Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rethinking cancer of unknown primary: from diagnostic challenge to targeted treatment

Abstract

Cancer of unknown primary (CUP) is a metastatic malignancy for which a primary site of origin cannot be identified despite a thorough and standardized diagnostic work-up, and accounts for 1–3% of all malignancies. An unfavourable subgroup of CUP has a poor prognosis, with a median overall survival of <1 year when treated with current standard-of-care platinum-based chemotherapy. Virtually no progress in elucidating the disease biology and improving outcomes for patients with unfavourable CUP has been made over the past several decades, including a failure of initial randomized clinical trials to demonstrate the superiority of tissue-of-origin (ToO) identification by gene-expression profiling and subsequent primary-site-directed treatment over standard chemotherapy. However, large-cohort randomized trials have now shown that molecularly guided therapy improves outcomes for patients with CUP harbouring an actionable target, both in a tissue-agnostic as well as a primary tumour site-specific context. Moreover, data from non-randomized phase II trials suggest that immunotherapy using immune-checkpoint inhibitors can be beneficial even in patients with CUP that has relapsed after, or is refractory to, standard chemotherapy. In addition, a plethora of refined and novel strategies, including DNA and RNA sequencing, DNA-methylation profiling, circulating tumour DNA analysis, and artificial intelligence-based pathology, have been leveraged to facilitate ToO identification. In light of these developments, we review current ToO methodologies and compare the evidence supporting the use of a primary tumour site-guided approach versus a histology-agnostic approach to the management of CUP. We also discuss whether CUP can be viewed as a model disease for the development of histology-agnostic precision oncology treatment strategies.

Key points

  • Several methods based on DNA or RNA sequencing, transcriptomics microarrays, DNA-methylation profiling, circulating tumour DNA analysis and artificial intelligence-based pathology have been developed to predict the tissue of origin (ToO) of cancer of unknown primary (CUP) with high accuracy; however, no benchmarking and reporting standards have been established to date, making it challenging to judge the value of different tests.

  • Next-generation sequencing can aid in the differential diagnosis, ToO identification and detection of therapeutic targets in patients with unfavourable CUP.

  • Randomized trials have revealed that molecularly guided therapy and immunotherapy improve progression-free survival compared with standard platinum-based chemotherapy in patients with newly diagnosed unfavourable CUP, in both ToO-informed and histology-agnostic settings.

  • Non-randomized trials suggest that second-line treatment with immune-checkpoint inhibitors can increase response rates and prolongs survival in patients with a high tumour mutational burden and/or PD-L1 expression.

  • Comprehensive genomic profiling should be performed at initial diagnosis in all patients with unfavourable CUP, and liquid biopsy circulating tumour DNA assays can overcome the technical difficulties and scarcity of tumour material commonly associated with tissue biopsy approaches.

  • Access to molecular testing as well as to molecularly guided treatment and immunotherapy for patients with CUP remains limited in many countries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major advances in the diagnosis, classification and treatment of CUP.
Fig. 2: Diagnostic algorithm for CUP.
Fig. 3: CUP subtypes and their respective treatment options.

Similar content being viewed by others

References

  1. Halsted, W. S. I. The results of radical operations for the cure of carcinoma of the breast. Ann. Surg. 46, 1–19 (1907).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holmes, F. F. & Fouts, T. L. Metastatic cancer of unknown primary site. Cancer 26, 816–820 (1970).

    Article  CAS  PubMed  Google Scholar 

  3. Kramer, A. et al. Cancer of unknown primary: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 34, 228–246 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Binder, C., Matthes, K. L., Korol, D., Rohrmann, S. & Moch, H. Cancer of unknown primary-epidemiological trends and relevance of comprehensive genomic profiling. Cancer Med. 7, 4814–4824 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hemminki, K., Bevier, M., Hemminki, A. & Sundquist, J. Survival in cancer of unknown primary site: population-based analysis by site and histology. Ann. Oncol. 23, 1854–1863 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Mileshkin, L. et al. Cancer-of-unknown-primary-origin: a SEER-medicare study of patterns of care and outcomes among elderly patients in clinical practice. Cancers 14, https://doi.org/10.3390/cancers14122905 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pavlidis, N., Briasoulis, E., Hainsworth, J. & Greco, F. A. Diagnostic and therapeutic management of cancer of an unknown primary. Eur. J. Cancer 39, 1990–2005 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Briasoulis, E. et al. Carboplatin plus paclitaxel in unknown primary carcinoma: a phase II Hellenic Cooperative Oncology Group study. J. Clin. Oncol. 18, 3101–3107 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Greco, F. A. et al. Carcinoma of unknown primary site. Cancer 89, 2655–2660 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Greco, F. A. et al. Carcinoma of unknown primary site: phase II trials with docetaxel plus cisplatin or carboplatin. Ann. Oncol. 11, 211–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hainsworth, J. D. & Greco, F. A. Treatment of patients with cancer of an unknown primary site. N. Engl. J. Med. 329, 257–263 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Culine, S. et al. Cisplatin in combination with either gemcitabine or irinotecan in carcinomas of unknown primary site: results of a randomized phase II study-trial for the French study group on carcinomas of unknown primary (GEFCAPI 01). J. Clin. Oncol. 21, 3479–3482 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Gross-Goupil, M. et al. Cisplatin alone or combined with gemcitabine in carcinomas of unknown primary: results of the randomised GEFCAPI 02 trial. Eur. J. Cancer 48, 721–727 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Hainsworth, J. D. et al. Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon Research Institute. J. Clin. Oncol. 31, 217–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Moran, S. et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol. 17, 1386–1395 (2016).

    Article  PubMed  Google Scholar 

  16. Hayashi, H. et al. Randomized phase II trial comparing site-specific treatment based on gene expression profiling with carboplatin and paclitaxel for patients with cancer of unknown primary site. J. Clin. Oncol. 37, 570–579 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Fizazi, K. M. et al. I. A phase III trial of empiric chemotherapy with cisplatin and gemcitabine or systemic treatment tailored by molecular gene expression analysis in patients with carcinomas of an unknown primary (CUP) site (GEFCAPI 04). Ann. Oncol. 30, v851–v934 (2019).

    Article  Google Scholar 

  18. Rassy, E. & Pavlidis, N. Progress in refining the clinical management of cancer of unknown primary in the molecular era. Nat. Rev. Clin. Oncol. 17, 541–554 (2020).

    Article  PubMed  Google Scholar 

  19. Pauli, C. et al. A challenging task: identifying patients with cancer of unknown primary (CUP) according to ESMO guidelines: the CUPISCO trial experience. Oncologist 26, e769–e779 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pisacane, A. et al. Real-world histopathological approach to malignancy of undefined primary origin (MUO) to diagnose cancers of unknown primary (CUPs). Virchows Arch. 482, 463–475 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Beauchamp, K. et al. Carcinoma of unknown primary (CUP): an update for histopathologists. Cancer Metastasis Rev. 42, 1189–1200 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ramos-Herberth, F. I., Karamchandani, J., Kim, J. & Dadras, S. S. SOX10 immunostaining distinguishes desmoplastic melanoma from excision scar. J. Cutan. Pathol. 37, 944–952 (2010).

    Article  PubMed  Google Scholar 

  23. Qaseem, A., Usman, N., Jayaraj, J. S., Janapala, R. N. & Kashif, T. Cancer of unknown primary: a review on clinical guidelines in the development and targeted management of patients with the unknown primary site. Cureus 11, e5552 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Ettinger, D. S. et al. NCCN clinical practice guidelines occult primary. J. Natl Compr. Canc. Netw. 9, 1358–1395 (2011).

    Article  PubMed  Google Scholar 

  25. Yoon, E. C. et al. TRPS1, GATA3, and SOX10 expression in triple-negative breast carcinoma. Hum. Pathol. 125, 97–107 (2022).

    Article  PubMed  Google Scholar 

  26. Gurel, B. et al. NKX3.1 as a marker of prostatic origin in metastatic tumors. Am. J. Surg. Pathol. 34, 1097–1105 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lugli, A., Tzankov, A., Zlobec, I. & Terracciano, L. M. Differential diagnostic and functional role of the multi-marker phenotype CDX2/CK20/CK7 in colorectal cancer stratified by mismatch repair status. Mod. Pathol. 21, 1403–1412 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Velut, Y. et al. SMARCA4-deficient lung carcinoma is an aggressive tumor highly infiltrated by FOXP3+ cells and neutrophils. Lung Cancer 169, 13–21 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Herpel, E. et al. SMARCA4 and SMARCA2 deficiency in non-small cell lung cancer: immunohistochemical survey of 316 consecutive specimens. Ann. Diagn. Pathol. 26, 47–51 (2017).

    Article  PubMed  Google Scholar 

  30. Noh, S. & Shim, H. Optimal combination of immunohistochemical markers for subclassification of non-small cell lung carcinomas: a tissue microarray study of poorly differentiated areas. Lung Cancer 76, 51–55 (2012).

    Article  PubMed  Google Scholar 

  31. Labib, O. H. et al. The diagnostic value of arginase-1, FTCD, and MOC-31 expression in early detection of hepatocellular carcinoma (HCC) and in differentiation between HCC and metastatic adenocarcinoma to the liver. J. Gastrointest. Cancer 51, 88–101 (2020).

    Article  PubMed  Google Scholar 

  32. Gorbokon, N. et al. PAX8 expression in cancerous and non-neoplastic tissue: a tissue microarray study on more than 17,000 tumors from 149 different tumor entities. Virchows Arch. 485, 491–507 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miettinen, M. et al. SALL4 expression in germ cell and non-germ cell tumors: a systematic immunohistochemical study of 3215 cases. Am. J. Surg. Pathol. 38, 410–420 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Haberecker, M., Topfer, A., Melega, F., Moch, H. & Pauli, C. A systematic comparison of pan-Trk immunohistochemistry assays among multiple cancer types. Histopathology 82, 1003–1012 (2023).

    Article  PubMed  Google Scholar 

  35. Shreenivas, A. et al. ALK fusions in the pan-cancer setting: another tumor-agnostic target? NPJ Precis. Oncol. 7, 101 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meric-Bernstam, F. et al. Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: primary results from the DESTINY-PanTumor02 phase II trial. J. Clin. Oncol. 42, 47–58 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Tanizaki, J. et al. Open-label phase II study of the efficacy of nivolumab for cancer of unknown primary. Ann. Oncol. 33, 216–226 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Bochtler, T. et al. Integrated histogenetic analysis reveals BAP1-mutated epithelioid mesothelioma in a patient with cancer of unknown primary. J. Natl Compr. Canc. Netw. 16, 677–682 (2018).

    Article  PubMed  Google Scholar 

  39. Bochtler, T. et al. Comparative genetic profiling aids diagnosis and clinical decision making in challenging cases of CUP syndrome. Int. J. Cancer 145, 2963–2973 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Kramer, A. et al. Molecularly guided therapy versus chemotherapy after disease control in unfavourable cancer of unknown primary (CUPISCO): an open-label, randomised, phase 2 study. Lancet 404, 527–539 (2024).

    Article  PubMed  Google Scholar 

  41. Fusco, M. J. et al. Evaluation of targeted next-generation sequencing for the management of patients diagnosed with a cancer of unknown primary. Oncologist 27, e9–e17 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Varghese, A. M. et al. Clinical and molecular characterization of patients with cancer of unknown primary in the modern era. Ann. Oncol. 28, 3015–3021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ross, J. S. et al. Comprehensive genomic profiling of carcinoma of unknown primary origin: retrospective molecular classification considering the CUPISCO study design. Oncologist 26, e394–e402 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Westphalen, C. B. et al. Baseline mutational profiles of patients with carcinoma of unknown primary origin enrolled in the CUPISCO study. ESMO Open 8, 102035 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pouyiourou, M. et al. Nivolumab and ipilimumab in recurrent or refractory cancer of unknown primary: a phase II trial. Nat. Commun. 14, 6761 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bochtler, T. et al. Prognostic impact of copy number alterations and tumor mutational burden in carcinoma of unknown primary. Genes Chromosomes Cancer 61, 551–560 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Gatalica, Z., Xiu, J., Swensen, J. & Vranic, S. Comprehensive analysis of cancers of unknown primary for the biomarkers of response to immune checkpoint blockade therapy. Eur. J. Cancer 94, 179–186 (2018).

    Article  PubMed  Google Scholar 

  48. Moser, T. & Heitzer, E. Surpassing sensitivity limits in liquid biopsy. Science 383, 260–261 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Alix-Panabieres, C. & Pantel, K. Advances in liquid biopsy: from exploration to practical application. Cancer Cell https://doi.org/10.1016/j.ccell.2024.11.009 (2024).

    Article  PubMed  Google Scholar 

  50. Kato, S. et al. Utility of genomic analysis in circulating tumor DNA from patients with carcinoma of unknown primary. Cancer Res. 77, 4238–4246 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kato, S. et al. Therapeutic actionability of circulating cell-free DNA alterations in carcinoma of unknown primary. JCO Precis. Oncol. 5, PO.21.00011 (2021).

    PubMed  PubMed Central  Google Scholar 

  52. Bayle, A. et al. Liquid versus tissue biopsy for detecting actionable alterations according to the ESMO scale for clinical actionability of molecular targets in patients with advanced cancer: a study from the French National Center for Precision Medicine (PRISM). Ann. Oncol. 33, 1328–1331 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Raez, L. E. et al. Liquid biopsy versus tissue biopsy to determine front line therapy in metastatic non-small cell lung cancer (NSCLC). Clin. Lung Cancer 24, 120–129 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Park, S. et al. High concordance of actionable genomic alterations identified between circulating tumor DNA-based and tissue-based next-generation sequencing testing in advanced non-small cell lung cancer: the Korean Lung Liquid Versus Invasive Biopsy Program. Cancer 127, 3019–3028 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Benavides, M. et al. Clinical utility of comprehensive circulating tumor DNA genotyping compared with standard of care tissue testing in patients with newly diagnosed metastatic colorectal cancer. ESMO Open 7, 100481 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laprovitera, N. et al. Genetic characterization of cancer of unknown primary using liquid biopsy approaches. Front. Cell Dev. Biol. 9, 666156 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pouyiourou, M. et al. Frequency and prognostic value of circulating tumor cells in cancer of unknown primary. Clin. Chem. 70, 297–306 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, L. & Wang, N. 18F-fluorodeoxyglucose positron emission tomography-computed tomography as a diagnostic tool in patients with cervical nodal metastases of unknown primary site: a meta-analysis. Surg. Oncol. 22, 190–194 (2013).

    Article  PubMed  Google Scholar 

  59. Roh, J. L. et al. Utility of combined 18F-fluorodeoxyglucose-positron emission tomography and computed tomography in patients with cervical metastases from unknown primary tumors. Oral. Oncol. 45, 218–224 (2009).

    Article  PubMed  Google Scholar 

  60. Rusthoven, K. E., Koshy, M. & Paulino, A. C. The role of fluorodeoxyglucose positron emission tomography in cervical lymph node metastases from an unknown primary tumor. Cancer 101, 2641–2649 (2004).

    Article  PubMed  Google Scholar 

  61. Moller, A. K. et al. A prospective comparison of 18F-FDG PET/CT and CT as diagnostic tools to identify the primary tumor site in patients with extracervical carcinoma of unknown primary site. Oncologist 17, 1146–1154 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sivakumaran, T. et al. Evaluating the utility of 18F-FDG PET/CT in cancer of unknown primary. J. Nucl. Med. 65, 1557–1563 (2024).

    Article  CAS  PubMed  Google Scholar 

  63. Soni, N. et al. Role of FDG PET/CT for detection of primary tumor in patients with extracervical metastases from carcinoma of unknown primary. Clin. Imaging 78, 262–270 (2021).

    Article  PubMed  Google Scholar 

  64. Moller, A. K. et al. 18F-FDG PET/CT as a diagnostic tool in patients with extracervical carcinoma of unknown primary site: a literature review. Oncologist 16, 445–451 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Burglin, S. A., Hess, S., Hoilund-Carlsen, P. F. & Gerke, O. 18F-FDG PET/CT for detection of the primary tumor in adults with extracervical metastases from cancer of unknown primary: a systematic review and meta-analysis. Medicine 96, e6713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gu, B. et al. Imaging of tumor stroma using 68Ga-FAPI PET/CT to improve diagnostic accuracy of primary tumors in head and neck cancer of unknown primary: a comparative imaging trial. J. Nucl. Med. 65, 365–371 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bazarbachi, A. H., Magrini, N., Aziz, Z. & Fojo, T. Evidence for a reduction in number of cycles of immune checkpoint inhibitors. Lancet Oncol. 26, 9–11 (2025).

    Article  CAS  PubMed  Google Scholar 

  68. Robert, C. et al. Seven-year follow-up of the phase III KEYNOTE-006 study: pembrolizumab versus ipilimumab in advanced melanoma. J. Clin. Oncol. 41, 3998–4003 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Schank, T. E. et al. Complete metabolic response in FDG-PET-CT scan before discontinuation of immune checkpoint inhibitors correlates with long progression-free survival. Cancers 13, 2616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tan, A. C. et al. FDG-PET response and outcome from anti-PD-1 therapy in metastatic melanoma. Ann. Oncol. 29, 2115–2120 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Handorf, C. R. et al. A multicenter study directly comparing the diagnostic accuracy of gene expression profiling and immunohistochemistry for primary site identification in metastatic tumors. Am. J. Surg. Pathol. 37, 1067–1075 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tothill, R. W. et al. An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. Cancer Res. 65, 4031–4040 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Monzon, F. A. et al. Multicenter validation of a 1,550-gene expression profile for identification of tumor tissue of origin. J. Clin. Oncol. 27, 2503–2508 (2009).

    Article  PubMed  Google Scholar 

  74. Pillai, R. et al. Validation and reproducibility of a microarray-based gene expression test for tumor identification in formalin-fixed, paraffin-embedded specimens. J. Mol. Diagn. 13, 48–56 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tothill, R. W. et al. Development and validation of a gene expression tumour classifier for cancer of unknown primary. Pathology 47, 7–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Posner, A. et al. A comparison of DNA sequencing and gene expression profiling to assist tissue of origin diagnosis in cancer of unknown primary. J. Pathol. 259, 81–92 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Fuentes Bayne, H. E. et al. Personalized therapy selection by integration of molecular cancer classification by the 92-gene assay and tumor profiling in patients with cancer of unknown primary. JCO Precis. Oncol. 8, e2400191 (2024).

    Article  PubMed  Google Scholar 

  78. Ye, Q. et al. Development and clinical validation of a 90-gene expression assay for identifying tumor tissue origin. J. Mol. Diagn. 22, 1139–1150 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Ma, X. J. et al. Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay. Arch. Pathol. Lab. Med. 130, 465–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Erlander, M. G. et al. Performance and clinical evaluation of the 92-gene real-time PCR assay for tumor classification. J. Mol. Diagn. 13, 493–503 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kerr, S. E. et al. Multisite validation study to determine performance characteristics of a 92-gene molecular cancer classifier. Clin. Cancer Res. 18, 3952–3960 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Kurahashi, I. et al. A microarray-based gene expression analysis to identify diagnostic biomarkers for unknown primary cancer. PLoS ONE 8, e63249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, X. et al. Site-specific therapy guided by a 90-gene expression assay versus empirical chemotherapy in patients with cancer of unknown primary (Fudan CUP-001): a randomised controlled trial. Lancet Oncol. 25, 1092–1102 (2024).

    Article  CAS  PubMed  Google Scholar 

  84. Grewal, J. K. et al. Application of a neural network whole transcriptome-based pan-cancer method for diagnosis of primary and metastatic cancers. JAMA Netw. Open 2, e192597 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhao, Y. et al. CUP-AI-Dx: a tool for inferring cancer tissue of origin and molecular subtype using RNA gene-expression data and artificial intelligence. EBioMedicine 61, 103030 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Michuda, J. et al. Validation of a transcriptome-based assay for classifying cancers of unknown primary origin. Mol. Diagn. Ther. 27, 499–511 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. He, B. et al. A cross-cohort computational framework to trace tumor tissue-of-origin based on RNA sequencing. Sci. Rep. 13, 15356 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hong, J., Hachem, L. D. & Fehlings, M. G. A deep learning model to classify neoplastic state and tissue origin from transcriptomic data. Sci. Rep. 12, 9669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, S. et al. DNA methylation profiling to determine the primary sites of metastatic cancers using formalin-fixed paraffin-embedded tissues. Nat. Commun. 14, 5686 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Conway, A. M. et al. A cfDNA methylation-based tissue-of-origin classifier for cancers of unknown primary. Nat. Commun. 15, 3292 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De Wilde, J. et al. A fast, affordable, and minimally invasive diagnostic test for cancer of unknown primary using DNA methylation profiling. Lab. Invest. 104, 102091 (2024).

    Article  PubMed  Google Scholar 

  93. Moon, I. et al. Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary. Nat. Med. 29, 2057–2067 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Darmofal, M. et al. Deep-learning model for tumor-type prediction using targeted clinical genomic sequencing data. Cancer Discov. 14, 1064–1081 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Penson, A. et al. Development of genome-derived tumor type prediction to inform clinical cancer care. JAMA Oncol. 6, 84–91 (2020).

    Article  PubMed  Google Scholar 

  96. Mohrmann, L. et al. Comprehensive genomic and epigenomic analysis in cancer of unknown primary guides molecularly-informed therapies despite heterogeneity. Nat. Commun. 13, 4485 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Schipper, L. J. et al. Complete genomic characterization in patients with cancer of unknown primary origin in routine diagnostics. ESMO Open 7, 100611 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nguyen, L., Van Hoeck, A. & Cuppen, E. Machine learning-based tissue of origin classification for cancer of unknown primary diagnostics using genome-wide mutation features. Nat. Commun. 13, 4013 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chakraborty, S., Martin, A., Guan, Z., Begg, C. B. & Shen, R. Mining mutation contexts across the cancer genome to map tumor site of origin. Nat. Commun. 12, 3051 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rebello, R. J. et al. Whole genome sequencing improves tissue-of-origin diagnosis and treatment options for cancer of unknown primary. Nat. Commun. 16, 4422 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Soh, K. P., Szczurek, E., Sakoparnig, T. & Beerenwinkel, N. Predicting cancer type from tumour DNA signatures. Genome Med. 9, 104 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jiao, W. et al. A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nat. Commun. 11, 728 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Salvadores, M., Mas-Ponte, D. & Supek, F. Passenger mutations accurately classify human tumors. PLoS Comput. Biol. 15, e1006953 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Tian, F. et al. Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning. Nat. Med. 30, 1309–1319 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu, M. Y. et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106–110 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Lu, M. Y. et al. A visual-language foundation model for computational pathology. Nat. Med. 30, 863–874 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen, R. J. et al. Towards a general-purpose foundation model for computational pathology. Nat. Med. 30, 850–862 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Massard, C., Loriot, Y. & Fizazi, K. Carcinomas of an unknown primary origin-diagnosis and treatment. Nat. Rev. Clin. Oncol. 8, 701–710 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Huebner, G. et al. Paclitaxel and carboplatin vs gemcitabine and vinorelbine in patients with adeno- or undifferentiated carcinoma of unknown primary: a randomised prospective phase II trial. Br. J. Cancer 100, 44–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Pentheroudakis, G. et al. Docetaxel and carboplatin combination chemotherapy as outpatient palliative therapy in carcinoma of unknown primary: a multicentre Hellenic cooperative oncology group phase II study. Acta Oncol. 47, 1148–1155 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Mukai, H., Katsumata, N., Ando, M. & Watanabe, T. Safety and efficacy of a combination of docetaxel and cisplatin in patients with unknown primary cancer. Am. J. Clin. Oncol. 33, 32–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Randen, M., Rutqvist, L. E. & Johansson, H. Cancer patients without a known primary: incidence and survival trends in Sweden 1960-2007. Acta Oncol. 48, 915–920 (2009).

    Article  PubMed  Google Scholar 

  114. Culine, S., Ychou, M., Fabbro, M., Romieu, G. & Cupissol, D. 5-fluorouracil and leucovorin as second-line chemotherapy in carcinomas of unknown primary site. Anticancer. Res. 21, 1455–1457 (2001).

    CAS  PubMed  Google Scholar 

  115. Hainsworth, J. D. et al. Gemcitabine in the second-line therapy of patients with carcinoma of unknown primary site: a phase II trial of the Minnie Pearl Cancer Research Network. Cancer Invest. 19, 335–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Hainsworth, J. D. et al. Oxaliplatin and capecitabine in the treatment of patients with recurrent or refractory carcinoma of unknown primary site: a phase 2 trial of the Sarah Cannon Oncology Research Consortium. Cancer 116, 2448–2454 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Hainsworth, J. D. et al. Combination chemotherapy with gemcitabine and irinotecan in patients with previously treated carcinoma of an unknown primary site: a Minnie Pearl Cancer Research Network phase II trial. Cancer 104, 1992–1997 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Moller, A. K., Pedersen, K. D., Abildgaard, J., Petersen, B. L. & Daugaard, G. Capecitabine and oxaliplatin as second-line treatment in patients with carcinoma of unknown primary site. Acta Oncol. 49, 431–435 (2010).

    Article  PubMed  Google Scholar 

  119. Hayashi, H. et al. Site-specific and targeted therapy based on molecular profiling by next-generation sequencing for cancer of unknown primary site: a nonrandomized phase 2 clinical trial. JAMA Oncol. 6, 1931–1938 (2020).

    Article  PubMed  Google Scholar 

  120. Greco, F. A., Labaki, C. & Rassy, E. Molecular diagnosis and site-specific therapy in cancer of unknown primary: an important milestone. Lancet Oncol. 25, 955–956 (2024).

    Article  CAS  PubMed  Google Scholar 

  121. Rassy, E. & Andre, F. New clinical trials in CUP and a novel paradigm in cancer classification. Nat. Rev. Clin. Oncol. 21, 833–834 (2024).

    Article  PubMed  Google Scholar 

  122. van Mourik, A. et al. Six-year experience of Australia’s first dedicated cancer of unknown primary clinic. Br. J. Cancer 129, 301–308 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bochtler, T. et al. Outcomes of patients (pts) with unfavourable, non-squamous cancer of unknown primary (CUP) progressing after induction chemotherapy (CTX) in the global, open-label, phase II CUPISCO study. Ann. Oncol. 35, S296–S297 (2024).

    Article  Google Scholar 

  124. Mosele, M. F. et al. Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: a report from the ESMO Precision Medicine Working Group. Ann. Oncol. 35, 588–606 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Botticelli, A. et al. The Rome trial from histology to target: the road to personalize targeted therapy and immunotherapy. Ann. Oncol. 35, 1202 (2024).

    Article  Google Scholar 

  126. Huey, R. W. et al. Feasibility and value of genomic profiling in cancer of unknown primary: real-world evidence from prospective profiling study. J. Natl Cancer Inst. 115, 994–997 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Marchetti, P. et al. Combined tissue and liquid biopsy improves outcomes in advanced solid tumors: an exploratory analysis of the ROME trial. Cancer Res. 85, 6372 (2025).

    Article  Google Scholar 

  128. Massard, C. et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov. 7, 586–595 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Le Tourneau, C. et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 16, 1324–1334 (2015).

    Article  PubMed  Google Scholar 

  130. Budczies, J. et al. Tumour mutational burden: clinical utility, challenges and emerging improvements. Nat. Rev. Clin. Oncol. 21, 725–742 (2024).

    Article  PubMed  Google Scholar 

  131. Gandara, D. R. et al. Tumor mutational burden and survival on immune checkpoint inhibition in >8000 patients across 24 cancer types. J. Immunother. Cancer 13, e010311 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Raghav, K. P. et al. Efficacy of pembrolizumab in patients with advanced cancer of unknown primary (CUP): a phase 2 non-randomized clinical trial. J. Immunother. Cancer 10, e004822 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Posner, A. et al. Immune and genomic biomarkers of immunotherapy response in cancer of unknown primary. J. Immunother. Cancer 11, e005809 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Fuentes, H. E. et al. Outcomes and molecular profiles in sarcomatoid carcinoma of unknown primary: the Mayo Clinic experience. Oncologist https://doi.org/10.1093/oncolo/oyae333 (2024).

    Article  PubMed Central  Google Scholar 

  135. Andre, F., Rassy, E., Marabelle, A., Michiels, S. & Besse, B. Forget lung, breast or prostate cancer: why tumour naming needs to change. Nature 626, 26–29 (2024).

    Article  CAS  PubMed  Google Scholar 

  136. Ilie, M., Heeke, S., Horgan, D. & Hofman, P. Navigating change in tumor naming: exploring the complexities and considerations of shifting toward molecular classifications. J. Clin. Oncol. 42, 3183–3186 (2024).

    Article  CAS  PubMed  Google Scholar 

  137. Stenzinger, A. & Klauschen, F. Forget lung, breast or prostate cancer? Why we shouldn’t abandon tumour names yet. Nature 627, 38 (2024).

    Article  CAS  PubMed  Google Scholar 

  138. Larkin, J., Beland, C., Ramalingam, S. & Lyon, A. R. Personalized cancer care can’t rely on molecular testing alone. Nature 627, 38 (2024).

    Article  CAS  PubMed  Google Scholar 

  139. Zheng, C. & Xu, R. Predicting cancer origins with a DNA methylation-based deep neural network model. PLoS ONE 15, e0226461 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, Z. et al. HiTAIC: hierarchical tumor artificial intelligence classifier traces tissue of origin and tumor type in primary and metastasized tumors using DNA methylation. Nar. Cancer 5, zcad017 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Sun, M. et al. Tissue of origin prediction for cancer of unknown primary using a targeted methylation sequencing panel. Clin. Epigenetics 16, 25 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tothill, R. W. et al. Massively-parallel sequencing assists the diagnosis and guided treatment of cancers of unknown primary. J. Pathol. 231, 413–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Liang, Y. et al. A deep learning framework to predict tumor tissue-of-origin based on copy number alteration. Front. Bioeng. Biotechnol. 8, 701 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  144. He, B. et al. A machine learning framework to trace tumor tissue-of-origin of 13 types of cancer based on DNA somatic mutation. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165916 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Abraham, J. et al. Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type. Transl. Oncol. 14, 101016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen, K. et al. A molecular approach integrating genomic and DNA methylation profiling for tissue of origin identification in lung-specific cancer of unknown primary. J. Transl. Med. 20, 158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tanizaki, J. et al. Nivolumab for cancer of unknown primary (CUP): clinical efficacy and biomarker analysis from NivoCUP2 expanded access program (WJOG14620M). Ann. Oncol. 35, S305–S306 (2024).

    Article  Google Scholar 

  148. Subbiah, V. et al. FIGHT-101, a first-in-human study of potent and selective FGFR 1-3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies. Ann. Oncol. 33, 522–533 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Pant, S. et al. Erdafitinib in patients with advanced solid tumours with FGFR alterations (RAGNAR): an international, single-arm, phase 2 study. Lancet Oncol. 24, 925–935 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rodón, J. et al. Pemigatinib in previously treated solid tumors with activating FGFR1–FGFR3 alterations: phase 2 FIGHT-207 basket trial. Nat. Med. 30, 1645–1654 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Smit, E. F. et al. Trastuzumab deruxtecan in patients with metastatic non-small-cell lung cancer (DESTINY-Lung01): primary results of the HER2-overexpressing cohorts from a single-arm, phase 2 trial. Lancet Oncol. 25, 439–454 (2024).

    Article  CAS  PubMed  Google Scholar 

  152. Raghav, K. et al. Trastuzumab deruxtecan in patients with HER2-positive advanced colorectal cancer (DESTINY-CRC02): primary results from a multicentre, randomised, phase 2 trial. Lancet Oncol. 25, 1147–1162 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of M.P. was supported by the physician scientist programme of the Medical Faculty of the University of Heidelberg. The work of A.K. is funded by the Priority Program Translational Oncology of the Deutsche Krebshilfe (grant 70115167) and the proof-of-concept trial programme of the National Center for Tumour Diseases (NCT) Heidelberg.

Author information

Authors and Affiliations

Authors

Contributions

M.P., C.P., K.P., A.S. and A.K. researched data for the article and wrote the manuscript. All authors contributed to discussions of content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Alwin Krämer.

Ethics declarations

Competing interests

T.B. has received travel support from F. Hoffmann-La Roche and served as study oncologist for the CUPISCO trial (which was sponsored by F. Hoffmann-La Roche). C.P. has received research funding from F. Hoffmann-La Roche and served as study pathologist for the CUPISCO trial. H.M. has received research funding and honoraria for lectures from, and has served as a consultant on data safety monitoring boards or advisory boards for Amgen, Astellas, AstraZeneca, Bayer, F. Hoffmann-La Roche, Merck and Stemline Therapeutics. K.P. has received honoraria from Eppendorf, Menarini, MSD, NRICH, Roche and Sysmex. A.S. has acted as adviser for Aignostics, Amgen, Astellas, AstraZeneca, Bayer, Beigene, Bristol Myers Squibb, Eli Lilly, Illumina, Incyte, Janssen, Jazz Pharmaceuticals, MSD, Novartis, Pfizer, Qlucore, Roche, Sanofi, Servier, Takeda and Thermo Fisher, and has received research funding from Bayer, Bristol Myers Squibb, Chugai and Incyte. A.K. has received research funding from Bristol Myers Squibb, F. Hoffmann-La Roche and Molecular Health; consulting fees, travel support and/or remuneration for advisory board participation from F. Hoffmann-La Roche; and served as study oncologist for the CUPISCO trial. M.P. and A.B. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks R. Tothill and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouyiourou, M., Bochtler, T., Pauli, C. et al. Rethinking cancer of unknown primary: from diagnostic challenge to targeted treatment. Nat Rev Clin Oncol 22, 781–799 (2025). https://doi.org/10.1038/s41571-025-01060-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-025-01060-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer