Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Minimal residual disease as a target for liquid biopsy in patients with solid tumours

Abstract

Metastasis is the leading cause of cancer-related death in patients with solid tumours. Current imaging technologies are not sufficiently sensitive to detect minimal residual disease (MRD; also known as measurable or molecular residual disease) after initial surgery or chemotherapy, pointing to the need for more sensitive tests to detect remaining traces of cancer in the body. Liquid biopsy, or the analysis of tumour-derived or tumour-induced cells or cellular products in the blood or other body fluids, has opened a new diagnostic avenue to detect and monitor MRD. Liquid biopsy is already used in clinical decision making for patients with haematological malignancies. Here, we review current knowledge on the use of circulating tumour DNA (ctDNA) to detect and monitor MRD in patients with solid tumours. We also discuss how ctDNA-guided MRD detection and characterization could herald a new era of novel ‘post-adjuvant therapies’ with the potential to eliminate MRD and cure patients before terminal metastatic disease is evident on imaging.

Key points

  • Sensitive blood assays enable the detection of circulating tumour DNA (ctDNA) at very low concentrations (down to <10 ppm).

  • The detection of very low concentrations of ctDNA is required to detect minimal residual disease (MRD; also known as measurable or molecular residual disease) in patients with solid tumours.

  • MRD detection can be correlated with clinical outcomes such as progression-free survival and overall survival.

  • ctDNA-based MRD detection can precede imaging-based detection of relapse by several months depending on the tumour type and stage.

  • The transition of ctDNA-detectable MRD to overt metastasis can depend on the residual tumour burden and the host response (for example, antitumour immunity).

  • Interventional clinical studies in patients with solid tumours and MRD positivity are now required to assess which treatment(s) can eliminate MRD in these patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The biology of MRD in patients with resected solid tumours.
Fig. 2: Evolution of MRD in patients with solid tumours.

Similar content being viewed by others

References

  1. van der Velden, V. H. J. et al. Analysis of measurable residual disease by IG/TR gene rearrangements: quality assurance and updated EuroMRD guidelines. Leukemia 38, 1315–1322 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Walter, R. B. & Gale, R. P. Measurable residual disease in haematological and solid cancers. Leukemia 38, 1647–1648 (2024).

    Article  PubMed  Google Scholar 

  3. Pantel, K. & Alix-Panabieres, C. Liquid biopsy and minimal residual disease – latest advances and implications for cure. Nat. Rev. Clin. Oncol. 16, 409–424 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Pich, O., Reyes-Salazar, I., Gonzalez-Perez, A. & Lopez-Bigas, N. Discovering the drivers of clonal hematopoiesis. Nat. Commun. 13, 4267 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kato, S., Lippman, S. M., Flaherty, K. T. & Kurzrock, R. The conundrum of genetic “drivers” in benign conditions. J. Natl Cancer Inst. 108, https://doi.org/10.1093/jnci/djw036 (2016).

  6. Nishimura, T. et al. Evolutionary histories of breast cancer and related clones. Nature 620, 607–614 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reed, S. C., Croessmann, S. & Park, B. H. CHIP happens: clonal hematopoiesis of indeterminate potential and its relationship to solid tumors. Clin. Cancer Res. 29, 1403–1411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Henriksen, T. V. et al. Unraveling the potential clinical utility of circulating tumor DNA detection in colorectal cancer-evaluation in a nationwide Danish cohort. Ann. Oncol. 35, 229–239 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Rehman, A. U. et al. Liquid biopsies to occult brain metastasis. Mol. Cancer 21, 113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra224 (2014).

    Article  Google Scholar 

  11. Merker, J. D. et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J. Clin. Oncol. 36, 1631–1641 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Rostami, A. et al. Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics. Cell Rep. 31, 107830 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Mattox, A. K. et al. The origin of highly elevated cell-free DNA in healthy individuals and patients with pancreatic, colorectal, lung, or ovarian cancer. Cancer Discov. 13, 2166–2179 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Martin-Alonso, C. et al. Priming agents transiently reduce the clearance of cell-free DNA to improve liquid biopsies. Science 383, eadf2341 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cinar, M. et al. Transposon DNA sequences facilitate the tissue-specific gene transfer of circulating tumor DNA between human cells. Nucleic Acids Res. 52, 7539–7555 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Malkin, E. Z. et al. Cell-free DNA topology depends on its subcellular and cellular origins in cancer. JCI Insight 7, e159590 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parikh, A. R. et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin. Cancer Res. 27, 5586–5594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schrag, D. et al. Blood-based tests for multicancer early detection (PATHFINDER): a prospective cohort study. Lancet 402, 1251–1260 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nakamura, Y. et al. Longitudinal clinical performance of a novel tumor-naive minimal residual disease assay in patients with resected stage II and III colorectal cancer: a subset analysis from the GALAXY study in CIRCULATE-Japan. J. Clin. Oncol. 42, 3618–3618 (2024).

    Article  Google Scholar 

  21. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Moser, T., Kühberger, S., Lazzeri, I., Vlachos, G. & Heitzer, E. Bridging biological cfDNA features and machine learning approaches. Trends Genet. 39, 285–307 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Gydush, G. et al. Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth. Nat. Biomed. Eng. 6, 257–266 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parsons, H. A. et al. Circulating tumor DNA association with residual cancer burden after neoadjuvant chemotherapy in triple-negative breast cancer in TBCRC 030. Ann. Oncol. 34, 899–906 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, J., Qin, C., Wang, Q., Tian, D. & Chen, Z. Circulating tumour DNA-based molecular residual disease detection in resectable cancers: a systematic review and meta-analysis. EBioMedicine 103, 105109 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Henriksen, T. V. et al. Circulating tumor DNA in stage III colorectal cancer, beyond minimal residual disease detection, toward assessment of adjuvant therapy efficacy and clinical behavior of recurrences. Clin. Cancer Res. 28, 507–517 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Zhong, R. et al. Accuracy of minimal residual disease detection by circulating tumor DNA profiling in lung cancer: a meta-analysis. BMC Med. 21, 180 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taieb, J. et al. Prognostic value and relation with adjuvant treatment duration of ctDNA in stage III colon cancer: a post hoc analysis of the PRODIGE-GERCOR IDEA-France trial. Clin. Cancer Res. 27, 5638–5646 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Mo, S. et al. Early detection of molecular residual disease and risk stratification for stage I to III colorectal cancer via circulating tumor DNA methylation. JAMA Oncol. 9, 770–778 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tie, J. et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N. Engl. J. Med. 386, 2261–2272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tie, J., Lo, S. N. & Gibbs, P. Circulating tumor DNA guiding adjuvant therapy in colon cancer. reply. N. Engl. J. Med. 387, 760 (2022).

    PubMed  Google Scholar 

  32. Tie, J. et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer: overall survival and updated 5-year results from the randomized DYNAMIC trial. J. Clin. Oncol. 42, 16 (2024).

    Article  Google Scholar 

  33. Lonardi, S. et al. The PEGASUS trial: post-surgical liquid biopsy-guided treatment of stage III and high-risk stage II colon cancer patients [abstract LBA28]. Ann. Oncol. 34 (Suppl. 2), 1268–1269 (2023).

    Article  Google Scholar 

  34. Kotani, D. et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat. Med. 29, 127–134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Köhne, C. H. et al. FOLFIRI plus cetuximab in patients with liver-limited or non-liver-limited RAS wild-type metastatic colorectal cancer: a retrospective subgroup analysis of the CRYSTAL study. Eur. J. Surg. Oncol. 42, 1540–1547 (2016).

    Article  PubMed  Google Scholar 

  36. Newhook, T. E. et al. Prospective study of perioperative circulating tumor DNA dynamics in patients undergoing hepatectomy for colorectal liver metastases. Ann. Surg. 277, 813–820 (2023).

    Article  PubMed  Google Scholar 

  37. Jiang, H. et al. Postoperative circulating tumor DNA testing based on tumor naïve strategy after liver metastasis surgery in colorectal cancer patients. Front. Oncol. 13, 1153685 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nors, J. et al. IMPROVE-IT2: implementing noninvasive circulating tumor DNA analysis to optimize the operative and postoperative treatment for patients with colorectal cancer–intervention trial 2. Study protocol. Acta Oncol. 59, 336–341 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Symonds, E. L. et al. Assessment of tumor burden and response to therapy in patients with colorectal cancer using a quantitative ctDNA test for methylated BCAT1/IKZF1. Mol. Oncol. 16, 2031–2041 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maddalena, G. et al. INTERCEPT program of circulating tumor DNA (ctDNA) testing for minimal residual disease (MRD) in colorectal cancer (CRC): results from a prospective clinical cohort [abstract]. J. Clin. Oncol. 42 (Suppl. 3), 27 (2024).

    Article  Google Scholar 

  41. Eluri, M. et al. Short lead time and high rates of concomitant radiographic recurrences for ctDNA-based minimal residual disease assays colorectal cancer (CRC) during surveillance: results from the MD Anderson INTERCEPT program [abstract 587P]. Ann. Oncol. 34 (Suppl. 2), 427 (2023).

    Article  Google Scholar 

  42. Abbosh, C. et al. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA. Nature 616, 553–562 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gale, D. et al. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann. Oncol. 33, 500–510 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, J. T. et al. Longitudinal undetectable molecular residual disease defines potentially cured population in localized non-small cell lung cancer. Cancer Discov. 12, 1690–1701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, K. et al. Individualized tumor-informed circulating tumor DNA analysis for postoperative monitoring of non-small cell lung cancer. Cancer Cell 41, 1749–1762.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Felip, E. et al. IMpower010: ctDNA status in patients (pts) with resected NSCLC who received adjuvant chemotherapy (chemo) followed by atezolizumab (atezo) or best supportive care (BSC) [abstract 1O]. Immunooncol. Technol. 16 (Suppl. 1), 1–2 (2022).

    Google Scholar 

  47. Reck, M. et al. Associations of ctDNA clearance and pathological response with neoadjuvant treatment in patients with resectable NSCLC from the phase III AEGEAN trial [abstract LBA59]. Ann. Oncol. 34 (Suppl. 2), S1300 (2023).

    Article  Google Scholar 

  48. Provencio, M. et al. Overall survival and biomarker analysis of neoadjuvant nivolumab plus chemotherapy in operable stage IIIA non-small-cell lung cancer (NADIM phase II trial). J. Clin. Oncol. 40, 2924–2933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pantel, K. et al. GUIDE.MRD: A Consortium guiding multi-modal therapies against minimal residual disease (MRD) by liquid biopsy to assess implementation of circulating tumor DNA (ctDNA) in clinical practice to improve patient outcomes [abstract 237TiP]. Ann. Oncol. 34 (Suppl. 2), 276–S277 (2023).

    Article  Google Scholar 

  50. Prat, A. et al. Circulating tumor DNA reveals complex biological features with clinical relevance in metastatic breast cancer. Nat. Commun. 14, 1157 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Turner, N. C. et al. Results of the c-TRAK TN trial: a clinical trial utilising ctDNA mutation tracking to detect molecular residual disease and trigger intervention in patients with moderate- and high-risk early-stage triple-negative breast cancer. Ann. Oncol. 34, 200–211 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Garcia-Murillas, I. et al. Ultra-sensitive ctDNA mutation tracking to identify molecular residual disease and predict relapse in patients with early breast cancer. J. Clin. Oncol. 42 (Suppl. 16), 1010 (2024).

    Article  Google Scholar 

  53. Bidard, F. C. et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from the randomized phase III EMERALD trial. J. Clin. Oncol. 40, 3246–3256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pan, H. et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 377, 1836–1846 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hennigan, S. T. et al. Low abundance of circulating tumor DNA in localized prostate cancer. JCO Precis. Oncol. 3, https://doi.org/10.1200/po.19.00176 (2019).

  56. Trujillo, B., Wu, A., Wetterskog, D. & Attard, G. Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br. J. Cancer 127, 1394–1402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kasi, P. M. et al. Circulating tumor DNA enables sensitive detection of actionable gene fusions and rearrangements across cancer types. Clin. Cancer Res. 30, 836–848 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Fei, X. et al. Early plasma circulating tumor DNA as a potential biomarker of disease recurrence in non-metastatic prostate cancer. Cancer Res. Treat. 55, 969–977 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Powles, T. et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 595, 432–437 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Powles, T. et al. Updated overall survival by circulating tumor DNA status from the phase 3 IMvigor010 trial: adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma. Eur. Urol. 85, 114–122 (2024).

    Article  CAS  PubMed  Google Scholar 

  61. Territo, A. et al. DNA methylation urine biomarkers test in the diagnosis of upper tract urothelial carcinoma: results from a single-center prospective clinical trial. J. Urol. 208, 570–579 (2022).

    Article  PubMed  Google Scholar 

  62. Pierconti, F. et al. Upper urothelial tract high-grade carcinoma: comparison of urine cytology and DNA methylation analysis in urinary samples. Hum. Pathol. 118, 42–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Yuan, S. Q. et al. Residual circulating tumor DNA after adjuvant chemotherapy effectively predicts recurrence of stage II-III gastric cancer. Cancer Commun. 43, 1312–1325 (2023).

    Article  Google Scholar 

  64. Guo, D.-Z. et al. Utilization of tumor-informed circulating tumor DNA in detecting minimal residual disease and guiding adjuvant therapy in liver cancer [abstract]. J. Clin. Oncol. 42 (Suppl. 16), 4125 (2024).

    Article  Google Scholar 

  65. Lee, B. et al. The potential role of serial circulating tumor DNA (ctDNA) testing after upfront surgery to guide adjuvant chemotherapy for early stage pancreatic cancer: the AGITG DYNAMIC-Pancreas trial [abstract]. J. Clin. Oncol. 42 (Suppl. 16), 107 (2024).

    Article  Google Scholar 

  66. Han, K. et al. Clinical validation of human papilloma virus circulating tumor DNA for early detection of residual disease after chemoradiation in cervical cancer. J. Clin. Oncol. 42, 431–440 (2024).

    Article  CAS  PubMed  Google Scholar 

  67. Herbst, J. et al. Detection of multiple HPV types in liquid biopsies of cervical neoplasia. Clin. Chem. 70, 285–296 (2024).

    Article  PubMed  Google Scholar 

  68. Lee, N. Y., Morris, L. G. T. & Diehn, M. Assessing the evidence for circulating tumor HPV DNA in patients with oropharyngeal cancer. JAMA Oncol. 10, 1021–1022 (2024).

    Article  PubMed  Google Scholar 

  69. Sanz-Garcia, E. et al. Multimodal detection of molecular residual disease in high-risk locally advanced squamous cell carcinoma of the head and neck. Cell Death Differ. 31, 460–468 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhu, J. W. et al. Evaluating the utility of ctDNA in detecting residual cancer and predicting recurrence in patients with serous ovarian cancer. Int. J. Mol. Sci. 24, 14388 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Heo, J. et al. Serial circulating tumor DNA analysis with a tumor-naïve next-generation sequencing panel detects minimal residual disease and predicts outcome in ovarian cancer. Cancer Res. 84, 468–478 (2024).

    Article  CAS  PubMed  Google Scholar 

  72. Alix-Panabieres, C. & Pantel, K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 11, 858–873 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Woo, H. J. et al. Continuous centrifugal microfluidics (CCM) isolates heterogeneous circulating tumor cells via full automation. Theranostics 12, 3676–3689 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lucien, F. et al. MIBlood-EV: minimal information to enhance the quality and reproducibility of blood extracellular vesicle research. J. Extracell. Vesicles 12, e12385 (2023).

    Article  PubMed  Google Scholar 

  75. Linville, L. M. et al. Utility of circulating tumor DNA (ctDNA) to inform treatment of patients with metastatic breast cancer [abstract]. J. Clin. Oncol. 42 (Suppl. 16), 1042 (2024).

    Article  Google Scholar 

  76. Stergiopoulou, D. et al. Comprehensive liquid biopsy analysis as a tool for the early detection of minimal residual disease in breast cancer. Sci. Rep. 13, 1258 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao, L. et al. Integrated analysis of circulating tumour cells and circulating tumour DNA to detect minimal residual disease in hepatocellular carcinoma. Clin. Transl. Med. 12, e793 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eslami, S. Z. et al. Circulating tumour cells and PD-L1-positive small extracellular vesicles: the liquid biopsy combination for prognostic information in patients with metastatic non-small cell lung cancer. Br. J. Cancer 130, 63–72 (2024).

    Article  Google Scholar 

  79. Mergel, F. et al. SURVIVE study – a multicenter, randomized, controlled phase 3 superiority trial, evaluating liquid biopsy guided intensified follow-up surveillance in women with intermediate-to high-risk early breast cancer [abstract]. Cancer Res. 84 (Suppl. 9), PO1-20-05 (2024).

    Article  Google Scholar 

  80. Pfister, K. et al. The SURVIVE study: liquid biopsy guided surveillance after intermediate- to high-risk early breast cancer [abstract]. J. Clin. Oncol. 42 (Suppl. 16), TPS620 (2024).

    Article  Google Scholar 

  81. Lipsyc-Sharf, M. et al. Circulating tumor DNA and late recurrence in high-risk hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer. J. Clin. Oncol. 40, 2408–2419 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rajan, N., Khanal, T. & Ringel, M. D. Progression and dormancy in metastatic thyroid cancer: concepts and clinical implications. Endocrine 70, 24–35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Singvogel, K. & Schittek, B. Dormancy of cutaneous melanoma. Cancer Cell Int. 24, 88 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pinto-Coelho, L. How artificial intelligence is shaping medical imaging technology: a survey of innovations and applications. Bioengineering 10, https://doi.org/10.3390/bioengineering10121435 (2023).

  85. Kandel, S. et al. Demonstration of an AI-driven workflow for autonomous high-resolution scanning microscopy. Nat. Commun. 14, 5501 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Khalifa, M. & Albadawy, M. AI in diagnostic imaging: revolutionising accuracy and efficiency. Comput. Methods Prog. Biomed. Update 5, 100146 (2024).

    Article  Google Scholar 

  87. Song, A. H. et al. Analysis of 3D pathology samples using weakly supervised AI. Cell 187, 2502–2520.e17 (2024).

    Article  CAS  PubMed  Google Scholar 

  88. Xu, H. et al. A whole-slide foundation model for digital pathology from real-world data. Nature 630, 181–188 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. You, Y. et al. Systematic comparison of sequencing-based spatial transcriptomic methods. Nat. Methods 21, 1743–1754 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Benjamin, K. et al. Multiscale topology classifies cells in subcellular spatial transcriptomics. Nature 630, 943–949 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bando, H. et al. Effects of metastatic sites on circulating tumor DNA in patients with metastatic colorectal cancer. JCO Precis. Oncol. 6, e2100535 (2022).

    Article  PubMed  Google Scholar 

  92. Dong, S. et al. Circulating tumor DNA-guided de-escalation targeted therapy for advanced non-small cell lung cancer: a nonrandomized clinical trial. JAMA Oncol. 10, 932–940 (2024).

    Article  PubMed  Google Scholar 

  93. Stadler, J. C. et al. Prognostic value of von Willebrand factor levels in patients with metastatic melanoma treated by immune checkpoint inhibitors. J. Immunother. Cancer 11, e006456 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Loyfer, N. et al. A DNA methylation atlas of normal human cell types. Nature 613, 355–364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pantel, K. & Hayes, D. F. Disseminated breast tumour cells: biological and clinical meaning. Nat. Rev. Clin. Oncol. 15, 129–131 (2018).

    Article  PubMed  Google Scholar 

  96. Wan, J. C. M. et al. Liquid biopsies for residual disease and recurrence. Med 2, 1292–1313 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Tivey, A., Church, M., Rothwell, D., Dive, C. & Cook, N. Circulating tumour DNA – looking beyond the blood. Nat. Rev. Clin. Oncol. 19, 600–612 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chauhan, P. S. et al. Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients. NPJ Precis. Oncol. 7, 6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Darlix, A. et al. Detection of circulating tumor cells in cerebrospinal fluid of patients with suspected breast cancer leptomeningeal metastases: a prospective study. Clin. Chem. 68, 1311–1322 (2022).

    Article  PubMed  Google Scholar 

  101. Escudero, L. et al. Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma. Nat. Commun. 11, 5376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chai, R. et al. Sequencing of cerebrospinal fluid cell-free DNA facilitated early differential diagnosis of intramedullary spinal cord tumors. NPJ Precis. Oncol. 8, 43 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Connors, D. et al. International Liquid Biopsy Standardization Alliance white paper. Crit. Rev. Oncol. Hematol. 156, 103112 (2020).

    Article  PubMed  Google Scholar 

  104. Hayes, D. F. Biomarker validation and testing. Mol. Oncol. 9, 960–966 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

K.P. received funding from the Deutsche Forschungsgemeinschaft Priority Program SPP 2084 microBONE (DFG), Deutsche Krebshilfe project CUPIDO and the European Research Council (ERC) Advanced Investigator Grant INJURMET (no. 834974). C.A.-P. received funding from La Fondation ARC pour la Recherche sur le Cancer with the project “PANLIPSY” on liquid biopsy and pancreatic cancer, the Institut National du Cancer and from les Fonds de Dotation AFER pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article preparation.

Corresponding authors

Correspondence to Klaus Pantel or Catherine Alix-Panabières.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks A. A. Chaudhuri, Y. Nakamura, who co-reviewed with T. Hashimoto, C. Rolfo and A. Sartore-Bianchi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantel, K., Alix-Panabières, C. Minimal residual disease as a target for liquid biopsy in patients with solid tumours. Nat Rev Clin Oncol 22, 65–77 (2025). https://doi.org/10.1038/s41571-024-00967-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-024-00967-y

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer