Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune-checkpoint inhibitors: long-term implications of toxicity

Abstract

The development of immune-checkpoint inhibitors (ICIs) has heralded a new era in cancer treatment, enabling the possibility of long-term survival in patients with metastatic disease, and providing new therapeutic indications in earlier-stage settings. As such, characterizing the long-term implications of receiving ICIs has grown in importance. An abundance of evidence exists describing the acute clinical toxicities of these agents, although chronic effects have not been as well catalogued. Nonetheless, emerging evidence indicates that persistent toxicities might be more common than initially suggested. While generally low-grade, these chronic sequelae can affect the endocrine, rheumatological, pulmonary, neurological and other organ systems. Fatal toxicities also comprise a diverse set of clinical manifestations and can occur in 0.4–1.2% of patients. This risk is a particularly relevant consideration in light of the possibility of long-term survival. Finally, the effects of immune-checkpoint blockade on a diverse range of immune processes, including atherosclerosis, heart failure, neuroinflammation, obesity and hypertension, have not been characterized but remain an important area of research with potential relevance to cancer survivors. In this Review, we describe the current evidence for chronic immune toxicities and the long-term implications of these effects for patients receiving ICIs.

Key points

  • Immune-checkpoint inhibitors (ICIs) produce durable responses in a growing number of patients with metastatic cancer, and are being used increasingly in (neo)adjuvant settings.

  • Although acute toxicities are more common, chronic immune-related adverse events (irAEs) are increasingly recognized, and can affect up to 40% of patients.

  • Chronic irAEs are mostly classed as endocrine or rheumatological, but can affect a diverse array of organs.

  • Other issues with long-term relevance include fatal irAEs (which can occur in 0.4–1.2% of patients), and rechallenge after severe irAEs.

  • ICIs could also affect other immune-mediated processes (such as atherosclerosis or neuroinflammation), although more studies are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed mechanisms of immune-related adverse events.
Fig. 2: Mechanisms of chronic immune-checkpoint inhibitor-mediated toxicity.
Fig. 3: Possible frequencies of chronic immune-checkpoint inhibitor-induced toxicities.
Fig. 4: Time course and potential importance of key issues throughout the course of treatment with immune-checkpoint inhibitors.

Similar content being viewed by others

References

  1. Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open. 2, e192535 (2019).

    PubMed  PubMed Central  Google Scholar 

  2. Vilgelm, A. E., Johnson, D. B. & Richmond, A. Combinatorial approach to cancer immunotherapy: strength in numbers. J. Leukoc. Biol. 100, 275–290 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Topalian, S. L. et al. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non-small cell lung cancer treated with nivolumab. JAMA Oncol. 5, 1411–1420 (2019).

    PubMed  PubMed Central  Google Scholar 

  4. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Barton, B. M., Xu, R., Wherry, E. J. & Porrett, P. M. Pregnancy promotes tolerance to future offspring by programming selective dysfunction in long-lived maternal T cells. J. Leukoc. Biol. 101, 975–987 (2017).

    CAS  PubMed  Google Scholar 

  7. Shim, Y. J. et al. Early T cell infiltration is modulated by programed cell death-1 protein and its ligand (PD-1/PD-L1) interactions in murine kidney transplants. Kidney Int. 98, 897–905 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Selby, M. J. et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1, 32–42 (2013).

    CAS  PubMed  Google Scholar 

  9. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saha, B. et al. Toxic shock syndrome toxin-1-induced death is prevented by CTLA4Ig. J. Immunol. 157, 3869–3875 (1996).

    CAS  PubMed  Google Scholar 

  12. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    CAS  PubMed  Google Scholar 

  13. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    CAS  PubMed  Google Scholar 

  14. Nishimura, H. et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    CAS  PubMed  Google Scholar 

  15. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    CAS  PubMed  Google Scholar 

  16. Tarhini, A. A. et al. Phase III study of adjuvant ipilimumab (3 or 10 mg/kg) versus high-dose interferon alfa-2b for resected high-risk melanoma: North American Intergroup E1609. J. Clin. Oncol. 38, 567–575 (2020).

    CAS  PubMed  Google Scholar 

  17. Eggermont, A. M. M. et al. Longer follow-up confirms recurrence-free survival benefit of adjuvant pembrolizumab in high-risk stage III melanoma: updated results from the EORTC 1325-MG/KEYNOTE-054 trial. J. Clin. Oncol. 38, 3925–3936 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

    CAS  PubMed  Google Scholar 

  19. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Zhao, B., Zhao, H. & Zhao, J. Efficacy of PD-1/PD-L1 blockade monotherapy in clinical trials. Ther. Adv. Med. Oncol. 12, 1758835920937612 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    CAS  PubMed  Google Scholar 

  23. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wong, S. K., Beckermann, K. E., Johnson, D. B. & Das, S. Combining anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) and -programmed cell death protein 1 (PD-1) agents for cancer immunotherapy. Expert Opin. Biol. Ther. 21, 1623–1634 (2021).

    CAS  PubMed  Google Scholar 

  26. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Waterhouse, D. M. et al. Continuous versus 1-year fixed-duration nivolumab in previously treated advanced non-small-cell lung cancer: CheckMate 153. J. Clin. Oncol. 38, 3863–3873 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jansen, Y. J. L. et al. Discontinuation of anti-PD-1 antibody therapy in the absence of disease progression or treatment limiting toxicity: clinical outcomes in advanced melanoma. Ann. Oncol. 30, 1154–1161 (2019).

    CAS  PubMed  Google Scholar 

  30. Robert, C. et al. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J. Clin. Oncol. 36, 1668–1674 (2018).

    CAS  PubMed  Google Scholar 

  31. Betof Warner, A. et al. Long-term outcomes and responses to retreatment in patients with melanoma treated with PD-1 blockade. J. Clin. Oncol. 38, 1655–1663 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson, D. B. et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight 3, e120360 (2018).

    PubMed Central  Google Scholar 

  33. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Kato, T. et al. Peripheral T cell receptor repertoire features predict durable responses to anti-PD-1 inhibitor monotherapy in advanced renal cell carcinoma. Oncoimmunology 10, 1862948 (2021).

    PubMed  PubMed Central  Google Scholar 

  36. Spassova, I. et al. Predominance of central memory T cells with high T-cell receptor repertoire diversity is associated with response to PD-1/PD-L1 inhibition in Merkel cell carcinoma. Clin. Cancer Res. 26, 2257–2267 (2020).

    CAS  PubMed  Google Scholar 

  37. Han, J. et al. Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. Nat. Cancer 2, 300–311 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Patnaik, A. et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin. Cancer Res. 21, 4286–4293 (2015).

    CAS  PubMed  Google Scholar 

  40. Das, S. & Johnson, D. B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer 7, 306 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Quach, H. T. et al. Association of anti-programmed cell death 1 cutaneous toxic effects with outcomes in patients with advanced melanoma. JAMA Oncol. 5, 906–908 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Eggermont, A. M. M. et al. Association between immune-related adverse events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo: a secondary analysis of a randomized clinical trial. JAMA Oncol. 6, 519–527 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Berner, F. et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 5, 1043–1047 (2019).

    PubMed  Google Scholar 

  44. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Guida, M. et al. Immune checkpoint inhibitor associated vitiligo and its impact on survival in patients with metastatic melanoma: an Italian Melanoma Intergroup study. ESMO Open 6, 100064 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Johnson, D. B. et al. A case report of clonal EBV-like memory CD4+ T cell activation in fatal checkpoint inhibitor-induced encephalitis. Nat. Med. 25, 1243–1250 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Iwama, S. et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 6, 230ra45 (2014).

    PubMed  Google Scholar 

  49. Wei, S. C. et al. A genetic mouse model recapitulates immune checkpoint inhibitor-associated myocarditis and supports a mechanism-based therapeutic intervention. Cancer Discov. 11, 614–625 (2021).

    CAS  PubMed  Google Scholar 

  50. Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    CAS  PubMed  Google Scholar 

  52. Das, R. et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 128, 715–720 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Yasuda, Y. et al. CD4+ T cells are essential for the development of destructive thyroiditis induced by anti-PD-1 antibody in thyroglobulin-immunized mice. Sci. Transl. Med. 13, eabb7495 (2021).

    CAS  PubMed  Google Scholar 

  54. Johnson, D. H. et al. Interleukin-6 is potential target to de-couple checkpoint inhibitor-induced colitis from antitumor immunity. J. Clin. Oncol. 37, 2616 (2019).

    Google Scholar 

  55. Stroud, C. R. et al. Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. J. Oncol. Pharm. Pract. 25, 551–557 (2019).

    CAS  PubMed  Google Scholar 

  56. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    CAS  PubMed  Google Scholar 

  57. Johnson, D. B., Chandra, S. & Sosman, J. A. Immune checkpoint inhibitor toxicity in 2018. JAMA 320, 1702–1703 (2018).

    PubMed  Google Scholar 

  58. Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 35, 785–792 (2017).

    CAS  PubMed  Google Scholar 

  59. Thompson, J. A. et al. NCCN guidelines insights: management of immunotherapy-related toxicities, version 1.2020. J. Natl Compr. Canc Netw. 18, 230–241 (2020).

    CAS  PubMed  Google Scholar 

  60. Brahmer, J. R. et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J. Immunother. Cancer 9, 002435e (2021).

    Google Scholar 

  61. Haanen, J. et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv264–iv266 (2018).

    CAS  PubMed  Google Scholar 

  62. Bai, X. et al. Early use of high-dose glucocorticoid for the management of irAE is associated with poorer survival in patients with advanced melanoma treated with anti-PD-1 monotherapy. Clin. Cancer Res. 27, 5993–6000 (2021).

    CAS  PubMed  Google Scholar 

  63. Dearden, H. et al. Hyperacute toxicity with combination ipilimumab and anti-PD1 immunotherapy. Eur. J. Cancer 153, 168–178 (2021).

    CAS  PubMed  Google Scholar 

  64. Owen, C. N. et al. Delayed immune-related adverse events with anti-PD-1-based immunotherapy in melanoma. Ann. Oncol. 32, 917–925 (2021).

    CAS  PubMed  Google Scholar 

  65. Dimitriou, F. et al. FDG-PET to predict long-term outcome from anti-PD1 therapy in metastatic melanoma. Ann. Oncol. 33, 99–106 (2021).

    PubMed  Google Scholar 

  66. Lee, R. J. et al. Circulating tumor DNA predicts survival in patients with resected high-risk stage II/III melanoma. Ann. Oncol. 29, 490–496 (2018).

    CAS  PubMed  Google Scholar 

  67. Ott, P. A. et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J. Clin. Oncol. 37, 318–327 (2019).

    PubMed  Google Scholar 

  68. Patrinely, J. R. Jr et al. Chronic immune-related adverse events following adjuvant anti-PD-1 therapy for high-risk resected melanoma. JAMA Oncol. 7, 744–748 (2021).

    PubMed  Google Scholar 

  69. Wang, L. X. et al. Health care utilization and steroid-refractory toxicities from immune checkpoint inhibitors. Cancer 126, 322–328 (2020).

    CAS  PubMed  Google Scholar 

  70. Johnson, D. B. et al. Survivorship in immune therapy: assessing chronic immune toxicities, health outcomes, and functional status among long-term ipilimumab survivors at a single referral center. Cancer Immunol. Res. 3, 464–469 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Patrinely, J. R. Jr et al. Survivorship in immune therapy: assessing toxicities, body composition and health-related quality of life among long-term survivors treated with antibodies to programmed death-1 receptor and its ligand. Eur. J. Cancer 135, 211–220 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Faje, A. et al. Hypophysitis secondary to nivolumab and pembrolizumab is a clinical entity distinct from ipilimumab-associated hypophysitis. Eur. J. Endocrinol. 181, 211–219 (2019).

    CAS  PubMed  Google Scholar 

  73. Faje, A. T. et al. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer 124, 3706–3714 (2018).

    CAS  PubMed  Google Scholar 

  74. Cappelli, L. C. & Bingham, C. O. 3rd Spectrum and impact of checkpoint inhibitor-induced irAEs. Nat. Rev. Rheumatol. 17, 69–70 (2021).

    PubMed  Google Scholar 

  75. Ma, C. et al. The impact of high-dose glucocorticoids on the outcome of immune-checkpoint inhibitor-related thyroid disorders. Cancer Immunol. Res. 7, 1214–1220 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wright, J. J., Powers, A. C. & Johnson, D. B. Endocrine toxicities of immune checkpoint inhibitors. Nat. Rev. Endocrinol. 40, 17–65 (2021).

    Google Scholar 

  77. Muir, C. A. et al. Thyroid immune-related adverse events following immune checkpoint inhibitor treatment. J. Clin. Endocrinol. Metab. 106, e3704–e3713 (2021).

    PubMed  Google Scholar 

  78. Iyer, P. C. et al. Immune-related thyroiditis with immune checkpoint inhibitors. Thyroid 28, 1243–1251 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee, H. et al. Characterization of thyroid disorders in patients receiving immune checkpoint inhibition therapy. Cancer Immunol. Res. 5, 1133–1140 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tan, M. H. et al. Spectrum of immune checkpoint inhibitors-induced endocrinopathies in cancer patients: a scoping review of case reports. Clin. Diabetes Endocrinol. 5, 1 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Al Mushref, M. et al. Thyroid dysfunction, recovery, and prognosis in melanoma patients treated with immune checkpoint inhibitors: a retrospective review. Endocr. Pract. 26, 36–42 (2020).

    PubMed  Google Scholar 

  82. Sakakida, T. et al. Clinical features of immune-related thyroid dysfunction and its association with outcomes in patients with advanced malignancies treated by PD-1 blockade. Oncol. Lett. 18, 2140–2147 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Street, S. et al. The positive effect of immune checkpoint inhibitor-induced thyroiditis on overall survival accounting for immortal time bias: a retrospective cohort study of 6,596 patients. Ann. Oncol. 32, 1050–1051 (2021).

    CAS  PubMed  Google Scholar 

  84. Garon-Czmil, J. et al. Immune check point inhibitors-induced hypophysitis: a retrospective analysis of the French Pharmacovigilance database. Sci. Rep. 9, 19419 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. de Filette, J. et al. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm. Metab. Res. 51, 145–156 (2019).

    PubMed  Google Scholar 

  86. Tsang, V. H. M. et al. Checkpoint inhibitor-associated autoimmune diabetes is distinct from type 1 diabetes. J. Clin. Endocrinol. Metab. 104, 5499–5506 (2019).

    PubMed  Google Scholar 

  87. Wright, J. J. et al. Increased reporting of immune checkpoint inhibitor-associated diabetes. Diabetes Care 41, e150–e151 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Stamatouli, A. M. et al. Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes 67, 1471–1480 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Grouthier, V. et al. Immune checkpoint inhibitor-associated primary adrenal insufficiency: WHO VigiBase Report Analysis. Oncologist 25, 696–701 (2020).

    PubMed  PubMed Central  Google Scholar 

  90. Salzmann, M. et al. Male fertility during and after immune checkpoint inhibitor therapy: a cross-sectional pilot study. Eur. J. Cancer 152, 41–48 (2021).

    CAS  PubMed  Google Scholar 

  91. Scovell, J. M. et al. Association of impaired spermatogenesis with the use of immune checkpoint inhibitors in patients with metastatic melanoma. JAMA Oncol. 6, 1297–1299 (2020).

    PubMed  PubMed Central  Google Scholar 

  92. Allenbach, Y. et al. Immune checkpoint inhibitor-induced myositis, the earliest and most lethal complication among rheumatic and musculoskeletal toxicities. Autoimmun. Rev. 19, 102586 (2020).

    CAS  PubMed  Google Scholar 

  93. Cappelli, L. C. et al. Clinical presentation of immune checkpoint inhibitor-induced inflammatory arthritis differs by immunotherapy regimen. Semin. Arthritis Rheum. 48, 553–557 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Belkhir, R. et al. Rheumatoid arthritis and polymyalgia rheumatica occurring after immune checkpoint inhibitor treatment. Ann. Rheum. Dis. 76, 1747–1750 (2017).

    CAS  PubMed  Google Scholar 

  95. Naidoo, J. et al. Inflammatory arthritis: a newly recognized adverse event of immune checkpoint blockade. Oncologist 22, 627–630 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Braaten, T. J. et al. Immune checkpoint inhibitor-induced inflammatory arthritis persists after immunotherapy cessation. Ann. Rheum. Dis. 25, 696–701 (2019).

    Google Scholar 

  97. Roberts, J. et al. Rheumatic immune-related adverse events associated with cancer immunotherapy: a nationwide multi-center cohort. Autoimmun. Rev. 19, 102595 (2020).

    CAS  PubMed  Google Scholar 

  98. Cappelli, L. C. et al. Immune checkpoint inhibitor-induced inflammatory arthritis: a qualitative study identifying unmet patient needs and care gaps. BMC Rheumatol. 4, 32 (2020).

    PubMed  PubMed Central  Google Scholar 

  99. Cappelli, L. C. et al. Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann. Rheum. Dis. 76, 43–50 (2017).

    CAS  PubMed  Google Scholar 

  100. Warner, B. M. et al. Sicca syndrome associated with immune checkpoint inhibitor therapy. Oncologist 24, 1259–1269 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, D. Y., Ye, F., Zhao, S. & Johnson, D. B. Incidence of immune checkpoint inhibitor-related colitis in solid tumor patients: a systematic review and meta-analysis. Oncoimmunology 6, e1344805 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Patrinely, J. R. Jr et al. A multicenter characterization of hepatitis associated with immune checkpoint inhibitors. Oncoimmunology 10, 1875639 (2021).

    PubMed  PubMed Central  Google Scholar 

  103. Wang, D. Y. et al. Clinical characterization of colitis arising from anti-PD-1 based therapy. Oncoimmunology 8, e1524695 (2019).

    PubMed  Google Scholar 

  104. Badran, Y. R. et al. Immune checkpoint inhibitor-associated celiac disease. J. Immunother. Cancer 8, e000958 (2020).

    PubMed  PubMed Central  Google Scholar 

  105. Eshet, Y. et al. Clinical significance of pancreatic atrophy induced by immune-checkpoint inhibitors: a case-control study. Cancer Immunol. Res. 6, 1453–1458 (2018).

    CAS  PubMed  Google Scholar 

  106. Sullivan, R. J. et al. COVID-19 and immune checkpoint inhibitors: initial considerations. J. Immunother. Cancer 8, e000933 (2020).

    PubMed  Google Scholar 

  107. Johnson, D. B. et al. Anti-PD-1-induced pneumonitis is associated with persistent imaging abnormalities in melanoma patients. Cancer Immunol. Res. 7, 1755–1759 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Dobre, I. A. et al. Outcomes of patients with interstitial lung disease receiving programmed cell death 1 inhibitors: a retrospective case series. Clin. Lung Cancer 22, e738–e744 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Celada, L. J. et al. PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Sci. Transl. Med. 10, eaar8356 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Chorti, E. et al. Drug-induced sarcoidosis-like reaction in adjuvant immunotherapy: increased rate and mimicker of metastasis. Eur. J. Cancer 131, 18–26 (2020).

    CAS  PubMed  Google Scholar 

  111. Tezera, L. B. et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. eLife 9, e52668 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Anastasopoulou, A. et al. Reactivation of tuberculosis in cancer patients following administration of immune checkpoint inhibitors: current evidence and clinical practice recommendations. J. Immunother. Cancer 7, 239 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Bae, S. et al. Risk of tuberculosis in patients with cancer treated with immune checkpoint inhibitors: a nationwide observational study. J. Immunother. Cancer 9, e002960 (2021).

    PubMed  PubMed Central  Google Scholar 

  114. Moslehi, J. J. et al. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 391, 933 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. Mahmood, S. S. et al. Myocarditis in patients treated with immune checkpoint inhibitors. J. Am. Coll. Cardiol. 71, 1755–1764 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bonaca, M. P. et al. Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio-oncology. Circulation 140, 80–91 (2019).

    PubMed  PubMed Central  Google Scholar 

  117. Norwood, T. G. et al. Smoldering myocarditis following immune checkpoint blockade. J. Immunother. Cancer 5, 91 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. Waliany, S. et al. Myocarditis surveillance with high-sensitivity troponin i during cancer treatment with immune checkpoint inhibitors. JACC Cardio. Oncol. 3, 137–139 (2021).

    Google Scholar 

  119. Ammirati, E. et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: an expert consensus document. Circ. Heart Fail. 13, e007405 (2020).

    PubMed  PubMed Central  Google Scholar 

  120. Kadota, H. et al. Immune checkpoint inhibitor-induced myositis: a case report and literature review. Curr. Rheumatol. Rep. 21, 10 (2019).

    PubMed  Google Scholar 

  121. Ala, C. K., Klein, A. L. & Moslehi, J. J. Cancer treatment-associated pericardial disease: epidemiology, clinical presentation, diagnosis, and management. Curr. Cardiol. Rep. 21, 156 (2019).

    PubMed  Google Scholar 

  122. Salem, J. E. et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 19, 1579–1589 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Moslehi, J. J. Cardiovascular toxic effects of targeted cancer therapies. N. Engl. J. Med. 375, 1457–1467 (2016).

    CAS  PubMed  Google Scholar 

  124. Moslehi, J. The cardiovascular perils of cancer survivorship. N. Engl. J. Med. 368, 1055–1056 (2013).

    CAS  PubMed  Google Scholar 

  125. Bair, S. M., Choueiri, T. K. & Moslehi, J. Cardiovascular complications associated with novel angiogenesis inhibitors: emerging evidence and evolving perspectives. Trends Cardiovasc. Med. 23, 104–113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Johnson, D. B. et al. Neurologic toxicity associated with immune checkpoint inhibitors: a pharmacovigilance study. J. Immunother. Cancer 7, 134 (2019).

    PubMed  PubMed Central  Google Scholar 

  127. Guidon, A. C. et al. Consensus disease definitions for neurologic immune-related adverse events of immune checkpoint inhibitors. J. Immunother. Cancer 9, e002890 (2021).

    PubMed  PubMed Central  Google Scholar 

  128. Johnson, D. B. et al. Myasthenia gravis induced by ipilimumab in patients with metastatic melanoma. J. Clin. Oncol. 33, e122–e124 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. Reynolds, K. L. & Guidon, A. C. Diagnosis and management of immune checkpoint inhibitor-associated neurologic toxicity: illustrative case and review of the literature. Oncologist 24, 435–443 (2019).

    PubMed  Google Scholar 

  130. Haugh, A. M., Probasco, J. C. & Johnson, D. B. Neurologic complications of immune checkpoint inhibitors. Expert Opin. Drug Saf. 19, 479–488 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Janssen, J. B. E. et al. Immune checkpoint inhibitor-related Guillain-Barré syndrome: a case series and review of the literature. J. Immunother. 44, 276–282 (2021).

    PubMed  Google Scholar 

  132. Dubey, D. et al. Varied phenotypes and management of immune checkpoint inhibitor-associated neuropathies. Neurology 93, e1093–e1103 (2019).

    CAS  PubMed  Google Scholar 

  133. Phillips, G. S. et al. Treatment outcomes of immune-related cutaneous adverse events. J. Clin. Oncol. 37, 2746–2758 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Thompson, L. L. et al. Effect of dermatological consultation on survival in patients with checkpoint inhibitor-associated cutaneous toxicity. Br. J. Dermatol. 185, 627–635 (2021).

    CAS  PubMed  Google Scholar 

  135. Molina, G. E., Reynolds, K. L. & Chen, S. T. Diagnostic and therapeutic differences between immune checkpoint inhibitor-induced and idiopathic bullous pemphigoid: a cross-sectional study. Br. J. Dermatol. 183, 1126–1128 (2020).

    CAS  PubMed  Google Scholar 

  136. Lee, M. D. et al. Rapid corticosteroid taper versus standard of care for immune checkpoint inhibitor induced nephritis: a single-center retrospective cohort study. J. Immunother. Cancer 9, e002292 (2021).

    PubMed  PubMed Central  Google Scholar 

  137. Cortazar, F. B. et al. Clinical features and outcomes of immune checkpoint inhibitor-associated AKI: a multicenter study. J. Am. Soc. Nephrol. 31, 435–446 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Davis, E. J. et al. Hematologic complications of immune checkpoint inhibitors. Oncologist 24, 584–588 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. Shiuan, E. et al. Thrombocytopenia in patients with melanoma receiving immune checkpoint inhibitor therapy. J. Immunother. Cancer 5, 8 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Sun, M. M. et al. Ophthalmic immune-related adverse events after anti-CTLA-4 or PD-1 therapy recorded in the American Academy of Ophthalmology Intelligent Research in Sight Registry. Ophthalmology 128, 910–919 (2021).

    PubMed  Google Scholar 

  141. Dow, E. R., Yung, M. & Tsui, E. Immune checkpoint inhibitor-associated uveitis: review of treatments and outcomes. Ocul. Immunol. Inflamm. 29, 203–211 (2021).

    CAS  PubMed  Google Scholar 

  142. Halle, B. R. et al. Immune checkpoint inhibitors in patients with pre-existing psoriasis: safety and efficacy. J. Immunother. Cancer 9, e003066 (2021).

    PubMed  PubMed Central  Google Scholar 

  143. Abu-Sbeih, H. et al. Immune checkpoint inhibitor therapy in patients with preexisting inflammatory bowel disease. J. Clin. Oncol. 38, 576–583 (2020).

    CAS  PubMed  Google Scholar 

  144. Menzies, A. M. et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 28, 368–76 (2017).

    CAS  PubMed  Google Scholar 

  145. Johnson, D. B. et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2, 234–240 (2016).

    PubMed  Google Scholar 

  146. Kumar, V. et al. The safety and efficacy of checkpoint inhibitors in transplant recipients: a case series and systematic review of literature. Oncologist 25, 505–514 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Esfahani, K. et al. Alemtuzumab for immune-related myocarditis due to PD-1 therapy. N. Engl. J. Med. 380, 2375–2376 (2019).

    PubMed  Google Scholar 

  148. Salem, J. E. et al. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N. Engl. J. Med. 380, 2377–2379 (2019).

    PubMed  Google Scholar 

  149. Haanen, J. et al. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: review of the literature and personalized risk-based prevention strategy. Ann. Oncol. 31, 724–744 (2020).

    CAS  PubMed  Google Scholar 

  150. Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. Pignon, J. P. et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26, 3552–3559 (2008).

    PubMed  Google Scholar 

  152. Long, G. V. et al. Overall survival and durable responses in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib combined with trametinib. J. Clin. Oncol. 34, 871–878 (2016).

    CAS  PubMed  Google Scholar 

  153. Cameron, J. L., Riall, T. S., Coleman, J. & Belcher, K. A. One thousand consecutive pancreaticoduodenectomies. Ann. Surg. 244, 10–15 (2006).

    PubMed  PubMed Central  Google Scholar 

  154. Gooley, T. A. et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 363, 2091–2101 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Naidoo, J. et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J. Clin. Oncol. 35, 709–717 (2017).

    CAS  PubMed  Google Scholar 

  156. Kyi, C. et al. Opportunistic infections in patients treated with immunotherapy for cancer. J. Immunother. Cancer 2, 19 (2014).

    PubMed  PubMed Central  Google Scholar 

  157. Olson, D. J. et al. Pembrolizumab plus ipilimumab following anti-PD-1/L1 failure in melanoma. J. Clin. Oncol. 39, 2647–2655 (2021).

    CAS  PubMed  Google Scholar 

  158. Dummer, R. et al. Five-year analysis of adjuvant dabrafenib plus trametinib in stage III melanoma. N. Engl. J. Med. 383, 1139–1148 (2020).

    CAS  PubMed  Google Scholar 

  159. Dolladille, C. et al. Immune checkpoint inhibitor rechallenge after immune-related adverse events in patients with cancer. JAMA Oncol. 6, 865–871 (2020).

    PubMed  Google Scholar 

  160. Santini, F. C. et al. Safety and efficacy of re-treating with immunotherapy after immune-related adverse events in patients with NSCLC. Cancer Immunol. Res. 6, 1093–1099 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Abu-Sbeih, H. et al. Resumption of immune checkpoint inhibitor therapy after immune-mediated colitis. J. Clin. Oncol. 37, 2738–2745 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Pollack, M. H. et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann. Oncol. 29, 250–255 (2018).

    CAS  PubMed  Google Scholar 

  163. Li, M. et al. Outcomes after resumption of immune checkpoint inhibitor therapy after high-grade immune-mediated hepatitis. Cancer 126, 5088–5097 (2020).

    CAS  PubMed  Google Scholar 

  164. Badran, Y. R. et al. Concurrent therapy with immune checkpoint inhibitors and TNFα blockade in patients with gastrointestinal immune-related adverse events. J. Immunother. Cancer 7, 226 (2019).

    PubMed  PubMed Central  Google Scholar 

  165. Bertrand, F. et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat. Commun. 8, 2256 (2017).

    PubMed  PubMed Central  Google Scholar 

  166. Grabie, N. et al. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation 116, 2062–2071 (2007).

    CAS  PubMed  Google Scholar 

  167. Gotsman, I. et al. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J. Clin. Invest. 117, 2974–2982 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Drobni, Z. D. et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 142, 2299–2311 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Calabretta, R. et al. Immune checkpoint inhibitor therapy induces inflammatory activity in large arteries. Circulation 142, 2396–2398 (2020).

    CAS  PubMed  Google Scholar 

  171. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    CAS  PubMed  Google Scholar 

  172. Oh, M. S. et al. The impact of beta blockers on survival outcomes in patients with non-small-cell lung cancer treated with immune checkpoint inhibitors. Clin. Lung Cancer 22, e57–e62 (2021).

    CAS  PubMed  Google Scholar 

  173. Oren, O. et al. Cardiovascular health and outcomes in cancer patients receiving immune checkpoint inhibitors. Am. J. Cardiol. 125, 1920–1926 (2020).

    CAS  PubMed  Google Scholar 

  174. Wang, D. Y. et al. The impact of nonsteroidal anti-inflammatory drugs, beta blockers, and metformin on the efficacy of anti-PD-1 therapy in advanced melanoma. Oncologist 25, e602–e605 (2020).

    CAS  PubMed  Google Scholar 

  175. Porsche, C. E. et al. Obesity results in adipose tissue T cell exhaustion. JCI Insight 6, e139793 (2021).

    PubMed Central  Google Scholar 

  176. Breuer, D. A. et al. CD8(+) T cells regulate liver injury in obesity-related nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G211–G224 (2020).

    CAS  PubMed  Google Scholar 

  177. Pingili, A. K. et al. Immune checkpoint blockade reprograms systemic immune landscape and tumor microenvironment in obesity-associated breast cancer. Cell Rep. 35, 109285 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Wu, B. et al. Genetic ablation of adipocyte PD-L1 reduces tumor growth but accentuates obesity-associated inflammation. J. Immunother. Cancer 8, e000964 (2020).

    PubMed  PubMed Central  Google Scholar 

  179. McQuade, J. L. et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol. 19, 310–322 (2018).

    PubMed  PubMed Central  Google Scholar 

  180. Cortellini, A. et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J. Immunother. Cancer 7, 57 (2019).

    PubMed  PubMed Central  Google Scholar 

  181. Young, A. C. et al. Impact of body composition on outcomes from anti-PD1 +/− anti-CTLA-4 treatment in melanoma. J. Immunother. Cancer 8, e000821 (2020).

    PubMed  PubMed Central  Google Scholar 

  182. Boi, S. K. et al. Obesity diminishes response to PD-1-based immunotherapies in renal cancer. J. Immunother. Cancer 8, e000725 (2020).

    PubMed  PubMed Central  Google Scholar 

  183. Cortellini, A. et al. Another side of the association between body mass index (BMI) and clinical outcomes of cancer patients receiving programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) checkpoint inhibitors: a multicentre analysis of immune-related adverse events. Eur. J. Cancer 128, 17–26 (2020).

    CAS  PubMed  Google Scholar 

  184. Leiter, A. et al. Metabolic disease and adverse events from immune checkpoint inhibitors. Eur. J. Endocrinol. 184, 857–865 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Heidelberger, V. et al. Sarcopenic overweight is associated with early acute limiting toxicity of anti-PD1 checkpoint inhibitors in melanoma patients. Invest. N. Drugs 35, 436–441 (2017).

    Google Scholar 

  186. Kim, J. E., Patel, K. & Jackson, C. M. The potential for immune checkpoint modulators in cerebrovascular injury and inflammation. Expert Opin. Ther. Targets 25, 101–113 (2021).

    CAS  PubMed  Google Scholar 

  187. Bodhankar, S. et al. PD-L1 monoclonal antibody treats ischemic stroke by controlling central nervous system inflammation. Stroke 46, 2926–2934 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Ren, X. et al. Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke. Stroke 42, 2578–2583 (2011).

    PubMed  PubMed Central  Google Scholar 

  189. Baruch, K. et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat. Med. 22, 135–137 (2016).

    CAS  PubMed  Google Scholar 

  190. Rosenzweig, N. et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat. Commun. 10, 465 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Garon, E. B. et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. J. Clin. Oncol. 37, 2518–2527 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Reck, M. et al. Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥50%. J. Clin. Oncol. 39, 2339–2349 (2021).

    CAS  PubMed  Google Scholar 

  193. Albiges, L. et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO Open 5, e001079 (2020).

    PubMed  PubMed Central  Google Scholar 

  194. Ascierto, P. A. et al. Adjuvant nivolumab versus ipilimumab in resected stage IIIB–C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 21, 1465–1477 (2020).

    CAS  PubMed  Google Scholar 

  195. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 22, 643–654 (2021).

    CAS  PubMed  Google Scholar 

  196. Spigel, D. R. et al. Five-year survival outcomes with durvalumab after chemoradiotherapy in unresectable stage III NSCLC: an update from the PACIFIC trial [abstract]. J. Clin. Oncol. 39 (15 Suppl.), 8511 (2021).

    Google Scholar 

Download references

Acknowledgements

The work of D.B.J. is funded by the Susan and Luke Stephens Directorship, the James C. Bradford Melanoma Fund, and the Van Stephenson Cancer Memorial Fund.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Douglas B. Johnson.

Ethics declarations

Competing interests

D.B.J. has acted as a consultant and/or advisor for BMS, Catalyst, Iovance, Jansen, Mallinckrodt, Merck, Mosaic ImmunoEngineering, Novartis, Oncosec, Pfizer and Targovax, and receives research funding from BMS and Incyte. D.B.J. and J.J.M. have a patent pending for use of abatacept to reverse ICI toxicities. D.B.J. and J.M.B. have a patent pending for use of MHC II as a biomarker for ICI response. J.M.B. receives research funding from Genentech and Incyte. C.A.N. and J.J.M. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks K. Esfahani, S. Grover, S. Gupta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, D.B., Nebhan, C.A., Moslehi, J.J. et al. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol 19, 254–267 (2022). https://doi.org/10.1038/s41571-022-00600-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-022-00600-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing