Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of the gut microbiota in immune-related adverse events: mechanisms and therapeutic intervention

Abstract

Immune checkpoint inhibitors (ICIs) constitute a major breakthrough in the field of cancer therapy; their use has resulted in improved outcomes across various tumour types. However, ICIs can cause a diverse range of immune-related adverse events (irAEs) that present a considerable challenge to the efficacy and safety of these treatments. The gut microbiota has been demonstrated to have a crucial role in modulating the tumour immune microenvironment and thus influences the effectiveness of ICIs. Accumulating evidence indicates that alterations in the composition and function of the gut microbiota are also associated with an increased risk of irAEs, particularly ICI-induced colitis. Indeed, these changes in the gut microbiota can contribute to the pathogenesis of irAEs. In this Review, we first summarize the current clinical challenges posed by irAEs. We then focus on reported correlations between alterations in the gut microbiota and irAEs, especially ICI-induced colitis, and postulate mechanisms by which these microbial changes influence the occurrence of irAEs. Finally, we highlight the potential value of gut microbial changes as biomarkers for predicting irAEs and discuss gut microbial interventions that might serve as new strategies for the management of irAEs, including faecal microbiota transplantation, probiotic, prebiotic and/or postbiotic supplements, and dietary modulations.

Key points

  • Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, they often induce immune-related adverse events (irAEs) that are not only a common cause of treatment discontinuation, which might compromise oncological outcomes, but can also reduce patient quality of life and even have fatal outcomes.

  • Clinical cohort studies and preclinical data indicate that gut microbiota composition has a substantial influence on the risk and severity of irAEs.

  • The mechanisms underlying the association of the gut microbiota with irAEs include antigen cross-reactivity, modulation of intestinal barrier integrity, interplay with the immune environment, regulation of microbial homeostasis and others.

  • Distinct gut microbial alterations could potentially be used to predict the occurrence of irAEs.

  • Gut microbial modulation strategies such as faecal microbiota transplantation, dietary modifications, and supplementation with probiotics, prebiotics and/or postbiotics, have promise for the treatment and perhaps even prevention of irAEs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms underlying links between the gut microbiota and irAEs.

Similar content being viewed by others

References

  1. Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou, F., Qiao, M. & Zhou, C. The cutting-edge progress of immune-checkpoint blockade in lung cancer. Cell Mol. Immunol. 18, 279–293 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers 6, 38 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Khan, S. & Gerber, D. E. Autoimmunity, checkpoint inhibitor therapy and immune-related adverse events: a review. Semin. Cancer Biol. 64, 93–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Esfahani, K. et al. Moving towards personalized treatments of immune-related adverse events. Nat. Rev. Clin. Oncol. 17, 504–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Thapa, B. et al. Incidence and clinical pattern of immune related adverse effects (irAE) due to immune checkpoint inhibitors (ICI) [abstract]. J. Clin. Oncol. 37, e14151 (2019).

    Article  Google Scholar 

  10. Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Cook, S. et al. Immune-related adverse events and survival among patients with metastatic NSCLC treated with immune checkpoint inhibitors. JAMA Netw. Open. 7, e2352302 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Street, S. et al. The positive effect of immune checkpoint inhibitor-induced thyroiditis on overall survival accounting for immortal time bias: a retrospective cohort study of 6596 patients. Ann. Oncol. 32, 1050–1051 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Haratani, K. et al. Association of immune-related adverse events with nivolumab efficacy in non-small-cell lung cancer. JAMA Oncol. 4, 374–378 (2018).

    Article  PubMed  Google Scholar 

  14. Suijkerbuijk, K. P. M., van Eijs, M. J. M., van Wijk, F. & Eggermont, A. M. M. Clinical and translational attributes of immune-related adverse events. Nat. Cancer 5, 557–571 (2024).

    Article  PubMed  Google Scholar 

  15. Burke, K. P., Grebinoski, S., Sharpe, A. H. & Vignali, D. A. A. Understanding adverse events of immunotherapy: a mechanistic perspective. J. Exp. Med. 218, e20192179 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Singh, N., Hocking, A. M. & Buckner, J. H. Immune-related adverse events after immune check point inhibitors: understanding the intersection with autoimmunity. Immunol. Rev. 318, 81–88 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schneider, B. J. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J. Clin. Oncol. 39, 4073–4126 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Haanen, J. B. A. G. et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 33, 1217–1238 (2017).

    Article  Google Scholar 

  19. Puzanov, I. et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) toxicity management working group. J. Immunother. Cancer 5, 95 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thompson, J. A. et al. NCCN guidelines insights: management of immunotherapy-related toxicities, version 1. 2020. J. Natl Compr. Canc Netw. 18, 230–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Faje, A. T. et al. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer 124, 3706–3714 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Goodman, R. S., Johnson, D. B. & Balko, J. M. Corticosteroids and cancer immunotherapy. Clin. Cancer Res. 29, 2580–2587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wahlström, A., Sayin, S. I., Marschall, H. U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  PubMed  Google Scholar 

  24. Mishra, S. P. et al. A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut. Gut 72, 1848–1865 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Arifuzzaman, M. et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 611, 578–584 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arima, K. et al. Western-style diet, pks Island-carrying Escherichia coli, and colorectal cancer: analyses from two large prospective cohort studies. Gastroenterology 163, 862–874 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, S. S. et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe 31, 781–797.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33, 570–580 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Y. et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat. Med. 24, 1804–1808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu, M. et al. Gut microbiome for predicting immune checkpoint blockade-associated adverse events. Genome Med. 16, 16 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, X. et al. Gut microbiota composition in patients with advanced malignancies experiencing immune-related adverse events. Front. Immunol. 14, 1109281 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, W. et al. Intestinal microbiome associated with immune-related adverse events for patients treated with anti-PD-1 inhibitors, a real-world study. Front. Immunol. 12, 756872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, Y. et al. Faecalibacterium prausnitzii abrogates intestinal toxicity and promotes tumor immunity to increase the efficacy of dual CTLA4 and PD-1 checkpoint blockade. Cancer Res. 83, 3710–3725 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, T. et al. Probiotics Lactobacillus reuteri abrogates immune checkpoint blockade-associated colitis by inhibiting group 3 innate lymphoid cells. Front. Immunol. 10, 01235 (2019).

    Article  CAS  Google Scholar 

  36. Liu, X. et al. Gut microbiome metabolites, molecular mimicry, and species-level variation drive long-term efficacy and adverse event outcomes in lung cancer survivors. eBioMedicine 109, 105427 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun, S. et al. Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proc. Natl Acad. Sci. USA 117, 27509–27515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simpson, R. C. et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat. Med. 28, 2344–2352 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, M., Liu, J. & Xia, Q. Role of gut microbiome in cancer immunotherapy: from predictive biomarker to therapeutic target. Exp. Hematol. Oncol. 12, 84 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jia, D. et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell 187, 1651–1665.e21 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Cong, J. et al. Bile acids modified by the intestinal microbiota promote colorectal cancer growth by suppressing CD8+ T cell effector functions. Immunity 57, 876–889.e11 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Renga, G. et al. Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan metabolite. J. Immunother. Cancer 10, e003725 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jing, Y., Yang, J., Johnson, D. B., Moslehi, J. J. & Han, L. Harnessing big data to characterize immune-related adverse events. Nat. Rev. Clin. Oncol. 19, 269–280 (2022).

    Article  PubMed  Google Scholar 

  45. Johnson, D. B., Nebhan, C. A., Moslehi, J. J. & Balko, J. M. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat. Rev. Clin. Oncol. 19, 254–267 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lozano, A. X. et al. T cell characteristics associated with toxicity to immune checkpoint blockade in patients with melanoma. Nat. Med. 28, 353–362 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yasuda, Y. et al. CD4+ T cells are essential for the development of destructive thyroiditis induced by anti-PD-1 antibody in thyroglobulin-immunized mice. Sci. Transl. Med. 13, eabb7495 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Hutchinson, J. A. et al. Virus-specific memory T cell responses unmasked by immune checkpoint blockade cause hepatitis. Nat. Commun. 12, 1439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Collier, J. L. et al. Single-cell profiling reveals unique features of diabetogenic T cells in anti-PD-1-induced type 1 diabetes mice. J. Exp. Med. 220, e20221920 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Friedman, C. F., Proverbs-Singh, T. A. & Postow, M. A. Treatment of the immune-related adverse effects of immune checkpoint inhibitors. JAMA Oncol. 2, 1346–1353 (2016).

    Article  PubMed  Google Scholar 

  51. Kennedy, L. B. & Salama, A. K. S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 70, 86–104 (2020).

    Article  PubMed  Google Scholar 

  52. Bergqvist, V. et al. Vedolizumab treatment for immune checkpoint inhibitor-induced enterocolitis. Cancer Immunol. Immunother. 66, 581–592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abu-Sbeih, H. et al. Outcomes of vedolizumab therapy in patients with immune checkpoint inhibitor-induced colitis: a multi-center study. J. Immunother. Cancer 6, 142 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Abu-Sbeih, H. et al. Early introduction of selective immunosuppressive therapy associated with favorable clinical outcomes in patients with immune checkpoint inhibitor-induced colitis. J. Immunother. Cancer 7, 93 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Feliu, V. et al. Distant antimetastatic effect of enterotropic colon cancer-derived α4β7+CD8+ T cells. Sci. Immunol. 8, eadg8841 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Fidelle, M. et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science 380, eabo2296 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. van Not, O. J. et al. Association of immune-related adverse event management with survival in patients with advanced melanoma. JAMA Oncol. 8, 1794–1801 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bauché, D. et al. Antitumor efficacy of combined CTLA4/PD-1 blockade without intestinal inflammation is achieved by elimination of FcγR interactions. J. Immunother. Cancer 8, e001584 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Perez-Ruiz, E. et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 569, 428–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Badran, Y. R. et al. Concurrent therapy with immune checkpoint inhibitors and TNFα blockade in patients with gastrointestinal immune-related adverse events. J. Immunother. Cancer 7, 226 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hailemichael, Y. et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell 40, 509–523 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fa’ak, F. et al. Selective immune suppression using interleukin-6 receptor inhibitors for management of immune-related adverse events. J. Immunother. Cancer 11, e006814 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bishu, S. et al. Efficacy and outcome of tofacitinib in immune checkpoint inhibitor colitis. Gastroenterology 160, 932–934.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Routy, B. et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat. Med. 29, 2121–2132 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT04883762 (2024).

  66. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT06206707 (2024).

  67. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT03819296 (2024).

  68. Martinez Chanza, N. et al. Safety and efficacy of immune checkpoint inhibitors in advanced urological cancers with pre-existing autoimmune disorders: a retrospective international multicenter study. J. Immunother. Cancer 8, e000538 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Johnson, D. B. et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2, 234–240 (2016).

    Article  PubMed  Google Scholar 

  70. Tison, A. et al. Safety and efficacy of immune checkpoint inhibitors in patients with cancer and preexisting autoimmune disease: a nationwide, multicenter cohort study. Arthritis Rheumatol. 71, 2100–2111 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Abdel-Wahab, N., Shah, M., Lopez-Olivo, M. A. & Suarez-Almazor, M. E. Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease. Ann. Intern. Med. 168, 121–130 (2018).

    Article  PubMed  Google Scholar 

  72. Liu, X. et al. Risk factors for immune-related adverse events: what have we learned and what lies ahead? Biomark. Res. 9, 79 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Abu-Sbeih, H. et al. Impact of antibiotic therapy on the development and response to treatment of immune checkpoint inhibitor-mediated diarrhea and colitis. J. Immunother. Cancer 7, 242 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jing, Y. et al. Association of antibiotic treatment with immune-related adverse events in patients with cancer receiving immunotherapy. J. Immunother. Cancer 10, e003779 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mohiuddin, J. J. et al. Association of antibiotic exposure with survival and toxicity in patients with melanoma receiving immunotherapy. J. Natl Cancer Inst. 113, 162–170 (2021).

    Article  PubMed  Google Scholar 

  76. McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 28, 545–556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hamada, K. et al. Turicibacter and Acidaminococcus predict immune-related adverse events and efficacy of immune checkpoint inhibitor. Front. Immunol. 14, 1164724 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hirata, Y. et al. Gut microbiota shifts from onset to remission in immune checkpoint inhibitor-induced enterocolitis: a case report. Gut Pathog. 16, 33 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou, G., Zhang, N., Meng, K. & Pan, F. Interaction between gut microbiota and immune checkpoint inhibitor-related colitis. Front. Immunol. 13, 1001623 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lo, B. C. et al. Microbiota-dependent activation of CD4+ T cells induces CTLA-4 blockade-associated colitis via Fcγ receptors. Science 383, 62–70 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sun, Y. et al. Gut firmicutes: relationship with dietary fiber and role in host homeostasis. Crit. Rev. Food Sci. Nutr. 63, 12073–12088 (2022).

    Article  PubMed  Google Scholar 

  82. Pan, X., Raaijmakers, J. M. & Carrión, V. J. Importance of Bacteroidetes in host–microbe interactions and ecosystem functioning. Trends Microbiol. 31, 959–971 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Brinkmann, S., Spohn, M. S. & Schäberle, T. F. Bioactive natural products from Bacteroidetes. Nat. Product. Rep. 39, 1045–1065 (2022).

    Article  CAS  Google Scholar 

  84. Zeng, Y. et al. Dynamic gut microbiota changes in patients with advanced malignancies experiencing secondary resistance to immune checkpoint inhibitors and immune-related adverse events. Front. Oncol. 13, 1144534 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sakai, K. et al. Intestinal microbiota and gene expression reveal similarity and dissimilarity between immune-mediated colitis and ulcerative colitis. Front. Oncol. 11, 763468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, Y. et al. Correlation of the gut microbiome and immune-related adverse events in gastrointestinal cancer patients treated with immune checkpoint inhibitors. Front. Cell Infect. Microbiol. 13, 1099063 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Usyk, M. et al. Bacteroides vulgatus and Bacteroides dorei predict immune-related adverse events in immune checkpoint blockade treatment of metastatic melanoma. Genome Med. 13, 160 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gavzy, S. J. et al. Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes 15, 2291164 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang, F., Yin, Q., Chen, L. & Davis, M. M. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proc. Natl Acad. Sci. USA 115, 157–161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Li, G. et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes 13, 1968257 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen, G. et al. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. eBioMedicine 30, 317–325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kelly et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hao, F. et al. Butyrate enhances CPT1A activity to promote fatty acid oxidation and iTreg differentiation. Proc. Natl Acad. Sci. USA 118, e2014681118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Kang, X. et al. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8+ T cells. Gut 72, 2112–2122 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Coutzac, C. et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat. Commun. 11, 2168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhu, X. et al. Microbial metabolite butyrate promotes anti-PD-1 antitumor efficacy by modulating T cell receptor signaling of cytotoxic CD8 T cell. Gut Microbes 15, 2249143 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Luu, M. et al. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat. Commun. 12, 4077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, L. et al. Bacteroides vulgatus attenuates experimental mice colitis through modulating gut microbiota and immune responses. Front. Immunol. 13, 1036196 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, J. et al. High soluble fiber promotes colorectal tumorigenesis through modulating gut microbiota and metabolites in mice. Gastroenterology 166, 323–337.e7 (2024).

    Article  CAS  PubMed  Google Scholar 

  104. Chen, Y. et al. Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in colonic macrophages. J. Exp. Clin. Cancer Res. 41, 1 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Jia, W., Xie, G. & Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sinha, S. R. et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27, 659–670.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yan, Y. et al. Bacteroides uniformis-induced perturbations in colonic microbiota and bile acid levels inhibit TH17 differentiation and ameliorate colitis developments. NPJ Biofilms Microbiomes 9, 56 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Agus, A., Clément, K. & Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 70, 1174–1182 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Li, M. et al. Indole-3-acetic acid alleviates DSS-induced colitis by promoting the production of R-equol from Bifidobacterium pseudolongum. Gut Microbes 16, 2329147 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fong, W. et al. Lactobacillus gallinarum-derived metabolites boost anti-PD1 efficacy in colorectal cancer by inhibiting regulatory T cells through modulating IDO1/Kyn/AHR axis. Gut 72, 2272–2285 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Montgomery, T. L. et al. Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. Microbiome 10, 198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Johnson, E. L. et al. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat. Commun. 11, 2471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Heaver, S. L. et al. Characterization of inositol lipid metabolism in gut-associated Bacteroidetes. Nat. Microbiol. 7, 986–1000 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Brown, E. M. et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe 25, 668–680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Huang, X. et al. Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts. Cell Host Microbe 31, 1930–1943.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Nakatsu, G. et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 155, 529–541.e5 (2018).

    Article  PubMed  Google Scholar 

  120. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Johnson, D. B. et al. A case report of clonal EBV-like memory CD4+ T cell activation in fatal checkpoint inhibitor-induced encephalitis. Nat. Med. 25, 1243–1250 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kang, J. H., Bluestone, J. A. & Young, A. Predicting and preventing immune checkpoint inhibitor toxicity: targeting cytokines. Trends Immunol. 42, 293–311 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Berner, F. et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 5, 1043–1047 (2019).

    Article  PubMed  Google Scholar 

  125. Berner, F. et al. Autoreactive napsin A-specific T cells are enriched in lung tumors and inflammatory lung lesions during immune checkpoint blockade. Sci. Immunol. 7, eabn9644 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, L., Shi, Y. & Han, X. Immunogenomic correlates of immune-related adverse events for anti-programmed cell death 1 therapy. Front. Immunol. 13, 1032221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bomze, D., Ali, O. H., Bate, A. & Flatz, L. Association between immune-related adverse events during anti-PD-1 therapy and tumor mutational burden. JAMA Oncol. 5, 1633–1635 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bessell, C. A. et al. Commensal bacteria stimulate antitumor responses via T cell cross-reactivity. JCI Insight 5, e135597 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mehandru, S. & Colombel, J.-F. The intestinal barrier, an arbitrator turned provocateur in IBD. Nat. Rev. Gastroenterol. Hepatol. 18, 83–84 (2020).

    Article  Google Scholar 

  132. Bamias, G. et al. Immunological characteristics of colitis associated with anti-CTLA-4 antibody therapy. Cancer Invest. 35, 443–455 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Fan, S. et al. Akkermansia muciniphila: a potential booster to improve the effectiveness of cancer immunotherapy. J. Cancer Res. Clin. Oncol. 149, 13477–13494 (2023).

    Article  PubMed  Google Scholar 

  134. Vergalito, F. et al. Akkermansia muciniphila: new insights into resistance to gastrointestinal stress, adhesion, and protein interaction with human mucins through optimised in vitro trials and bioinformatics tools. Front. Microbiol. 15, 1462220 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Mo, C. et al. The influence of Akkermansia muciniphila on intestinal barrier function. Gut Pathog. 16, 41 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhuge, A. et al. Akkermansia muciniphila-derived acetate activates the hepatic AMPK/SIRT1/PGC-1α axis to alleviate ferroptosis in metabolic-associated fatty liver disease. Acta Pharm. Sin. B 15, 151–167 (2025).

    Article  CAS  PubMed  Google Scholar 

  137. Geremia, A., Biancheri, P., Allan, P., Corazza, G. R. & Di Sabatino, A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun. Rev. 13, 3–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Mohebali, N. et al. Faecalibacterium prausnitzii, Bacteroides faecis and Roseburia intestinalis attenuate clinical symptoms of experimental colitis by regulating Treg/Th17 cell balance and intestinal barrier integrity. Biomed. Pharmacother. 167, 115568 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Guo, M. et al. Lactobacillus rhamnosus GG ameliorates osteoporosis in ovariectomized rats by regulating the Th17/Treg balance and gut microbiota structure. Gut Microbes 15, 2190304 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zuo, L. et al. Bifidobacterium infantis attenuates colitis by regulating T cell subset responses. World J. Gastroenterol. 20, 18316–18329 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li, Y. et al. Potential anti-tumor effects of regulatory T cells in the tumor microenvironment: a review. J. Transl. Med. 22, 293 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Liu, X. et al. Regulatory T cells and M2 macrophages present diverse prognostic value in gastric cancer patients with different clinicopathologic characteristics and chemotherapy strategies. J. Transl. Med. 17, 192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Xu, W. et al. The appearance of Tregs in cancer nest is a promising independent risk factor in colon cancer. J. Cancer Res. Clin. Oncol. 139, 1845–1852 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Dykema, A. G. et al. Lung tumor-infiltrating Treg have divergent transcriptional profiles and function linked to checkpoint blockade response. Sci. Immunol. 8, eadg1487 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhou, Y. et al. Intestinal toxicity to CTLA-4 blockade driven by IL-6 and myeloid infiltration. J. Exp. Med. 220, e20221333 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Siwicki, M. et al. Resident Kupffer cells and neutrophils drive liver toxicity in cancer immunotherapy. Sci. Immunol. 6, abi7083 (2021).

    Article  Google Scholar 

  150. Kim, S. T. et al. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat. Commun. 15, 5621 (2022).

    Article  Google Scholar 

  151. Llewellyn, H. P. et al. T cells and monocyte-derived myeloid cells mediate immunotherapy-related hepatitis in a mouse model. J. Hepatol. 75, 1083–1095 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Goldszmid, R. S. et al. Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunol. Res. 3, 103–109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shmuel-Galia, L. et al. Dysbiosis exacerbates colitis by promoting ubiquitination and accumulation of the innate immune adaptor STING in myeloid cells. Immunity 54, 1137–1153.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Porbahaie, M. et al. Short-chain fatty acids inhibit the activation of T lymphocytes and myeloid cells and induce innate immune tolerance. Benef. Microbes 14, 401–419 (2023).

    Article  CAS  PubMed  Google Scholar 

  155. Saez, A. et al. Innate lymphoid cells in intestinal homeostasis and inflammatory bowel disease. Int. J. Mol. Sci. 22, 7618 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Si, W. et al. Lactobacillus rhamnosus GG induces STING-dependent IL-10 in intestinal monocytes and alleviates inflammatory colitis in mice. J. Clin. Invest. 135, e174910 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Culp, E. J. & Goodman, A. L. Cross-feeding in the gut microbiome: ecology and mechanisms. Cell Host Microbe 31, 485–499 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, S. et al. Microbial collaborations and conflicts: unraveling interactions in the gut ecosystem. Gut Microbes 16, 2296603 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Callahan, M. K. et al. Evaluation of serum IL-17 levels during ipilimumab therapy: correlation with colitis [abstract]. J. Clin. Oncol. 29, 2505 (2011).

    Article  Google Scholar 

  162. Regen, T. et al. IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Sci. Immunol. 6, eaaz6563 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Castillo-dela Cruz, P. et al. Intestinal IL-17R signaling constrains IL-18-driven liver inflammation by the regulation of microbiome-derived products. Cell Rep. 29, 2270–2283.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Chandra, V. et al. Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell 42, 85–100.e6 (2024).

    Article  CAS  PubMed  Google Scholar 

  165. Maharshak, N. et al. Altered enteric microbiota ecology in interleukin 10-deficient mice during development and progression of intestinal inflammation. Gut Microbes 4, 316–324 (2014).

    Article  Google Scholar 

  166. Huang, J. et al. IL-10 deficiency accelerates type 1 diabetes development via modulation of innate and adaptive immune cells and gut microbiota in BDC2.5 NOD mice. Front. Immunol. 12, 702955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nuñez, N. G. et al. Immune signatures predict development of autoimmune toxicity in patients with cancer treated with immune checkpoint inhibitors. Med 4, 113–129.e7 (2023).

    Article  PubMed  Google Scholar 

  168. Smits, L. P., Bouter, K. E., de Vos, W. M., Borody, T. J. & Nieuwdorp, M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145, 946–953 (2013).

    Article  PubMed  Google Scholar 

  169. Vaughn, B. P. et al. Effectiveness and safety of colonic and capsule fecal microbiota transplantation for recurrent clostridioides difficile infection. Clin. Gastroenterol. Hepatol. 21, 1330–1337 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Erez, N., Baruch, I. Y., Ben-Betzalel, G. & Ortenberg, R. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article  Google Scholar 

  171. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Elkrief, A. et al. Immune-related colitis is associated with fecal microbial dysbiosis and can be mitigated by fecal microbiota transplantation. Cancer Immunol. Res. 12, 308–321 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fasanello, M. K., Robillard, K. T., Boland, P. M., Bain, A. J. & Kanehira, K. Use of fecal microbial transplantation for immune checkpoint inhibitor colitis. ACG Case Rep. J. 7, e00360 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Halsey, T. M. et al. Microbiome alteration via fecal microbiota transplantation is effective for refractory immune checkpoint inhibitor-induced colitis. Sci. Transl. Med. 15, eabq4006 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Article  PubMed  Google Scholar 

  176. Gulati, A. S., Nicholson, M. R., Khoruts, A. & Kahn, S. A. Fecal microbiota transplantation across the lifespan: balancing efficacy, safety, and innovation. Am. J. Gastroenterol. 118, 435–439 (2023).

    Article  PubMed  Google Scholar 

  177. Li, Z. et al. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J. Hematol. Oncol. 17, 33 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  178. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT05832606 (2025).

  179. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT06438588 (2024).

  180. Cortellino, S. et al. Fasting renders immunotherapy effective against low-immunogenic breast cancer while reducing side effects. Cell Rep. 40, 111256 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Rangan, P. et al. Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 26, 2704–2719.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wu, J. et al. Intermittent fasting alleviates risk markers in a murine model of ulcerative colitis by modulating the gut microbiome and metabolome. Nutrients 14, 5311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Falade, A. S. et al. Case report: fulminant celiac disease with combination immune checkpoint therapy. Front. Immunol. 13, 871452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Alsaadi, D., Shah, N. J., Charabaty, A. & Atkins, M. B. A case of checkpoint inhibitor-induced celiac disease. J. Immunother. Cancer 7, 203 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Martinez, K. B., Leone, V. & Chang, E. B. Western diets, gut dysbiosis, and metabolic diseases: are they linked? Gut Microbes 8, 130–142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Kaźmierczak-Siedlecka, K. et al. Next-generation probiotics – do they open new therapeutic strategies for cancer patients? Gut Microbes 14, 2035659 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Ting, N. L.-N., Lau, H. C.-H. & Yu, J. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut 71, 1412–1425 (2022).

    Article  PubMed  Google Scholar 

  188. Yu, Y., Dunaway, S., Champer, J., Kim, J. & Alikhan, A. Changing our microbiome: probiotics in dermatology. Br. J. Dermatol. 182, 39–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tan, H. et al. Preliminary safety assessment of a new Bacteroides fragilis isolate. Food Chem. Toxicol. 135, 110934 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Khan, M. T. et al. Synergy and oxygen adaptation for development of next-generation probiotics. Nature 620, 381–385 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Merenstein, D. et al. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 15, 2185034 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Holscher, H. D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8, 172–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yang, Y. et al. Starch from Pueraria lobata and the amylose fraction alleviates dextran sodium sulfate induced colitis in mice. Carbohydr. Polym. 302, 120329 (2023).

    Article  CAS  PubMed  Google Scholar 

  196. Chang, A. E. et al. Targeting the gut microbiome to mitigate immunotherapy-induced colitis in cancer. Trends Cancer 7, 583–593 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Messaoudene, M. et al. A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. 12, 1070–1087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Cuevas-González, P. F., Liceaga, A. M. & Aguilar-Toalá, J. E. Postbiotics and paraprobiotics: from concepts to applications. Food Res. Int. 136, 109502 (2020).

    Article  PubMed  Google Scholar 

  200. Mehta, J. P., Ayakar, S. & Singhal, R. S. The potential of paraprobiotics and postbiotics to modulate the immune system: a review. Microbiol. Res. 275, 127449 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Kim, Y. et al. Fecal microbiota transplantation improves anti-PD-1 inhibitor efficacy in unresectable or metastatic solid cancers refractory to anti-PD-1 inhibitor. Cell Host Microbe 32, 1380–1393 (2024).

    Article  CAS  PubMed  Google Scholar 

  202. Montalban-Arques, A. et al. Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host Microbe 29, 1573–1588 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Bender, M. J. et al. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell 186, 1846–1862.e26 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Si, W. et al. Lactobacillus rhamnosus GG induces cGAS/STING-dependent type I interferon and improves response to immune checkpoint blockade. Gut 71, 521–533 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Shaikh, F. Y. et al. Fecal microbiome composition correlates with pathologic complete response in patients with operable esophageal cancer treated with combined chemoradiotherapy and immunotherapy. Cancers 16, 3644 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Jin, Y. et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J. Thorac. Oncol. 14, 1378–1389 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Huang, J. et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut 71, 734–745 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Ghosh, S., Whitley, C. S., Haribabu, B. & Jala, V. R. Regulation of intestinal barrier function by microbial metabolites. Cell Mol. Gastroenterol. Hepatol. 11, 1463–1482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Johannet, P. et al. Baseline serum autoantibody signatures predict recurrence and toxicity in melanoma patients receiving adjuvant immune checkpoint blockade. Clin. Cancer Res. 28, 4121–4130 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kobayashi, T. et al. Anti-pituitary antibodies and susceptible human leukocyte antigen alleles as predictive biomarkers for pituitary dysfunction induced by immune checkpoint inhibitors. J. Immunother. Cancer 9, e002493 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Tahir, S. A. et al. Autoimmune antibodies correlate with immune checkpoint therapy-induced toxicities. Proc. Natl Acad. Sci. USA 116, 22246–22251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Oh, D. Y. et al. Immune toxicities elicted by CTLA-4 blockade in cancer patients are associated with early diversification of the T-cell repertoire. Cancer Res. 77, 1322–1330 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. Goswami, S. et al. A composite T cell biomarker in pre-treatment blood samples correlates with detection of immune-related adverse events. Cancer Cell 40, 249–251 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Akturk, H. K. et al. Analysis of human leukocyte antigen DR alleles, immune-related adverse events, and survival associated with immune checkpoint inhibitor use among patients with advanced malignant melanoma. JAMA Netw. Open. 5, e2246400 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Chang, H. et al. HLA-B27 association of autoimmune encephalitis induced by PD-L1 inhibitor. Ann. Clin. Transl. Neurol. 7, 2243–2250 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Groha, S. et al. Germline variants associated with toxicity to immune checkpoint blockade. Nat. Med. 28, 2584–2591 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Sasson, S. C. et al. Interferon-gamma-producing CD8+ tissue resident memory T cells are a targetable hallmark of immune checkpoint inhibitor-colitis. Gastroenterology 161, 1229–1244.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Reschke, R. et al. Checkpoint blockade-induced dermatitis and colitis are dominated by tissue-resident memory T cells and Th1/Tc1 cytokines. Cancer Immunol. Res. 10, 1167–1174 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ju, M. et al. Prophylactic IL-23 blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. J. Immunother. Cancer 12, e009345 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Tarhini, A. A. et al. Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J. Immunother. Cancer 3, 39 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by grants from the National Key R&D Program of China (2020YFA0509200 to J.-Y.F.), the National Natural Science Foundation of China (82250005 and 82330086 to J.-Y.F.) and the Shanghai Municipal Hospital Gastroenterology clinical competence improvement and advancement specialist alliance (SHDC22024302 to J.-Y.F.).

Author information

Authors and Affiliations

Authors

Contributions

Y.-.Q.G. researched data for the article, Y.-.Q.G. and Y.-J.T. wrote the article, and J.-Y.F. contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jing-Yuan Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. Fidelle, J. Yu and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, YQ., Tan, YJ. & Fang, JY. Roles of the gut microbiota in immune-related adverse events: mechanisms and therapeutic intervention. Nat Rev Clin Oncol 22, 499–516 (2025). https://doi.org/10.1038/s41571-025-01026-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-025-01026-w

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology