al. Insights into chemical-mechanical degradation and modification strategies of layered oxide cathode materials of sodium ion batteries. J. Energy Chem. 103, 294–315 (2025).

    Article  CAS  Google Scholar 

  93. DiLecce, D. et al. Degradation of layered oxide cathode in a sodium battery: a detailed investigation by X-ray tomography at the nanoscale. Small Methods 5, 2100596 (2021).

    Article  CAS  Google Scholar 

  94. Chu, S. et al. Pinning effect enhanced structural stability toward a zero-strain layered cathode for sodium-ion batteries. Angew. Chem. Int. Ed. 60, 13366–13371 (2021).

    Article  CAS  Google Scholar 

  95. Wang, Q.-C. et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J. Am. Chem. Soc. 141, 840–848 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Eum, D. et al. Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nat. Mater. 21, 664–672 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Mao, Q. et al. Mitigating the P2–O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction. J. Mater. Chem. A 9, 10803–10811 (2021).

    Article  CAS  Google Scholar 

  99. Kubota, K., Asari, T. & Komaba, S. Impact of Ti and Zn dual-substitution in P2 type Na2/3Ni1/3Mn2/3O2 on Ni–Mn and Na-vacancy ordering and electrochemical properties. Adv. Mater. 35, 2300714 (2023).

    Article  CAS  Google Scholar 

  100. Wang, P.-F. et al. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci. Adv. 4, eaar6018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Voronina, N. et al. Unveiling the role of ruthenium in layered sodium cobaltite toward high-performance electrode enabled by anionic and cationic redox. Adv. Energy Mater. 13, 2302017 (2023).

    Article  CAS  Google Scholar 

  102. Jin, J. et al. Annealing in argon universally upgrades the Na-storage performance of Mn-based layered oxide cathodes by creating bulk oxygen vacancies. Angew. Chem. Int. Ed. 62, e202219230 (2023).

    Article  CAS  Google Scholar 

  103. Wang, Q. et al. Reaching the energy density limit of layered O3-NaNi0.5Mn0.5O2 electrodes via dual Cu and Ti substitution. Adv. Energy Mater. 9, 1901785 (2019).

    Article  Google Scholar 

  104. Gao, L. et al. Stable layered oxide cathode materials with ultra-low volume change for high-performance sodium-ion batteries. Chem. Eng. J. 510, 161580 (2025).

    Article  CAS  Google Scholar 

  105. Huang, Y. et al. Negative enthalpy doping stabilizes P2-type oxides cathode for high-performance sodium-ion batteries. Adv. Mater. 37, 2408012 (2025).

    Article  CAS  Google Scholar 

  106. Peng, X. et al. Promoting threshold voltage of P2-Na0.67Ni0.33Mn0.67O2 with Cu2+ cation doping toward high-stability cathode for sodium-ion battery. J. Colloid Interface Sci. 659, 422–431 (2024).

    Article  CAS  PubMed  Google Scholar 

  107. Peng, B. et al. A customized strategy realizes stable cycle of large-capacity and high-voltage layered cathode for sodium-ion batteries. Angew. Chem. Int. Ed. 63, e202411618 (2024).

    Article  CAS  Google Scholar 

  108. Dong, M. et al. Electrochemically active element Cu/Fe enhances P2 Ni/Mn-based materials by pushing up the phase transition voltage and improving Na+ transport kinetics. J. Energy Storage 141, 119320 (2026).

    Article  Google Scholar 

  109. Ren, H. et al. Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries. Nano Energy 103, 107765 (2022).

    Article  CAS  Google Scholar 

  110. Ding, F. et al. Tailoring planar strain for robust structural stability in high-entropy layered sodium oxide cathode materials. Nat. Energy 9, 1529–1539 (2024).

    Article  CAS  Google Scholar 

  111. Huang, Z.-X. et al. Multifunctional and radii-matched high-entropy engineering toward locally-regulable metal oxide layers in sodium-layered oxide cathode. Angew. Chem. Int. Ed. 64, e202505367 (2025).

    Article  CAS  Google Scholar 

  112. Ni, Q., Zhao, Y., Yuan, X., Li, J. & Jin, H. Dual-function of cation-doping to activate cationic and anionic redox in a Mn-based sodium-layered oxide cathode. Small 18, 2200289 (2022).

    Article  CAS  Google Scholar 

  113. Leng, M. et al. A new perspective on the composition–structure–property relationships on Nb/Mo/Cr-doped O3-type layered oxide as cathode materials for sodium-ion batteries. Chem. Eng. J. 413, 127824 (2021).

    Article  CAS  Google Scholar 

  114. Koo, C. et al. Extending nonhysteretic oxygen capacity in P2-type Ni–Mn binary Na oxides. Chem. Eng. J. 446, 137429 (2022).

    Article  CAS  Google Scholar 

  115. Ding, F. et al. Tailoring electronic structure to achieve maximum utilization of transition metal redox for high-entropy Na layered oxide cathodes. J. Am. Chem. Soc. 145, 13592–13602 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Wang, P.-F. et al. Both cationic and anionic redox chemistry in a P2-type sodium layered oxide. Nano Energy 69, 104474 (2020).

    Article  CAS  Google Scholar 

  117. Zhao, C. et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes. J. Am. Chem. Soc. 142, 5742–5750 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019).

    Article  PubMed  Google Scholar 

  119. Ren, H. et al. Unraveling anionic redox for sodium layered oxide cathodes: breakthroughs and perspectives. Adv. Mater. 34, 2106171 (2022).

    Article  CAS  Google Scholar 

  120. Yabuuchi, N. et al. A new electrode material for rechargeable sodium batteries: P2-type Na0.67[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2, 16851–16855 (2014).

    Article  CAS  Google Scholar 

  121. Ma, C. et al. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J. Am. Chem. Soc. 139, 4835–4845 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Maitra, U. et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018). This article proposes ribbon superstructure to enhance reversibility, effectively suppressing transition metal migration.

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, M. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 7, 522–540 (2022).

    Article  Google Scholar 

  124. Tamaru, M., Wang, X., Okubo, M. & Yamada, A. Layered Na2RuO3 as a cathode material for Na-ion batteries. Electrochem. Commun. 33, 23–26 (2013).

    Article  CAS  Google Scholar 

  125. Rozier, P. et al. Anionic redox chemistry in Na-rich Na2Ru1−ySnyO3 positive electrode material for Na-ion batteries. Electrochem. Commun. 53, 29–32 (2015).

    Article  CAS  Google Scholar 

  126. Mortemard de Boisse, B. et al. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode. Nat. Commun. 7, 11397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Perez, A. J. et al. Strong oxygen participation in the redox governing the structural and electrochemical properties of Na-rich layered oxide Na2IrO3. Chem. Mater. 28, 8278–8288 (2016).

    Article  CAS  Google Scholar 

  128. Tang, Y. et al. Sustainable layered cathode with suppressed phase transition for long-life sodium-ion batteries. Nat. Sustain. 7, 348–359 (2024).

    Article  Google Scholar 

  129. Wang, Q. et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nat. Mater. 20, 353–361 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Dong, H. et al. Lithium orbital hybridization chemistry to stimulate oxygen redox with reversible phase evolution in sodium-layered oxide cathodes. J. Am. Chem. Soc. 146, 22335–22347 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Risthaus, T. et al. A high-capacity P2 Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries with oxygen activity. J. Power Sources 395, 16–24 (2018).

    Article  CAS  Google Scholar 

  132. Abate, I. et al. The role of metal substitution in tuning anion redox in sodium metal layered oxides revealed by X-ray spectroscopy and theory. Angew. Chem. Int. Ed. 60, 10880–10887 (2021).

    Article  CAS  Google Scholar 

  133. Tanibata, N., Kondo, S., Akatsuka, S., Takeda, H. & Nakayama, M. Fast anion redox by amorphization in sodium-ion batteries. Chem. Mater. 37, 303–312 (2025).

    Article  CAS  Google Scholar 

  134. Zhao, C. et al. Decreasing transition metal triggered oxygen redox activity in Na-deficient oxides. Energy Storage Mater. 20, 395–400 (2019).

    Article  Google Scholar 

  135. Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Vergnet, J., Saubanère, M., Doublet, M.-L. & Tarascon, J.-M. The structural stability of P2-layered Na-based electrodes during anionic redox. Joule 4, 420–434 (2020).

    Article  CAS  Google Scholar 

  137. Hu, C. et al. Harvesting sustainable and low-hysteresis anion redox chemistry in Na layered oxide cathodes through mild ligand-to-metal charge transfer. Chem. Eng. J. 506, 160380 (2025).

    Article  CAS  Google Scholar 

  138. Jian, Z.-C. et al. Accelerating lattice oxygen kinetics of layered oxide cathodes via active facet modulation and robust mechanochemical interface construction for high-energy-density sodium-ion batteries. Energy Environ. Sci. 18, 7995–8008 (2025).

    Article  CAS  Google Scholar 

  139. Li, F., Liu, R., Liu, J. & Li, H. Voltage hysteresis in transition metal oxide cathodes for Li/Na-ion batteries. Adv. Funct. Mater. 33, 2300602 (2023).

    Article  CAS  Google Scholar 

  140. Singh, P. & Dixit, M. Stabilizing anionic redox and tuning its extent in Na-rich cathode materials through electronic structure engineering. J. Phys. Chem. C 128, 8883–8893 (2024).

    Article  CAS  Google Scholar 

  141. Zhao, C. et al. Anionic redox reaction in Na-deficient layered oxide cathodes: role of Sn/Zr substituents and in-depth local structural transformation revealed by solid-state NMR. Energy Storage Mater. 39, 60–69 (2021).

    Article  Google Scholar 

  142. Zhou, J. et al. Titanium substitution facilitating oxygen and manganese redox in sodium layered oxide cathode. Adv. Mater. Interfaces 11, 2400190 (2024).

    Article  CAS  Google Scholar 

  143. Yu, Y. et al. Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries. Energy Storage Mater. 38, 130–140 (2021).

    Article  Google Scholar 

  144. Shi, Q. et al. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nat. Commun. 13, 3205 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lu, W., zhao, H., Soomro, R. A., Sun, N. & Xu, B. Lattice sulfuration enhanced sodium storage performance of Na0.9Li0.1Zn0.05Ni0.25Mn0.6O2 cathode. Chem. Eng. J. 501, 157663 (2024).

    Article  CAS  Google Scholar 

  146. Li, X.-L. et al. Stabilizing transition metal vacancy induced oxygen redox by Co2+/Co3+ redox and sodium-site doping for layered cathode materials. Angew. Chem. Int. Ed. 60, 22026–22034 (2021).

    Article  CAS  Google Scholar 

  147. Zeng, A. et al. Clarifying effects of in-plane cationic-ordering degree on anionic redox chemistry in Na-ion battery layered oxide cathodes. Mater. Today Chem. 30, 101532 (2023).

    Article  CAS  Google Scholar 

  148. Li, M. et al. Correlation of oxygen anion redox activity to in-plane honeycomb cation ordering in NaxNiyMn1−yO2 cathodes. Adv. Energy Sustain. Res. 3, 2200027 (2022).

    Article  Google Scholar 

  149. Gao, A. et al. Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nat. Sustain. 5, 214–224 (2022). This paper investigates the topological protection for the reversibility of lattice oxygen redox in P3-layered oxide.

    Article  Google Scholar 

  150. Wang, Q. et al. Dual honeycomb-superlattice enables double-high activity and reversibility of anion redox for sodium-ion battery layered cathodes. Angew. Chem. Int. Ed. 61, e202206625 (2022).

    Article  CAS  Google Scholar 

  151. Bhange, D. S. et al. Honeycomb-layer structured Na3Ni2BiO6 as a high voltage and long life cathode material for sodium-ion batteries. J. Mater. Chem. A 5, 1300–1310 (2017).

    Article  CAS  Google Scholar 

  152. Ma, J. et al. Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: honeycomb-ordered cathodes for Na-ion batteries. Chem. Mater. 27, 2387–2399 (2015).

    Article  CAS  Google Scholar 

  153. Li, Q. et al. A superlattice-stabilized layered oxide cathode for sodium-ion batteries. Adv. Mater. 32, 1907936 (2020).

    Article  CAS  Google Scholar 

  154. Kang, S., Lee, S., Lee, H. & Kang, Y.-M. Manipulating disorder within cathodes of alkali-ion batteries. Nat. Rev. Chem. 8, 587–604 (2024).

    Article  CAS  PubMed  Google Scholar 

  155. Han, Y. et al. Uncovering the predictive pathways of lithium and sodium interchange in layered oxides. Nat. Mater. 23, 951–959 (2024). This article establishes predictive compositional and structural evolution at extremely dilute and low excess lithium based on the phase equilibrium between Li0.94CoO2 and Na0.48CoO2.

    Article  CAS  PubMed  Google Scholar 

  156. Deng, Z., Mo, Y. & Ong, S. P. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries. NPG Asia Mater. 8, e254 (2016).

    Article  CAS  Google Scholar 

  157. Ding, F. et al. A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries. Energy Storage Mater. 30, 420–430 (2020).

    Article  Google Scholar 

  158. Guo, S. et al. Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance. NPG Asia Mater. 8, e266 (2016).

    Article  CAS  Google Scholar 

  159. Li, M. et al. Unravelling the structure–stability interplay of O3-type layered sodium cathode materials via precision spacing engineering. Nat. Commun. 16, 2010 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tie, D. et al. Modulating the interlayer spacing and Na+/vacancy disordering of P2-Na0.67MnO2 for fast diffusion and high-rate sodium storage. ACS Appl. Mater. Interfaces 11, 6978–6985 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Lee, I. et al. Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries. Energy Storage Mater. 41, 183–195 (2021).

    Article  Google Scholar 

  162. Liang, X., Hwang, J.-Y. & Sun, Y.-K. Practical cathodes for sodium-ion batteries: who will take the crown? Adv. Energy Mater. 13, 2301975 (2023).

    Article  CAS  Google Scholar 

  163. Oh, G. et al. Substitution of Sr into the Na layer elevates the high voltage stability of O3-type NaCrO2 as sodium-ion battery cathode. Small Struct. 6, 2400561 (2025).

    Article  CAS  Google Scholar 

  164. Gao, S. et al. Regulation of coordination chemistry for ultrastable layered oxide cathode materials of sodium-ion batteries. Adv. Mater. 36, 2311523 (2024).

    Article  CAS  Google Scholar 

  165. Liang, X. et al. High-energy and long-life O3-type layered cathode material for sodium-ion batteries. Nat. Commun. 16, 3505 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zuo, W. et al. Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries. Nat. Commun. 12, 4903 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu, J. et al. Entropy tuning stabilizing P2-type layered cathodes for sodium-ion batteries. Adv. Funct. Mater. 34, 2315437 (2024).

    Article  CAS  Google Scholar 

  168. Ahmad, N. et al. Dual-pillar effect in P2-type Na0.67Ni0.33Mn0.67O2 through Na site substitution achieve superior electrochemical and air/water dual-stability as cathode for sodium-ion batteries. Adv. Energy Mater. 15, 2404093 (2025).

    Article  CAS  Google Scholar 

  169. Shi, Y. et al. Layered 3d transition metal-based oxides for sodium-ion and lithium-ion batteries: differences, links and beyond. Adv. Funct. Mater. 35, 2413078 (2025).

    Article  CAS  Google Scholar 

  170. Wang, Y. et al. Unexpected elevated working voltage by Na+/vacancy ordering and stabilized sodium-ion storage by transition-metal honeycomb ordering. Angew. Chem. Int. Ed. 63, e202409152 (2024).

    Article  CAS  Google Scholar 

  171. Zhang, T. et al. Promoting the performances of P2-type sodium layered cathode by inducing Na site rearrangement. Nano Energy 100, 107482 (2022).

    Article  CAS  Google Scholar 

  172. Jin, T. et al. Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 59, 14511–14516 (2020).

    Article  CAS  Google Scholar 

  173. Huang, R. et al. Properties of rich-Nae effect and zero-phase transition in P2–Na0.67(Ni0.1Mn0.8Fe0.1)1–xMgxO2 cathodes for rapid and stable sodium storage. ACS Sustain. Chem. Eng. 12, 16759–16769 (2024).

    Article  CAS  Google Scholar 

  174. Ke, M. et al. Sodium-ion layered oxide cathode materials based on oxygen anion redox: mechanism study, voltage hysteresis, and air stability improvement. Mater. 6, 100480 (2025).

    Google Scholar 

  175. Ma, A. et al. Al-doped NaNi1/3Mn1/3Fe1/3O2 for high performance of sodium ion batteries. Ionics 26, 1797–1804 (2020).

    Article  CAS  Google Scholar 

  176. Han, M. H. et al. High-performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries. Chem. Mater. 28, 106–116 (2016).

    Article  CAS  Google Scholar 

  177. Yabuuchi, N. et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Somerville, J. W. et al. Nature of the ‘Z’-phase in layered Na-ion battery cathodes. Energy Environ. Sci. 12, 2223–2232 (2019). This article elucidates that the ‘Z’ is accurately described as a continuously changing intergrowth structure, which evolves from P2 to O2 via the OP4 structure as an intermediate structure.

    Article  CAS  Google Scholar 

  179. Zhang, X. et al. High-energy earth-abundant cathodes with enhanced cationic/anionic redox for sustainable and long-lasting Na-ion batteries. Adv. Mater. 36, 2310659 (2024).

    Article  CAS  Google Scholar 

  180. Wang, H. et al. Different effects of al substitution for Mn or Fe on the structure and electrochemical properties of Na0.67Mn0.5Fe0.5O2 as a sodium ion battery cathode material. Inorg. Chem. 57, 5249–5257 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Chen, Z. et al. Triggering anionic redox activity in Fe/Mn-based layered oxide for high-performance sodium-ion batteries. Nano Energy 94, 106958 (2022).

    Article  CAS  Google Scholar 

  182. Zhou, P. et al. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 57, 618–627 (2023).

    Article  Google Scholar 

  183. Zhao, C., Ding, F., Lu, Y., Chen, L. & Hu, Y.-S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59, 264–269 (2020).

    Article  CAS  Google Scholar 

  184. Gauckler, C. et al. Detailed structural and electrochemical comparison between high potential layered P2-NaMnNi and doped P2-NaMnNiMg oxides. ACS Appl. Energy Mater. 5, 13735–13750 (2022).

    Article  CAS  Google Scholar 

  185. Xu, J. et al. Identifying the critical role of Li substitution in P2–Nax[LiyNizMn1–yz]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries. Chem. Mater. 26, 1260–1269 (2014).

    Article  CAS  Google Scholar 

  186. Yang, L. et al. Structural aspects of P2-type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) stabilization by lithium defects as a cathode material for sodium-ion batteries. Adv. Funct. Mater. 31, 2102939 (2021).

    Article  CAS  Google Scholar 

  187. Mariyappan, S. et al. The role of divalent (Zn2+/Mg2+/Cu2+) substituents in achieving full capacity of sodium layered oxides for Na-ion battery applications. Chem. Mater. 32, 1657–1666 (2020).

    Article  CAS  Google Scholar 

  188. Yin, W. et al. P2-type layered oxide cathode with honeycomb-ordered superstructure for sodium-ion batteries. Energy Storage Mater. 69, 103424 (2024).

    Article  Google Scholar 

  189. Liu, Z. et al. Ultralow volume change of P2-type layered oxide cathode for Na-ion batteries with controlled phase transition by regulating distribution of Na+. Angew. Chem. Int. Ed. 60, 20960–20969 (2021).

    Article  CAS  Google Scholar 

  190. Wang, Q.-C. et al. Tuning sodium occupancy sites in P2-layered cathode material for enhancing electrochemical performance. Adv. Energy Mater. 11, 2003455 (2021).

    Article  CAS  Google Scholar 

  191. Liu, X. et al. Stabilizing interlayer repulsion in layered sodium-ion oxide cathodes via hierarchical layer modification. Adv. Mater. 36, 2407519 (2024).

    Article  CAS  Google Scholar 

  192. Huang, Z. et al. High-entropy layered oxide cathode materials with moderated interlayer spacing and enhanced kinetics for sodium-ion batteries. Adv. Mater. 36, 2410857 (2024).

    Article  CAS  Google Scholar 

  193. Shi, Y. et al. Sustainable anionic redox by inhibiting Li cross-layer migration in Na-based layered oxide cathodes. ACS Nano 18, 5609–5621 (2024).

    CAS  Google Scholar 

  194. Ding, F. et al. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144, 8286–8295 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Li, Q. et al. Elucidating thermal decomposition kinetic mechanism of charged layered oxide cathode for sodium-ion batteries. Adv. Mater. 37, 2415610 (2025).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from the National Natural Science Foundation of China (52371225, 52372211, 22505040, and 92472115) and Shenzhen Basic Research Foundation (JCYJ20230807112503007).

Author information

Authors and Affiliations

Authors

Contributions

L.Y. and J.W. conceived the idea. X.Y. and D.Z. read and summarized the relevant literature. L.Y., X.Y., J.W., Y.S., Y.L. and Z.Z. wrote the original draft. X.Y., J.W., Y.S., Y.L., Z.Z., Z.L., S.-M.H., P.A. and D.Z. revised the original draft. J.W., S.-M.H., P.A. and D.Z. supervised the project and acquired the funding.

Corresponding authors

Correspondence to Jun Wang, Si-Min Huang, Philipp Adelhelm or Dong Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yin, X., Wang, J. et al. Substitution and electrochemistry in layered oxide cathode materials for sodium-ion batteries. Nat Rev Chem (2026). https://doi.org/10.1038/s41570-025-00795-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41570-025-00795-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing