Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire

Abstract

Immune-checkpoint inhibition provides an unmatched level of durable clinical efficacy in various malignancies. Such therapies promote the activation of antigen-specific T cells, although the precise targets of these T cells remain unknown. Exploiting these targets holds great potential to amplify responses to treatment, such as by combining immune-checkpoint inhibition with therapeutic vaccination or other antigen-directed treatments. In this scenario, the pivotal hurdle remains the definition of valid HLA-restricted tumour antigens, which requires several levels of evidence before targets can be established with sufficient confidence. Suitable antigens might include tumour-specific antigens with alternative or wild-type sequences, tumour-associated antigens and cryptic antigens that exceed exome boundaries. Comprehensive antigen classification is required to enable future clinical development and the definition of innovative treatment strategies. Furthermore, clinical development remains challenging with regard to drug manufacturing and regulation, as well as treatment feasibility. Despite these challenges, treatments based on diligently curated antigens combined with a suitable therapeutic platform have the potential to enable optimal antitumour efficacy in patients, either as monotherapies or in combination with other established immunotherapies. In this Review, we summarize the current state-of-the-art approaches for the identification of candidate tumour antigens and provide a structured terminology based on their underlying characteristics.

Key points

  • Immune-checkpoint inhibition has profoundly changed the paradigm for the care of several malignancies. Although these therapies activate antigen-specific T cells, the precise mechanisms of action and their specific targets remain largely unknown.

  • Anticancer immunotherapies encompass two fundamentally different therapeutic principles based on knowledge of their therapeutic targets, that either have been characterized (antigen-aware) or have remained elusive (antigen-unaware).

  • HLA-presented tumour antigens of potential therapeutic relevance can comprise alternative or wild-type amino acid sequences and can be subdivided into different categories based on their mechanisms of formation.

  • The available methods for the detection of HLA-presented antigens come with intrinsic challenges and limitations and, therefore, warrant multiple lines of evidence of robust tumour specificity before being considered for clinical use.

  • Knowledge obtained using various antigen-detection strategies can be combined with different therapeutic platforms to create individualized therapies that hold great promise, including when combined with already established immunotherapies.

  • Tailoring immunotherapies while taking into account the substantial heterogeneity of malignancies as well as that of HLA loci not only requires innovative science, but also demands innovative approaches to trial design and drug regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adjustment of patient-adapted and tumour-directed drug products and therapies for clinical use.
Fig. 2: Cancer-related cellular alterations and characterization of HLA-presented tumour-specific and tumour-associated peptides.
Fig. 3: Current levels of scientific evidence for discovery and characterization of different classes of MHC-presented antigens.
Fig. 4: Antigen identification and selection for patient-adapted therapy.

Similar content being viewed by others

References

  1. Schwartz, R. S. Paul Ehrlich’s magic bullets. N. Engl. J. Med. 350, 1079–1080 (2004).

    CAS  PubMed  Google Scholar 

  2. Thomas, E. D., Lochte, H. L. Jr., Lu, W. C. & Ferrebee, J. W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257, 491–496 (1957).

    CAS  PubMed  Google Scholar 

  3. Christopher, M. J. et al. Immune escape of relapsed AML cells after allogeneic transplantation. N. Engl. J. Med. 379, 2330–2341 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kolb, H. J. et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76, 2462–2465 (1990).

    CAS  PubMed  Google Scholar 

  5. Edinger, M. et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat. Med. 9, 1144–1150 (2003).

    CAS  PubMed  Google Scholar 

  6. Mirza, N. et al. Graft versus self (GvS) against T-cell autoantigens is a mechanism of graft-host interaction. Proc. Natl Acad. Sci. USA 113, 13827–13832 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wölfel, C. et al. Dissection and molecular analysis of alloreactive CD8+ T cell responses in allogeneic haematopoietic stem cell transplantation. Cancer Immunol. Immunother. 57, 849–857 (2008).

    PubMed  Google Scholar 

  8. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 8, 299–308 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cameron, D. et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 389, 1195–1205 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. McLaughlin, P. et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol. 16, 2825–2833 (1998).

    CAS  PubMed  Google Scholar 

  11. Salles, G. et al. Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv. Ther. 34, 2232–2273 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Google Scholar 

  13. Chang, A. Y. et al. Opportunities and challenges for TCR mimic antibodies in cancer therapy. Expert. Opin. Biol. Ther. 16, 979–987 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kiesgen, S., Chicaybam, L., Chintala, N. K. & Adusumilli, P. S. Chimeric antigen receptor (CAR) T-cell therapy for thoracic malignancies. J. Thorac. Oncol. 13, 16–26 (2018).

    CAS  PubMed  Google Scholar 

  16. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    CAS  PubMed  Google Scholar 

  19. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    CAS  PubMed  Google Scholar 

  20. Akahori, Y. et al. Antitumor activity of CAR-T cells targeting the intracellular oncoprotein WT1 can be enhanced by vaccination. Blood 132, 1134–1145 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Metzinger, M. N. et al. Chimeric antigen receptor T-cell therapy: reach to solid tumor experience. Oncology 97, 59–74 (2019).

    CAS  PubMed  Google Scholar 

  22. Wang, Z., Chen, W., Zhang, X., Cai, Z. & Huang, W. A long way to the battlefront: CAR T cell therapy against solid cancers. J. Cancer 10, 3112–3123 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Garrido, F., Aptsiauri, N., Doorduijn, E. M., Garcia Lora, A. M. & van Hall, T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 39, 44–51 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

    CAS  PubMed  Google Scholar 

  25. Cohen, E. E. W. et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 393, 156–167 (2019).

    CAS  PubMed  Google Scholar 

  26. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    CAS  PubMed  Google Scholar 

  27. Mok, T. S. K. et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393, 1819–1830 (2019).

    CAS  PubMed  Google Scholar 

  28. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393, 2404–2415 (2019).

    PubMed  Google Scholar 

  29. Bott, M. J. et al. Initial results of pulmonary resection after neoadjuvant nivolumab in patients with resectable non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 158, 269–276 (2019).

    CAS  PubMed  Google Scholar 

  30. Davis, W. et al. Next-generation sequencing in 305 consecutive patients: clinical outcomes and management changes. J. Oncol. Pract. 15, e1028–e1034 (2019).

    PubMed  Google Scholar 

  31. Ascierto, P. A. et al. Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with nivolumab therapy: three-year follow-up of a randomized phase 3 trial. JAMA Oncol. 5, 187–194 (2019).

    PubMed  Google Scholar 

  32. Herbst, R. S. et al. Long-term outcomes and retreatment among patients with previously treated, programmed death-ligand 1-positive, advanced non-small-cell lung cancer in the KEYNOTE-010 study. J. Clin. Oncol. 38, 1580–1590 (2020).

    CAS  PubMed  Google Scholar 

  33. Vignard, V. et al. Adoptive transfer of tumor-reactive melan-A-specific CTL clones in melanoma patients is followed by increased frequencies of additional melan-A-specific T cells. J. Immunol. 175, 4797–4805 (2005).

    CAS  PubMed  Google Scholar 

  34. Britten, C. M. et al. The regulatory landscape for actively personalized cancer immunotherapies. Nat. Biotechnol. 31, 880–882 (2013).

    CAS  PubMed  Google Scholar 

  35. Parkhurst, M. R. et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov. 9, 1022–1035 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    CAS  PubMed  Google Scholar 

  37. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    CAS  PubMed  Google Scholar 

  38. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    CAS  PubMed  Google Scholar 

  40. Finn, O. J. & Rammensee, H. G. Is it possible to develop cancer vaccines to neoantigens, what are the major challenges, and how can these be overcome? Neoantigens: nothing new in spite of the name. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a028829 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Backert, L. & Kohlbacher, O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med. 7, 119 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. Boegel, S., Castle, J. C., Kodysh, J., O’Donnell, T. & Rubinsteyn, A. Bioinformatic methods for cancer neoantigen prediction. Prog. Mol. Biol. Transl. Sci. 164, 25–60 (2019).

    CAS  PubMed  Google Scholar 

  43. Richters, M. M. et al. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 11, 56 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. & Rammensee, H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).

    CAS  PubMed  Google Scholar 

  45. Kowalewski, D. J. & Stevanovic, S. Biochemical large-scale identification of MHC class I ligands. Methods Mol. Biol. 960, 145–157 (2013).

    CAS  PubMed  Google Scholar 

  46. Dudley, M. E., Ngo, L. T., Westwood, J., Wunderlich, J. R. & Rosenberg, S. A. T-cell clones from melanoma patients immunized against an anchor-modified gp100 peptide display discordant effector phenotypes. Cancer J. 6, 69–77 (2000).

    CAS  PubMed  Google Scholar 

  47. Salgaller, M. L., Weber, J. S., Koenig, S., Yannelli, J. R. & Rosenberg, S. A. Generation of specific anti-melanoma reactivity by stimulation of human tumor-infiltrating lymphocytes with MAGE-1 synthetic peptide. Cancer Immunol. Immunother. 39, 105–116 (1994).

    CAS  PubMed  Google Scholar 

  48. Topalian, S. L., Kasid, A. & Rosenberg, S. A. Immunoselection of a human melanoma resistant to specific lysis by autologous tumor-infiltrating lymphocytes. Possible mechanisms for immunotherapeutic failures. J. Immunol. 144, 4487–4495 (1990).

    CAS  PubMed  Google Scholar 

  49. Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387–1390 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Löffler, M. W. et al. A non-interventional clinical trial assessing immune responses after radiofrequency ablation of liver metastases from colorectal cancer. Front. Immunol. 10, 2526 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Malarkannan, S., Afkarian, M. & Shastri, N. A rare cryptic translation product is presented by Kb major histocompatibility complex class I molecule to alloreactive T cells. J. Exp. Med. 182, 1739–1750 (1995).

    CAS  PubMed  Google Scholar 

  52. Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Löffler, M. W. et al. Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma. Genome Med. 11, 28 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Hacohen, N., Fritsch, E. F., Carter, T. A., Lander, E. S. & Wu, C. J. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol. Res. 1, 11–15 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    CAS  PubMed  Google Scholar 

  56. Bassani-Sternberg, M. et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kalaora, S. et al. Combined analysis of antigen presentation and T-cell recognition reveals restricted immune responses in melanoma. Cancer Discov. 8, 1366–1375 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Löffler, M. W. et al. Mapping the HLA ligandome of colorectal cancer reveals an imprint of malignant cell transformation. Cancer Res. 78, 4627–4641 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Peng, S. et al. Sensitive detection and analysis of neoantigen-specific T cell populations from tumors and blood. Cell Rep. 28, 2728–2738.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bassani-Sternberg, M. & Coukos, G. Mass spectrometry-based antigen discovery for cancer immunotherapy. Curr. Opin. Immunol. 41, 9–17 (2016).

    CAS  PubMed  Google Scholar 

  61. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bjerregaard, A. M. et al. An analysis of natural T cell responses to predicted tumor neoepitopes. Front. Immunol. 8, 1566 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    CAS  PubMed  Google Scholar 

  64. Maby, P. et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy. Cancer Res. 75, 3446–3455 (2015).

    CAS  PubMed  Google Scholar 

  65. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Llosa, N. J. et al. Immunopathologic stratification of colorectal cancer for checkpoint blockade immunotherapy. Cancer Immunol. Res. 7, 1574–1579 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mlecnik, B. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    CAS  PubMed  Google Scholar 

  68. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Google Scholar 

  69. Rosas, G., Ruiz, R., Araujo, J. M., Pinto, J. A. & Mas, L. ALK rearrangements: biology, detection and opportunities of therapy in non-small cell lung cancer. Crit. Rev. Oncol. Hematol. 136, 48–55 (2019).

    PubMed  Google Scholar 

  70. Druker, B. J. et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038–1042 (2001).

    CAS  PubMed  Google Scholar 

  71. Woo, C. G. et al. Differential protein stability and clinical responses of EML4-ALK fusion variants to various ALK inhibitors in advanced ALK-rearranged non-small cell lung cancer. Ann. Oncol. 28, 791–797 (2017).

    CAS  PubMed  Google Scholar 

  72. Bocchia, M. et al. Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet 365, 657–662 (2005).

    CAS  PubMed  Google Scholar 

  73. Cathcart, K. et al. A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 103, 1037–1042 (2004).

    CAS  PubMed  Google Scholar 

  74. Mackall, C. L. et al. A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin. Cancer Res. 14, 4850–4858 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pinilla-Ibarz, J. et al. Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 95, 1781–1787 (2000).

    CAS  PubMed  Google Scholar 

  76. Rojas, J. M., Knight, K., Wang, L. & Clark, R. E. Clinical evaluation of BCR-ABL peptide immunisation in chronic myeloid leukaemia: results of the EPIC study. Leukemia 21, 2287–2295 (2007).

    CAS  PubMed  Google Scholar 

  77. Frankiw, L., Baltimore, D. & Li, G. Alternative mRNA splicing in cancer immunotherapy. Nat. Rev. Immunol. 19, 675–687 (2019).

    CAS  PubMed  Google Scholar 

  78. Park, J. & Chung, Y. J. Identification of neoantigens derived from alternative splicing and RNA modification. Genomics Inform. 17, e23 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. Smith, C. C. et al. Alternative tumour-specific antigens. Nat. Rev. Cancer 19, 465–478 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–548.e24 (2019).

    CAS  PubMed  Google Scholar 

  81. Slansky, J. E. & Spellman, P. T. Alternative splicing in tumors – a path to immunogenicity? N. Engl. J. Med. 380, 877–880 (2019).

    PubMed  Google Scholar 

  82. Boultwood, J., Dolatshad, H., Varanasi, S. S., Yip, B. H. & Pellagatti, A. The role of splicing factor mutations in the pathogenesis of the myelodysplastic syndromes. Adv. Biol. Regul. 54, 153–161 (2014).

    CAS  PubMed  Google Scholar 

  83. Pellagatti, A. et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood 132, 1225–1240 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yip, B. H., Dolatshad, H., Roy, S., Pellagatti, A. & Boultwood, J. Impact of splicing factor mutations on pre-mRNA splicing in the myelodysplastic syndromes. Curr. Pharm. Des. 22, 2333–2344 (2016).

    CAS  PubMed  Google Scholar 

  85. Olthof, A. M., Hyatt, K. C. & Kanadia, R. N. Minor intron splicing revisited: identification of new minor intron-containing genes and tissue-dependent retention and alternative splicing of minor introns. BMC Genomics 20, 686 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. Smart, A. C. et al. Intron retention is a source of neoepitopes in cancer. Nat. Biotechnol. 36, 1056–1058 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jayasinghe, R. G. et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep. 23, 270–281.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chong, C. et al. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat. Commun. 11, 1293 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224.e6 (2018).

    CAS  PubMed  Google Scholar 

  90. Climente-Gonzalez, H., Porta-Pardo, E., Godzik, A. & Eyras, E. The functional impact of alternative splicing in cancer. Cell Rep. 20, 2215–2226 (2017).

    CAS  PubMed  Google Scholar 

  91. Seiler, M. et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 23, 282–296.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Vauchy, C. et al. CD20 alternative splicing isoform generates immunogenic CD4 helper T epitopes. Int. J. Cancer 137, 116–126 (2015).

    CAS  PubMed  Google Scholar 

  93. Hanada, K., Yewdell, J. W. & Yang, J. C. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427, 252–256 (2004).

    CAS  PubMed  Google Scholar 

  94. Vigneron, N. et al. An antigenic peptide produced by peptide splicing in the proteasome. Science 304, 587–590 (2004).

    CAS  PubMed  Google Scholar 

  95. Faridi, P. et al. Response to comment on “A subset of HLA-I peptides are not genomically templated: Evidence for cis- and trans-spliced peptide ligands”. Sci. Immunol. 4, eaaw8457 (2019).

    CAS  PubMed  Google Scholar 

  96. Faridi, P. et al. A subset of HLA-I peptides are not genomically templated: evidence for cis- and trans-spliced peptide ligands. Sci. Immunol. 3, eaar3947 (2018).

    PubMed  Google Scholar 

  97. Liepe, J. et al. A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354, 354–358 (2016).

    CAS  PubMed  Google Scholar 

  98. Rolfs, Z., Muller, M., Shortreed, M. R., Smith, L. M. & Bassani-Sternberg, M. Comment on “A subset of HLA-I peptides are not genomically templated: evidence for cis- and trans-spliced peptide ligands”. Sci. Immunol. 4, eaaw1622 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Boon, T. & Van Pel, A. T cell-recognized antigenic peptides derived from the cellular genome are not protein degradation products but can be generated directly by transcription and translation of short subgenic regions. A hypothesis. Immunogenetics 29, 75–79 (1989).

    CAS  PubMed  Google Scholar 

  100. Abelin, J. G. et al. Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry. Nat. Protoc. 10, 1308–1318 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cobbold, M. et al. MHC class I-associated phosphopeptides are the targets of memory-like immunity in leukemia. Sci. Transl. Med. 5, 203ra125 (2013).

    PubMed  PubMed Central  Google Scholar 

  102. Malaker, S. A. et al. Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol. Res. 5, 376–384 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yewdell, J. W., Anton, L. C. & Bennink, J. R. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J. Immunol. 157, 1823–1826 (1996).

    CAS  PubMed  Google Scholar 

  104. Rock, K. L., Farfan-Arribas, D. J., Colbert, J. D. & Goldberg, A. L. Re-examining class-I presentation and the DRiP hypothesis. Trends Immunol. 35, 144–152 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Yewdell, J. W., Dersh, D. & Fahraeus, R. Peptide channeling: the key to MHC class I immunosurveillance? Trends Cell Biol. 29, 929–939 (2019).

    CAS  PubMed  Google Scholar 

  106. Diederichs, S. et al. The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol. Med. 8, 442–457 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Andersen, R. S. et al. High frequency of T cells specific for cryptic epitopes in melanoma patients. Oncoimmunology 2, e25374 (2013).

    PubMed  PubMed Central  Google Scholar 

  108. Laumont, C. M. et al. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat. Commun. 7, 10238 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Newey, A. et al. Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment. J. Immunother. Cancer 7, 309 (2019).

    PubMed  PubMed Central  Google Scholar 

  110. Singh-Jasuja, H., Emmerich, N. P. & Rammensee, H. G. The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol. Immunother. 53, 187–195 (2004).

    CAS  PubMed  Google Scholar 

  111. Marijt, K. A. et al. Identification of non-mutated neoantigens presented by TAP-deficient tumors. J. Exp. Med. 215, 2325–2337 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Leone, P. et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J. Natl Cancer Inst. 105, 1172–1187 (2013).

    CAS  PubMed  Google Scholar 

  113. Fritsche, J. et al. Translating immunopeptidomics to immunotherapy-decision-making for patient and personalized target selection. Proteomics 18, e1700284 (2018).

    PubMed  Google Scholar 

  114. Schuster, H. et al. The immunopeptidomic landscape of ovarian carcinomas. Proc. Natl Acad. Sci. USA 114, E9942–E9951 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Weinzierl, A. O. et al. Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. Mol. Cell Proteom. 6, 102–113 (2007).

    CAS  Google Scholar 

  116. Chaux, P. et al. Identification of five MAGE-A1 epitopes recognized by cytolytic T lymphocytes obtained by in vitro stimulation with dendritic cells transduced with MAGE-A1. J. Immunol. 163, 2928–2936 (1999).

    CAS  PubMed  Google Scholar 

  117. Chen, Q. et al. Characterization of antigen-specific CD8+ T lymphocyte responses in skin and peripheral blood following intradermal peptide vaccination. Cancer Immun. 5, 5 (2005).

    PubMed  Google Scholar 

  118. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Google Scholar 

  119. Freudenmann, L. K., Marcu, A. & Stevanovic, S. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. Immunology 154, 331–345 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Marcu, A. et al. The HLA ligand atlas. A resource of natural HLA ligands presented on benign tissues. Preprint at bioRxiv https://doi.org/10.1101/778944 (2019).

    Article  Google Scholar 

  121. Weinschenk, T. et al. Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res. 62, 5818–5827 (2002).

    CAS  PubMed  Google Scholar 

  122. Atanackovic, D. et al. Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc. Natl Acad. Sci. USA 105, 1650–1655 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gnjatic, S. et al. NY-CO-58/KIF2C is overexpressed in a variety of solid tumors and induces frequent T cell responses in patients with colorectal cancer. Int. J. Cancer 127, 381–393 (2010).

    CAS  PubMed  Google Scholar 

  124. Wolchinsky, R. et al. Antigen-dependent integration of opposing proximal TCR-signaling cascades determines the functional fate of T lymphocytes. J. Immunol. 192, 2109–2119 (2014).

    CAS  PubMed  Google Scholar 

  125. Chakraborty, N. G. et al. Recognition of PSA-derived peptide antigens by T cells from prostate cancer patients without any prior stimulation. Cancer Immunol. Immunother. 52, 497–505 (2003).

    CAS  PubMed  Google Scholar 

  126. Kowalewski, D. J. et al. HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc. Natl Acad. Sci. USA 112, E166–E175 (2015).

    CAS  PubMed  Google Scholar 

  127. Caron, E. et al. An open-source computational and data resource to analyze digital maps of immunopeptidomes. eLife 4, e07661 (2015).

    PubMed Central  Google Scholar 

  128. Shao, W. et al. The systeMHC atlas project. Nucleic Acids Res. 46, D1237–D1247 (2018).

    CAS  PubMed  Google Scholar 

  129. Rittig, S. M. et al. Long-term survival correlates with immunological responses in renal cell carcinoma patients treated with mRNA-based immunotherapy. Oncoimmunology 5, e1108511 (2016).

    PubMed  Google Scholar 

  130. Shima, H. et al. Randomized phase II trial of survivin 2B peptide vaccination for patients with HLA-A24-positive pancreatic adenocarcinoma. Cancer Sci. 110, 2378–2385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Walter, S. et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med. 18, 1254–1261 (2012).

    CAS  PubMed  Google Scholar 

  132. Jaini, R., Rayman, P., Cohen, P. A., Finke, J. H. & Tuohy, V. K. Combination of sunitinib with anti-tumor vaccination inhibits T cell priming and requires careful scheduling to achieve productive immunotherapy. Int. J. Cancer 134, 1695–1705 (2014).

    CAS  PubMed  Google Scholar 

  133. Rini, B. I. et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 17, 1599–1611 (2016).

    CAS  PubMed  Google Scholar 

  134. Schwartzentruber, D. J. et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 364, 2119–2127 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Munafo, M. R. & Davey Smith, G. Robust research needs many lines of evidence. Nature 553, 399–401 (2018).

    CAS  PubMed  Google Scholar 

  136. Ghosh, M. et al. Guidance document: validation of a high-performance liquid chromatography-tandem mass spectrometry immunopeptidomics assay for the identification of HLA class I ligands suitable for pharmaceutical therapies. Mol. Cell Proteom. 19, 432–443 (2020).

    CAS  Google Scholar 

  137. Wang, Q., Shashikant, C. S., Jensen, M., Altman, N. S. & Girirajan, S. Novel metrics to measure coverage in whole exome sequencing datasets reveal local and global non-uniformity. Sci. Rep. 7, 885 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).

    CAS  PubMed  Google Scholar 

  140. Gfeller, D. & Bassani-Sternberg, M. Predicting antigen presentation–what could we learn from a million peptides? Front. Immunol. 9, 1716 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Andreatta, M. & Nielsen, M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32, 511–517 (2016).

    CAS  PubMed  Google Scholar 

  142. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999).

    CAS  PubMed  Google Scholar 

  143. Bekker-Jensen, D. B. et al. An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Syst. 4, 587–599.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, D. et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 15, e8503 (2019).

    PubMed  PubMed Central  Google Scholar 

  145. Beaubier, N. et al. Integrated genomic profiling expands clinical options for patients with cancer. Nat. Biotechnol. 37, 1351–1360 (2019).

    CAS  PubMed  Google Scholar 

  146. Wilson, E. A. & Anderson, K. S. Lost in the crowd: identifying targetable MHC class I neoepitopes for cancer immunotherapy. Expert. Rev. Proteom. 15, 1065–1077 (2018).

    CAS  Google Scholar 

  147. Maus, M. V. et al. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Mol. Ther. Oncolytics 3, 1–9 (2016).

    PubMed  Google Scholar 

  148. Cameron, B. J. et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci. Transl. Med. 5, 197ra103 (2013).

    PubMed  PubMed Central  Google Scholar 

  149. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 372, 724–734 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Seol, Y. M. et al. A pilot prospective study of refractory solid tumor patients for NGS-based targeted anticancer therapy. Transl. Oncol. 12, 301–307 (2019).

    PubMed  Google Scholar 

  152. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    CAS  PubMed  Google Scholar 

  153. Noguchi, M. et al. Phase II study of personalized peptide vaccination for castration-resistant prostate cancer patients who failed in docetaxel-based chemotherapy. Prostate 72, 834–845 (2012).

    CAS  PubMed  Google Scholar 

  154. Terasaki, M. et al. Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen–A24 with recurrent or progressive glioblastoma multiforme. J. Clin. Oncol. 29, 337–344 (2011).

    CAS  PubMed  Google Scholar 

  155. Nguyen, L. T. et al. Phase II clinical trial of adoptive cell therapy for patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and low-dose interleukin-2. Cancer Immunol. Immunother. 68, 773–785 (2019).

    CAS  PubMed  Google Scholar 

  156. European Medicines Agency. Guideline on the requirements for the chemical and pharmaceutical quality documentation concerning investigational medicinal products in clinical trials. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-requirements-chemical-pharmaceutical-quality-documentation-concerning-investigational_en.pdf (2017).

  157. Chen, L., Qiao, D., Wang, J., Tian, G. & Wang, M. Cancer immunotherapy with lymphocytes genetically engineered with T cell receptors for solid cancers. Immunol. Lett. 216, 51–62 (2019).

    CAS  PubMed  Google Scholar 

  158. Salter, A. I., Pont, M. J. & Riddell, S. R. Chimeric antigen receptor-modified T cells: CD19 and the road beyond. Blood 131, 2621–2629 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Ali, M. et al. Induction of neoantigen-reactive T cells from healthy donors. Nat. Protoc. 14, 1926–1943 (2019).

    CAS  PubMed  Google Scholar 

  160. Caron, E. et al. The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation. Mol. Syst. Biol. 7, 533 (2011).

    PubMed  PubMed Central  Google Scholar 

  161. Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Armbruster, N., Jasny, E. & Petsch, B. Advances in RNA vaccines for preventive indications: a case study of a vaccine against rabies. Vaccines 7, 132 (2019).

    CAS  PubMed Central  Google Scholar 

  163. Gutjahr, A. et al. The STING ligand cGAMP potentiates the efficacy of vaccine-induced CD8+ T cells. JCI Insight 4, e125107 (2019).

    PubMed Central  Google Scholar 

  164. Rammensee, H. G. et al. A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. J. Immunother. Cancer 7, 307 (2019).

    PubMed  PubMed Central  Google Scholar 

  165. Eso, Y., Shimizu, T., Takeda, H., Takai, A. & Marusawa, H. Microsatellite instability and immune checkpoint inhibitors: toward precision medicine against gastrointestinal and hepatobiliary cancers. J. Gastroenterol. 55, 15–26 (2020).

    CAS  PubMed  Google Scholar 

  166. Lee, J. S. & Ruppin, E. Multiomics prediction of response rates to therapies to inhibit programmed cell death 1 and programmed cell death 1 ligand 1. JAMA Oncol. 5, 1614–1618 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Brossart, P. et al. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 93, 4309–4317 (1999).

    CAS  PubMed  Google Scholar 

  168. Pittet, M. J. et al. Melan-A/MART-1-specific CD8 T cells: from thymus to tumor. Trends Immunol. 23, 325–328 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Yakes from the Department of Immunology at the University of Tübingen for language editing and editorial assistance, and A. Marcu from the Department of Immunology at the University of Tübingen for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of the manuscript.

Corresponding author

Correspondence to Sebastian P. Haen.

Ethics declarations

Competing interests

S.P.H. has acted as an advisory board member for Abbvie, Bristol–Myers Squibb, MSD and Roche, and is a co-inventor of several patents owned by Immatics Biotechnologies. M.W.L. is a co-inventor of several patents owned by Immatics Biotechnologies, and has acted as a consultant and/or advisory board member for Boehringer Ingelheim. H.-G.R. has ownership interest (including shares) in CureVac, Immatics Biotechnologies and Synimmune, is a co-inventor and/or has shared interests in several patents held by CureVac, Immatics Biotechnologies and Synimmune, and is a co-inventor and shares the patent for the adjuvant candidate XS15. P.B. has acted as a consultant or advisory board member for Amgen, AstraZeneca, Bristol–Myers Squibb, MSD and Roche, has received speaker’s fees from Abbvie, AstraZeneca, Bristol-Myers Squibb, and MSD, and has ownership interests in Immatics Biotechnologies.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

HLA Alleles: http://hla.alleles.org/alleles

Glossary

Antigens

Immunologically recognizable cell-surface structures.

Antigen-aware therapy

(AaT). An active immunotherapy leading to the activation of and/or constituting antigen-specific cells designed to target known and/or well-defined antigens.

Antigen-unaware therapy

(AuT). An active immunotherapy leading to the activation of and/or constituting antigen-specific cells designed to targeting uncharacterized antigens.

Cell-surface antigens

Proteins or parts thereof located on the outer side of the cell membrane that are therefore accessible from outside the cell.

T cell repertoire

The fraction of T cells capable of reacting against a defined HLA-restricted antigen, as detected by assays designed to measure immune cell function, without confirmation of lytic activity.

Uniquely assembled drug product

(UADP). Drug product, or set of drug products assembled and (pre-)manufactured individually that can then be assembled and administered to a selected patient or patients based on the presence of biomarkers indicating responsiveness to a predesigned set of active ingredients (for example, a peptide warehouse).

Uniquely designed drug product

(UDDP). A drug product specifically defined and manufactured for a specific patient according to individual clinical features that is not intended to be administered to any other individual.

Tumour-specific antigens

(TSAs). HLA ligands exclusively presented on tumours that are not presented on any other tissues.

Stratification

Allocation of a therapy with a defined or invariant drug product based on the presence of one or more specific biomarkers.

Individualization

The fully individualized design of a drug product for a specific patient based on biomarker analyses of an individual tumour or tumours (a variant drug product).

Tumour-associated antigens

(TAAs). HLA-presented peptides present on a tumour that can also be presented on other non-malignant tissues.

Mutated tumour-specific antigens

HLA-binding peptides with tumour-specific alternative sequences (compared with the germline sequence) derived from one of several types of germline mutations including single-nucleotide variants, indels, fusions and others. Synonymously referred to as mutated neoantigens.

Neoantigen

A term commonly used to describe tumour-specific antigens (TSAs). This term has mostly been used to describe mutated TSAs and can cause confusion when also used to describe wild-type sequence TSAs.

Next-generation sequencing

(NGS). Massively parallel sequencing technology enabling the rapid, high-throughput analysis of nucleic acid sequences including those from the whole genome, exome or transcriptome.

Tandem mass spectrometry

(MS/MS). Liquid chromatography followed by two-stage mass spectrometry including ionization of samples followed by detection of the parental mass and the subsequent fragmentation and assessment of respective fragment masses.

Predicted HLA ligands

Amino acid sequences with defined HLA-binding motifs that can be inferred in silico using computational algorithms.

Alternatively spliced TSAs

An HLA-binding peptide with a tumour-specific alternative amino acid sequence (such as that containing a neojunction) derived from alternative mRNA splicing events.

Cryptic antigens

HLA-eluted peptides detected by mass spectrometry that lack clear correlates in the consensus coding sequence (exome).

Proteasomal splicing

Proteasome-catalysed peptide sequence modification through ligation of other liberated protein fragments.

Defective ribosomal products

(DRIPs). Prematurely terminated and misfolded peptides produced from translation of bona fide mRNA in the appropriate reading frames.

Dark matter of the proteome

The proteomic correlate of genomic dark matter, located outside the coding region and assumed not to be translated.

Consensus genomic sequence

The calculated order of most frequent residues, either nucleotides or amino acids, found at each position in a sequence alignment within the genome.

Naturally presented HLA ligands

Peptides presented by MHC that can be detected using MS/MS following MHC immunoprecipitation or by T cell based detection assays.

HLA ligandome

A naturally occurring, non-immunologically validated HLA-presented peptide repertoire, characterized by MS/MS after HLA immunoprecipitation and peptide elution.

Wild-type tumour-specific antigens

HLA-eluted peptides with wild-type sequences (compared with the relevant germline sequence) that nonetheless have tumour-specific presentation, and to which the immune system has not been previously exposed and not represented on benign tissues.

Tumour-specific antigens with reactivated early ontogenic expression

Tumour-specific HLA ligands (compared with the germline sequence) derived from proteins that are usually physiologically restricted to the early stages of ontogenetic expression, including cancer–testis antigens.

Post-translationally modified tumour-associated antigens

HLA ligands with wild-type (or in rare cases also alternative) sequences derived from tumour-specific post-translational modifications.

Overexpressed tumour-associated antigens

An HLA ligand that is typically overexpressed on tumour cells, albeit with lower levels of expression on non-malignant tissues.

Tumour mutational load

The sum total of somatic mutations located in the exomes of cancer cells. Tumour mutational load should not be viewed as equivalent to tumour mutational burden.

Tumour mutational burden

A biomarker used for predicting therapy response in clinical trials that usually reflects the tumour mutational load of selected genes, as assessed primarily using the Foundation Medicine gene panel, but also potentially other assays (such as the MSKCC-IMPACT panel). This term only applies directly to this reduced proportion of mutated genes and does not indicate the entire tumour mutational load.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haen, S.P., Löffler, M.W., Rammensee, HG. et al. Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol 17, 595–610 (2020). https://doi.org/10.1038/s41571-020-0387-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-020-0387-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer