Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards biomarker-driven therapies for urothelial carcinoma

Abstract

Molecularly targeted agents and immune checkpoint inhibitors (ICIs) are transforming the treatment landscape for patients with advanced-stage urothelial carcinoma (aUC), although trials testing these novel agents have shown mixed results. In this context, the identification of biomarkers has seen limited success: while activating mutations in FGFR3 are now established as an actionable biomarker to guide treatment with FGFR inhibitors, PD-L1 expression has shown inconsistent value as a predictive biomarker of response to ICIs. The identification of prognostic and predictive biomarkers for ICIs, antibody–drug conjugates and targeted therapies is an active area of research; promising candidates include tumour mutational burden and HER2 overexpression. In the past few years, circulating tumour DNA has emerged as a minimally invasive biomarker, with increasing data supporting its prognostic value and utility for monitoring clinical responses. In this Review, we address these developments and discuss biomarkers that could have clinical utility in patients with aUC.

Key points

  • The identification of predictive biomarkers in patients with advanced-stage urothelial carcinoma (aUC) has been hampered by the variability of the assessment methods. Standardizing the assessment of these biomarkers will help to overcome these heterogeneous results.

  • Activating mutations in FGFR3 are now an established biomarker guiding the choice of targeted therapies for patients with aUC. HER2 is becoming an increasingly important biomarker in this setting.

  • In patients with aUC receiving immune checkpoint inhibitors, PD-L1 expression has shown inconsistent value as a predictive biomarker and thus, standardized, robust validation methods are needed to avoid the interpretation errors from previous studies. Experimental biomarkers, such as tumour mutational burden, have shown promise in this setting but need validation.

  • Integrating data from several biomarkers using artificial intelligence and spatial analysis could improve the predictive value of conventional tissue-based approaches focusing on a single biomarker.

  • Circulating tumour DNA offers minimally invasive monitoring of treatment response and recurrence risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. International Agency for Research on Cancer. Cancer tomorrow. IARC https://gco.iarc.who.int/tomorrow/en/dataviz/isotype?cancers=30&single_unit=50000&years=2025&types=1 (2025).

  2. Guo, C. C. et al. Molecular profile of bladder cancer progression to clinically aggressive subtypes. Nat. Rev. Urol. 21, 391–405 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Galsky, M. D. et al. Adjuvant nivolumab in high-risk muscle-invasive urothelial carcinoma: expanded efficacy from Checkmate 274. J. Clin. Oncol. 43, 15–21 (2025).

    Article  CAS  PubMed  Google Scholar 

  4. Powles, T. et al. Perioperative durvalumab with neoadjuvant chemotherapy in operable bladder cancer. N. Engl. J. Med. 391, 1773–1786 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Powles, T. et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 383, 1218–1230 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Powles, T. et al. Enfortumab vedotin and pembrolizumab in untreated advanced urothelial cancer. N. Engl. J. Med. 390, 875–888 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Li, R. et al. FGFR inhibition in urothelial carcinoma. Eur. Urol. 87, 110–122 (2025).

    Article  CAS  PubMed  Google Scholar 

  9. Sternberg, C. N. et al. FORT-1: phase II/III study of rogaratinib versus chemotherapy in patients with locally advanced or metastatic urothelial carcinoma selected based on FGFR1/3 mRNA expression. J. Clin. Oncol. 41, 629–639 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Knowles, M. A. & Hurst, C. D. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 15, 25–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Billerey, C. et al. Frequent FGFR3 mutations in papillary non-invasive bladder (PTa) tumors. Am. J. Pathol. 158, 1955–1959 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomlinson, D. C., Hurst, C. D. & Knowles, M. A. Knockdown by shRNA identifies S249C mutant FGFR3 as a potential therapeutic target in bladder cancer. Oncogene 26, 5889–5899 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pal, S. K. et al. Infigratinib versus placebo in patients with resected urothelial cancer (UC) bearing FGFR3 mutation or fusion: primary DFS analysis from the phase 3, randomized PROOF302 study [abstract]. J. Clin. Oncol. 42, 629 (2024).

    Article  Google Scholar 

  14. Ascione, C. M. et al. Role of FGFR3 in bladder cancer: treatment landscape and future challenges. Cancer Treat. Rev. 115, 102530 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Loriot, Y. et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 381, 338–348 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Siefker-Radtke, A. O. et al. Erdafitinib versus pembrolizumab in pretreated patients with advanced or metastatic urothelial cancer with select FGFR alterations: cohort 2 of the randomized phase III THOR trial. Ann. Oncol. 35, 107–117 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Grivas, P. et al. Avelumab first-line maintenance therapy for advanced urothelial carcinoma: comprehensive clinical subgroup analyses from the JAVELIN Bladder 100 phase 3 trial. Eur. Urol. 84, 95–108 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Powles, T. et al. Avelumab maintenance in advanced urothelial carcinoma: biomarker analysis of the phase 3 JAVELIN Bladder 100 trial. Nat. Med. 27, 2200–2211 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Siefker-Radtke, A. O. et al. Erdafitinib (ERDA) vs ERDA plus cetrelimab (ERDA + CET) for patients (pts) with metastatic urothelial carcinoma (mUC) and fibroblast growth factor receptor alterations (FGFRa): Final results from the phase 2 Norse study [abstract]. J. Clin. Oncol. 41, 4504 (2023).

    Article  Google Scholar 

  20. Iyer, G. et al. A first-in-human phase 1 study of LY3866288 (LOXO-435), a potent, highly isoform-selective FGFR3 inhibitor (FGFR3i) in advanced solid tumors with FGFR3 alterations: initial results from FORAGER-1 [abstract]. J. Clin. Oncol. 43, 662 (2025).

    Article  Google Scholar 

  21. Vandekerkhove, G. et al. Plasma ctDNA is a tumor tissue surrogate and enables clinical-genomic stratification of metastatic bladder cancer. Nat. Commun. 12, 184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Helal, C. et al. Clinical utility of plasma ctDNA sequencing in metastatic urothelial cancer. Eur. J. Cancer 195, 113368 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Barata, P. C. et al. Next-generation sequencing (NGS) of cell-free circulating tumor DNA and tumor tissue in patients with advanced urothelial cancer: a pilot assessment of concordance. Ann. Oncol. 28, 2458–2463 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Powles, T. et al. An adaptive, biomarker-directed platform study of durvalumab in combination with targeted therapies in advanced urothelial cancer. Nat. Med. 27, 793–801 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Nawaf, C. et al. Circulating tumor DNA based minimal residual disease detection and adjuvant treatment decision-making for muscle-invasive bladder cancer guided by modern clinical trials. Transl. Oncol. 37, 101763 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tomlinson, D. C., Lamont, F. R., Shnyder, S. D. & Knowles, M. A. Fibroblast growth factor receptor 1 promotes proliferation and survival via activation of the mitogen-activated protein kinase pathway in bladder cancer. Cancer Res. 69, 4613–4620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heath, C. & Cross, N. C. P. Critical role of STAT5 activation in transformation mediated by ZNF198-FGFR1. J. Biol. Chem. 279, 6666–6673 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Lim, S. et al. Fibroblast growth factor receptor 1 overexpression is associated with poor survival in patients with resected muscle invasive urothelial carcinoma. Yonsei Med. J. 57, 831–839 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murugesan, K. et al. Pan-tumor landscape of fibroblast growth factor receptor 1-4 genomic alterations. ESMO Open 7, 100641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loriot, Y. et al. Erdafitinib or chemotherapy in advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 389, 1961–1971 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Helsten, T., Schwaederle, M. & Kurzrock, R. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications. Cancer Metastasis Rev. 34, 479–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goetz, R. & Mohammadi, M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat. Rev. Mol. Cell Biol. 14, 166–180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lang, L. & Teng, Y. Fibroblast growth factor receptor 4 targeting in cancer: new insights into mechanisms and therapeutic strategies. Cell 8, 31 (2019).

    Article  CAS  Google Scholar 

  34. Zhao, J. et al. Prognostic role of HER2 expression in bladder cancer: a systematic review and meta-analysis. Int. Urol. Nephrol. 47, 87–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Yan, M. et al. HER2 expression status in diverse cancers: review of results from 37,992 patients. Cancer Metastasis Rev. 34, 157–164 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krüger, S. et al. Overexpression of c-erbB-2 oncoprotein in muscle-invasive bladder carcinoma: relationship with gene amplification, clinicopathological parameters and prognostic outcome. Int. J. Oncol. 21, 981–987 (2002).

    PubMed  Google Scholar 

  37. Patelli, G. et al. The evolving panorama of HER2-targeted treatments in metastatic urothelial cancer: a systematic review and future perspectives. Cancer Treat. Rev. 104, 102351 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Sanguedolce, F. et al. HER2 expression in bladder cancer: a focused view on its diagnostic, prognostic, and predictive role. Int. J. Mol. Sci. 24, 3720 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raggi, D. et al. HER2 and urothelial carcinoma: current understanding and future directions. Nat. Rev. Urol. https://doi.org/10.1038/s41585-025-01075-x (2025).

    Article  PubMed  Google Scholar 

  40. Powles, T. et al. Phase III, double-blind, randomized trial that compared maintenance lapatinib versus placebo after first-line chemotherapy in patients with human epidermal growth factor receptor 1/2-positive metastatic bladder cancer. J. Clin. Oncol. 35, 48–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Meric-Bernstam, F. et al. Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: primary results from the DESTINY-PanTumor02 phase II trial. J. Clin. Oncol. 42, 47–58 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Sheng, X. et al. Preliminary results of a phase Ib/II combination study of RC48-ADC, a novel humanized anti-HER2 antibody-drug conjugate (ADC) with toripalimab, a humanized IgG4 mAb against programmed death-1 (PD-1) in patients with locally advanced or metastatic urothelial carcinoma [abstract]. J. Clin. Oncol. 40, 4518 (2022).

    Article  Google Scholar 

  43. Sheng, X. et al. Efficacy and safety of disitamab vedotin in patients with human epidermal growth factor receptor 2-positive locally advanced or metastatic urothelial carcinoma: a combined analysis of two phase II clinical trials. J. Clin. Oncol. 42, 1391–1402 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Zhou, L. et al. Disitamab vedotin plus toripalimab in patients with locally advanced or metastatic urothelial carcinoma (RC48-C014): a phase Ib/II dose-escalation and dose-expansion study. Ann. Oncol. 36, 331–339 (2025).

    Article  CAS  PubMed  Google Scholar 

  45. Sheng, X. et al. Disitamab vedotin plus toripalimab in HER2-expressing advanced urothelial cancer. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2511648 (2025).

    Article  PubMed  Google Scholar 

  46. Ma, Y. et al. BL-B01D1, a first-in-class EGFR-HER3 bispecific antibody-drug conjugate, in patients with locally advanced or metastatic solid tumours: a first-in-human, open-label, multicentre, phase 1 study. Lancet Oncol. 25, 901–911 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. Ye, D. et al. BL-B01D1, an EGFR x HER3 bispecific antibody-drug conjugate (ADC), in patients with locally advanced or metastatic urothelial carcinoma (UC) [abstract 1959O]. Ann. Oncol. 35, S1133 (2024).

    Article  Google Scholar 

  48. Sethy, C., Goutam, K., Das, B., Dash, S. R. & Kundu, C. N. Nectin-4 promotes lymphangiogenesis and lymphatic metastasis in breast cancer by regulating CXCR4-LYVE-1 axis. Vasc. Pharmacol. 140, 106865 (2021).

    Article  CAS  Google Scholar 

  49. Yu, E. Y. et al. Enfortumab vedotin after PD-1 or PD-L1 inhibitors in cisplatin-ineligible patients with advanced urothelial carcinoma (EV-201): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 22, 872–882 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. US Food and Drug Administration. FDA grants accelerated approval to enfortumab vedotin-ejfv for metastatic urothelial cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-enfortumab-vedotin-ejfv-metastatic-urothelial-cancer (2019).

  51. US Food and Drug Administration. FDA approves enfortumab vedotin-ejfv with pembrolizumab for locally advanced or metastatic urothelial cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-enfortumab-vedotin-ejfv-pembrolizumab-locally-advanced-or-metastatic-urothelial-cancer (2023).

  52. Powles, T. B. et al. EV-302: Exploratory analysis of nectin-4 expression and response to 1 L enfortumab vedotin (EV) + pembrolizumab (P) in previously untreated locally advanced or metastatic urothelial cancer (la/mUC) [abstract 1966MO]. Ann. Oncol. 35, S1137–S1138 (2024).

    Article  Google Scholar 

  53. Riester, M. et al. Integrative analysis of 1q23.3 copy-number gain in metastatic urothelial carcinoma. Clin. Cancer Res. 20, 1873–1883 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakauma-González, J. A. et al. Comprehensive molecular characterization reveals genomic and transcriptomic subtypes of metastatic urothelial carcinoma. Eur. Urol. 81, 331–336 (2022).

    Article  PubMed  Google Scholar 

  55. Klümper, N. et al. NECTIN4 amplification is frequent in solid tumors and predicts enfortumab vedotin response in metastatic urothelial cancer. J. Clin. Oncol. 42, 2446–2455 (2024).

    Article  PubMed  Google Scholar 

  56. Klümper, N. et al. Membranous expression of target protein is required for ADC response in urothelial cancer. Eur. Urol. 87, e34–e36 (2025).

    Article  PubMed  Google Scholar 

  57. Goldenberg, D. M., Stein, R. & Sharkey, R. M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 9, 28989–29006 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Loriot, Y. et al. TROPHY-U-01, a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors: updated safety and efficacy outcomes. Ann. Oncol. 35, 392–401 (2024).

    Article  CAS  PubMed  Google Scholar 

  59. Powles, T. et al. Sacituzumab govitecan in advanced urothelial carcinoma: TROPiCS-04, a phase III randomized trial. Ann. Oncol. 36, 561–571 (2025).

    Article  CAS  PubMed  Google Scholar 

  60. Loriot, Y. et al. Sacituzumab govitecan demonstrates efficacy across tumor Trop-2 expression levels in patients with advanced urothelial cancer. Clin. Cancer Res. 30, 3179–3188 (2024).

    Article  CAS  PubMed  Google Scholar 

  61. Meric-Bernstam, F. et al. Datopotamab deruxtecan (Dato-DXd) in locally advanced/metastatic urothelial cancer: updated results from the phase 1 TROPIONPanTumor01 study [abstract]. J. Clin. Oncol. 43, 663 (2025).

    Article  Google Scholar 

  62. Ye, D. et al. Efficacy and safety of sacituzumab tirumotecan monotherapy in patients with advanced urothelial carcinoma who progressed on or after prior anti-cancer therapies: report from the phase 1/2 MK-2870-001 study [abstract]. J. Clin. Oncol. 43, 796 (2025).

    Article  Google Scholar 

  63. AstraZeneca. Novel computational pathology-based TROP2 biomarker for datopotamab deruxtecan was predictive of clinical outcomes in patients with non-small cell lung cancer in TROPION-Lung01 Phase III trial. AstraZeneca https://www.astrazeneca.com/media-centre/press-releases/2024/novel-computational-pathology-based-trop2-biomarker-for-dato-dxd-was-predictive-of-clinical-outcomes-in-patients-with-nsclc-in-tropion-lung01-phase-iii-trial.html (2024).

  64. Crabb, S. J. et al. A randomized, double blind, biomarker selected, phase II clinical trial of maintenance PARP inhibition following chemotherapy for metastatic urothelial carcinoma (mUC): final analysis of the ATLANTIS rucaparib arm [abstract]. J. Clin. Oncol. 40, 436 (2022).

    Article  Google Scholar 

  65. Grivas, P. et al. Rucaparib for recurrent, locally advanced, or metastatic urothelial carcinoma (mUC): Results from ATLAS, a phase II open-label trial [abstract]. J. Clin. Oncol. 38, 440 (2020).

    Article  Google Scholar 

  66. Rosenberg, J. E. et al. Durvalumab plus olaparib in previously untreated, platinum-ineligible patients with metastatic urothelial carcinoma: a multicenter, randomized, phase II trial (BAYOU). J. Clin. Oncol. 41, 43–53 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Shariat, S. F. et al. Association of angiogenesis related markers with bladder cancer outcomes and other molecular markers. J. Urol. 183, 1744–1750 (2010).

    Article  PubMed  Google Scholar 

  68. Narayanan, S. & Srinivas, S. Incorporating VEGF-targeted therapy in advanced urothelial cancer. Ther. Adv. Med. Oncol. 9, 33–45 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Font, A. et al. Phase II trial of afatinib in patients with advanced urothelial carcinoma with genetic alterations in ERBB1-3 (LUX-Bladder 1). Br. J. Cancer 130, 434–441 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Petrylak, D. P. et al. Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): overall survival and updated results of a randomised, double-blind, phase 3 trial. Lancet Oncol. 21, 105–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Vilaseca, A. et al. First safety and efficacy results of the Tar-210 erdafitinib intravesical delivery system in patients with non–muscle-invasive bladder cancer with select FGFR alterations [abstract PD48-02]. J. Urol. 211, e987–e988 (2024).

    Article  Google Scholar 

  72. Zhou, Y. et al. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal. Transduct. Target. Ther. 9, 132 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. van der Heijden, M. S. et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma: a long-term overall survival and safety update from the phase 3 imvigor211 clinical trial. Eur. Urol. 80, 7–11 (2021).

    Article  PubMed  Google Scholar 

  75. Powles, T. et al. Avelumab first-line maintenance for advanced urothelial carcinoma: results from the JAVELIN bladder 100 trial after ≥2 years of follow-up. J. Clin. Oncol. 41, 3486–3492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Powles, T. et al. Durvalumab alone and durvalumab plus tremelimumab versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 21, 1574–1588 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Powles, T. et al. Pembrolizumab for advanced urothelial carcinoma: exploratory ctDNA biomarker analyses of the KEYNOTE-361 phase 3 trial. Nat. Med. https://doi.org/10.1038/s41591-024-03091-7 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bristol Myers Squibb. Bristol Myers Squibb provides update on CheckMate -901 trial evaluating Opdivo (nivolumab) plus Yervoy (ipilimumab) as first-line treatment for patients with unresectable or metastatic urothelial carcinoma. Bristol Myers Squibb https://news.bms.com/news/corporate-financial/2022/Bristol-Myers-Squibb-Provides-Update-on-CheckMate--901-Trial-Evaluating-Opdivo-nivolumab-Plus-Yervoy-ipilimumab-as-First-Line-Treatment-for-Patients-with-Unresectable-or-Metastatic-Urothelial-Carcinoma/default.aspx (2022).

  79. Galsky, M. D. et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 395, 1547–1557 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Powles, T. et al. Updated overall survival by circulating tumor DNA status from the phase 3 IMvigor010 trial: adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma. Eur. Urol. 85, 114–122 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. van der Heijden, M. S. et al. Nivolumab plus gemcitabine–cisplatin in advanced urothelial carcinoma. N. Engl. J. Med. 389, 1778–1789 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Petrylak, D. P. et al. Atezolizumab (MPDL3280A) monotherapy for patients with metastatic urothelial cancer long-term outcomes from a phase 1 study. JAMA Oncol. 4, 537–544 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Fradet, Y. et al. Randomized phase III KEYNOTE-045 trial of pembrolizumab versus paclitaxel, docetaxel, or vinflunine in recurrent advanced urothelial cancer: results of >2 years of follow-up. Ann. Oncol. 30, 970–976 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bajorin, D. F. et al. Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma. N. Engl. J. Med. 384, 2102–2114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Van Der Heijden, M. S. et al. Nivolumab plus ipilimumab (NIVO + IPI) vs gemcitabine-carboplatin (gem-carbo) chemotherapy for previously untreated unresectable or metastatic urothelial carcinoma (mUC): Final results for cisplatin-ineligible patients from the checkmate 901 trial [abstract]. J. Clin. Oncol. 43, 4500 (2025).

    Article  Google Scholar 

  87. Powles, T. et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial. Lancet Oncol. 22, 931–945 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Apolo, A. B. et al. Adjuvant pembrolizumab versus observation in muscle-invasive urothelial carcinoma. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2401726 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jardim, D. L., Goodman, A., de Melo Gagliato, D. & Kurzrock, R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39, 154–173 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Necchi, A. et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J. Clin. Oncol. 36, 3353–3360 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Szabados, B. et al. Final results of neoadjuvant atezolizumab in cisplatin-ineligible patients with muscle-invasive urothelial cancer of the bladder. Eur. Urol. 82, 212–222 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Bandini, M. et al. Does the administration of preoperative pembrolizumab lead to sustained remission post-cystectomy? First survival outcomes from the PURE-01 study. Ann. Oncol. 31, 1755–1763 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Boll, L. M. et al. Predicting immunotherapy response of advanced bladder cancer through a meta-analysis of six independent cohorts. Nat. Commun. 16, 1213 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mullane, S. A. et al. Correlation of APOBEC mRNA expression with overall survival and PD-L1 expression in urothelial carcinoma. Sci. Rep. 6, 27702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Middlebrooks, C. D. et al. Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors. Nat. Genet. 48, 1330–1338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Glaser, A. P. et al. APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response. Oncotarget 9, 4537–4548 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhang, C. et al. APOBEC3B and CD274 as combined biomarkers for predicting response to immunotherapy in urothelial carcinoma of the bladder. J. Oncol. 2022, 6042334 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bergstrom, E. N. et al. Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature 602, 510–517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fumet, J. D. et al. Prognostic and predictive role of CD8 and PD-L1 determination in lung tumor tissue of patients under anti-PD-1 therapy. Br. J. Cancer 119, 950–960 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hurkmans, D. P. et al. Granzyme B is correlated with clinical outcome after PD-1 blockade in patients with stage IV non-small-cell lung cancer. J. Immunother. Cancer 8, e000586 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hamidi, H. et al. Molecular heterogeneity in urothelial carcinoma and determinants of clinical benefit to PD-L1 blockade. Cancer Cell 42, 2098–2112.e4 (2024).

    Article  CAS  PubMed  Google Scholar 

  103. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ciardiello, D., Elez, E., Tabernero, J. & Seoane, J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann. Oncol. 31, 1336–1349 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Grivas, P. et al. A phase Ib single-arm trial of bintrafusp alfa (BA) for pretreated, locally advanced/unresectable or metastatic (advanced) urothelial cancer (aUC) [abstract 2374P]. Ann. Oncol. 34, S1209–S1210 (2023).

    Article  Google Scholar 

  106. Kamoun, A. et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 77, 420–433 (2020).

    Article  PubMed  Google Scholar 

  107. Weinstein, J. N. et al. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  CAS  Google Scholar 

  108. Damrauer, J. S. et al. Collaborative study from the Bladder Cancer Advocacy Network for the genomic analysis of metastatic urothelial cancer. Nat. Commun. 13, 6658 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Grivas, P. et al. Validation of a neuroendocrine-like classifier confirms poor outcomes in patients with bladder cancer treated with cisplatin-based neoadjuvant chemotherapy. Urol. Oncol. 38, 262–268 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Philip, E. J. et al. Efficacy of immune checkpoint inhibitors (ICIs) in rare histological variants of bladder cancer [abstract]. J. Clin. Oncol. 38, 502 (2020).

    Article  Google Scholar 

  111. Griffin, J. et al. Verification of molecular subtyping of bladder cancer in the GUSTO clinical trial. J. Pathol. Clin. Res. 10, e12363 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sarfaty, M. et al. Novel genetic subtypes of urothelial carcinoma with differential outcomes on immune checkpoint blockade. J. Clin. Oncol. 41, 3225–3235 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rosenberg, J. E. et al. Atezolizumab monotherapy for metastatic urothelial carcinoma: final analysis from the phase II IMvigor210 trial. ESMO Open. 9, 103972 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bannier, P. A. et al. AI allows pre-screening of FGFR3 mutational status using routine histology slides of muscle-invasive bladder cancer. Nat. Commun. 15, 10914 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Schmauch, B. et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat. Commun. 11, 3877 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sakatani, T. et al. IFN-gamma expression in the tumor microenvironment and CD8-positive tumor-infiltrating lymphocytes as prognostic markers in urothelial cancer patients receiving pembrolizumab. Cancers 14, 263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gil-Jimenez, A. et al. Spatial relationships in the urothelial and head and neck tumor microenvironment predict response to combination immune checkpoint inhibitors. Nat. Commun. 15, 2538 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gunjur, A. et al. A gut microbial signature for combination immune checkpoint blockade across cancer types. Nat. Med. 30, 797–809 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Annakib, S. et al. Gut microbiota as a biomarker for the efficacy of pembrolizumab in patients with advanced urothelial carcinoma treated in a prospective multicenter study [abstract]. J. Clin. Oncol. 43, 825 (2025).

    Article  Google Scholar 

  120. Keller, L. & Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer 19, 553–567 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349, 1483–1489 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Christensen, E. et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free dna in patients with urothelial bladder carcinoma. J. Clin. Oncol. 37, 1547–1557 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Kapriniotis, K., Tzelves, L., Lazarou, L., Mitsogianni, M. & Mitsogiannis, I. Circulating tumour DNA and its prognostic role in management of muscle invasive bladder cancer: a narrative review of the literature. Biomedicines 12, 921 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. van Dorp, J. et al. High- or low-dose preoperative ipilimumab plus nivolumab in stage III urothelial cancer: the phase 1B NABUCCO trial. Nat. Med. 29, 588–592 (2023).

    Article  PubMed  Google Scholar 

  126. Powles, T. et al. Circulating tumor DNA (ctDNA) in patients with muscle-invasive bladder cancer (MIBC) who received perioperative durvalumab (D) in NIAGARA [abstract]. J. Clin. Oncol. 43, 4503 (2025).

    Article  Google Scholar 

  127. Powles, T. et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 595, 432–437 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Jackson-Spence, F. et al. IMvigor011: a study of adjuvant atezolizumab in patients with high-risk MIBC who are ctDNA+ post-surgery. Future Oncol. 19, 509–515 (2023).

    Article  CAS  PubMed  Google Scholar 

  129. Bjerggaard Jensen, J. et al. Identification of bladder cancer patients that could benefit from early post-cystectomy immunotherapy based on serial circulating tumour DNA (ctDNA) testing: preliminary results from the TOMBOLA trial [astract 1960O]. Ann. Oncol. 35, S1133 (2024).

    Article  Google Scholar 

  130. Dana-Farber Cancer Institute. MODERN: an integrated phase 2/3 and phase 3 trial of MRD-based optimization of ADjuvant ThErapy in URothelial CaNcer. Dana-Farber Cancer Institute https://www.dana-farber.org/clinical-trials/24-138 (2025).

  131. Powles, T. et al. ctDNA-guided adjuvant atezolizumab in muscle-invasive bladder cancer. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2511885 (2025).

    Article  PubMed  Google Scholar 

  132. Meza, L., Salgia, N. J., Patel, K. C. & Pal, S. K. Learning from BISCAY: the future of biomarker-based trial design in bladder cancer. Cancer Cell 39, 910–912 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Dyrskjøt, L. et al. Utility of ctDNA in predicting outcome and pathological complete response in patients with bladder cancer as a guide for selective bladder preservation strategies [abstract]. J. Clin. Oncol. 41, 563 (2023).

    Article  Google Scholar 

  134. Lindskrog, S. V. & Dyrskjøt, L. Towards circulating tumor DNA-guided treatment of muscle-invasive bladder cancer. Transl. Androl. Urol. 13, 1056–1060 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Epstein, I. et al. Correlation of circulating tumor DNA (ctDNA) dynamics with clinical response in muscle-invasive bladder cancer (MIBC) patients undergoing trimodality therapy (TMT) [abstract 3245]. Int. J. Radiat. Oncol. Biol. Phys. 120, e564–e565 (2024).

    Article  Google Scholar 

  136. Epstein, I. B. et al. Correlation of circulating tumor DNA (ctDNA) dynamics with clinical response in muscle-invasive bladder cancer (MIBC) patients (pts) undergoing trimodality therapy (TMT) [abstract]. J. Clin. Oncol. 43, 4602 (2025).

    Article  Google Scholar 

  137. Iyer, G. et al. A phase II study of gemcitabine plus cisplatin chemotherapy in patients with muscle-invasive bladder cancer with bladder preservation for those patients whose tumors harbor deleterious DNA damage response (DDR) gene alterations (Alliance A031701) [abstract]. J. Clin. Oncol. 40, TPS4615 (2022).

    Article  Google Scholar 

  138. Geynisman, D. M. et al. Phase II trial of risk-enabled therapy after neoadjuvant chemotherapy for muscle-invasive bladder cancer (RETAIN 1). J. Clin. Oncol. https://doi.org/10.1200/JCO-24-01214 (2024).

    Article  PubMed  Google Scholar 

  139. Galsky, M. D. et al. Co-primary endpoint analysis of HCRN GU 16-257: phase 2 trial of gemcitabine, cisplatin, plus nivolumab with selective bladder sparing in patients with muscle-invasive bladder cancer (MIBC) [abstract]. J. Clin. Oncol. 41, 447 (2023).

    Article  Google Scholar 

  140. Gao, X. et al. Prognostic and predictive role of circulating tumor DNA detection in patients with muscle invasive bladder cancer: a systematic review and meta-analysis. Cancer Cell Int. 25, 75 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cicatiello, A. G. et al. Circulating miRNAs in genitourinary cancer: pioneering advances in early detection and diagnosis. J. Liq. Biopsy 8, 100296 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  142. St-Laurent, M.-P., Eigl, B. J., Yuan, R., Chang, S. & Black, P. C. NEO-BLAST: Neoadjuvant therapy for bladder cancer followed by active surveillance vs treatment [abstract]. J. Clin. Oncol. 43, TPS890 (2025).

    Article  Google Scholar 

  143. Bahleda, R. et al. Phase I, first-in-human study of futibatinib, a highly selective, irreversible FGFR1–4 inhibitor in patients with advanced solid tumors. Ann. Oncol. 31, 1405–1412 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Koshkin, V. S. et al. Phase II study of futibatinib plus pembrolizumab in patients (pts) with advanced/metastatic urothelial carcinoma (mUC): Final analysis of efficacy and safety [abstract 1965MO]. Ann. Oncol. 35, S1136–S1137 (2024).

    Article  Google Scholar 

  145. Lyou, Y. et al. Infigratinib in early-line and salvage therapy for FGFR3-altered metastatic urothelial carcinoma. Clin. Genitourin. Cancer 20, 35–42 (2022).

    Article  PubMed  Google Scholar 

  146. Pal, S. K. et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1-3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov. 8, 812–821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nogova, L. et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study. J. Clin. Oncol. 35, 157–165 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Necchi, A. et al. Pemigatinib for metastatic or surgically unresectable urothelial carcinoma with FGF/FGFR genomic alterations: final results from FIGHT-201. Ann. Oncol. 35, 200–210 (2024).

    Article  CAS  PubMed  Google Scholar 

  149. Grivas, P. et al. Evaluating Debio 1347 in patients with FGFR fusion-positive advanced solid tumors from the FUZE multicenter, open-label, phase II basket trial. Clin. Cancer Res. 30, 4572–4583 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Drakaki, A., Powles, T. B. & Wang, Y. Circulating tumor DNA (ctDNA) clearance with neoadjuvant durvalumab (D) + tremelimumab (T) + enfortumab vedotin (EV) for cisplatin-ineligible muscle-invasive bladder cancer (MIBC) from the safety run-in cohort of the phase III VOLGA trial [abstract 1970MO]. Ann. Oncol. 35, S1140 (2024).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.C.M. and T.P. researched data for the article and contributed substantially to discussions of content. All authors wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Sara Coca Membribes or Thomas Powles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks P. Grivas, Y. Loriot and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coca Membribes, S., Szabados, B. & Powles, T. Towards biomarker-driven therapies for urothelial carcinoma. Nat Rev Clin Oncol 23, 92–106 (2026). https://doi.org/10.1038/s41571-025-01095-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-025-01095-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer