Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The global epidemiology of acute myeloid leukaemia

Abstract

Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with an incidence that increases with age and varies widely across regions owing to differences in risk factors, diagnostic capabilities, recording in cancer registries and access to health care. Despite improved outcomes over the past decade owing to the approvals of various novel therapies as well as improvements in supportive care and better access to, and safety of, allogeneic haematopoietic stem cell transplantation, progress has largely been confined to high-income countries. Patients in low-income or middle-income countries often remain reliant on older cytotoxic regimens, when available. The incidence of AML in high-income countries has increased over the past decades owing to population ageing in many of these countries as well as improved access to diagnostics. By contrast, AML has a lower incidence but is associated with higher mortality and morbidity in most low-income or middle-income countries. Multiple risk factors predispose individuals to AML, including germline variants, environmental and lifestyle factors, prior exposure to chemotherapy and radiation, and certain medical conditions and comorbidities. In this Review, we highlight global trends in the incidence, risk factors, demographic disparities and treatment-related outcomes of patients with AML across diverse geographical regions. We also outline the urgent need to improve the cancer registry infrastructure, expand global surveillance, leverage artificial intelligence for data analysis and promote equitable access to clinical trials.

Key points

  • The global incidence of acute myeloid leukaemia (AML) has increased substantially over the past three decades, largely reflecting population ageing, improved diagnostics and enhanced cancer registry reporting.

  • The incidence of AML as well as the outcomes of patients vary widely across regions, with high-income countries reporting higher incidences but markedly lower mortality compared with resource-limited settings.

  • Multiple risk factors contribute to AML development, including germline predispositions, prior cytotoxic therapy, environmental exposures and clonal haematopoiesis.

  • Demographic and socioeconomic disparities influence AML incidence and survival, with older age and lower socioeconomic status associated with worse outcomes.

  • Therapeutic advances, including targeted agents and improved access to transplantation, have significantly improved survival in developed countries although implementation remains limited in low-income and middle-income regions.

  • Future global efforts should focus on strengthening cancer registries, expanding access to diagnostics and clinical trials, and leveraging artificial intelligence to reduce disparities and improve AML surveillance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Age-standardized incidence rates of AML by country.
Fig. 2: Demographic patterns of AML incidence in the USA.
Fig. 3: Age-adjusted acute myeloid leukaemia mortality rates in the USA, 2000–2023.
Fig. 4: Timelines of approvals for novel treatments of AML.

Similar content being viewed by others

References

  1. Khoury, J. D. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 36, 1703–1719 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen, P. et al. Global, national, and regional burden of acute myeloid leukemia among 60-89 years-old individuals: insights from a study covering the period 1990 to 2019. Front. Public Health 11, 1329529 (2023).

    Article  PubMed  Google Scholar 

  3. El Chaer, F., Hourigan, C. S. & Zeidan, A. M. How I treat AML incorporating the updated classifications and guidelines. Blood 141, 2813–2823 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Meillon-Garcia, L. A. & Demichelis-Gómez, R. Access to therapy for acute myeloid leukemia in the developing world: barriers and solutions. Curr. Oncol. Rep. 22, 125 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Siegel, R. L., Kratzer, T. B., Giaquinto, A. N., Sung, H. & Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 75, 10–45 (2025).

    PubMed  PubMed Central  Google Scholar 

  6. Zhou, Y. et al. Global, regional, and national burden of acute myeloid leukemia, 1990-2021: a systematic analysis for the Global Burden of Disease study 2021. Biomark. Res. 12, 101 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yi, M. et al. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the Global Burden of Disease study 2017. J. Hematol. Oncol. 13, 72 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease study 2021. Lancet 403, 2100–2132 (2024).

    Article  Google Scholar 

  9. Cancer Research UK. Acute Myeloid Leukaemia (AML) Incidence Statistics https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia-aml/incidence#heading-Three (2025).

  10. National Cancer Institute — Surveillance, Epidemiology, and End Results Program. Cancer Statistics Explorer Network https://seer.cancer.gov/statistics-network/explorer/application.html?site=96&data_type=1&graph_type=1&compareBy=sex&chk_sex_3=3&chk_sex_2=2&rate_type=2&race=1&age_range=1&advopt_precision=1&advopt_show_ci=on&hdn_view=1&advopt_show_apc=on&advopt_display=1#resultsRegion1 (2025).

  11. Vardiman, J. W. et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114, 937–951 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Godley, L. A., DiNardo, C. D. & Bolton, K. Germline predisposition in hematologic malignancies: testing, management, and implications. Am. Soc. Clin. Oncol. Educ. Book 44, e432218 (2024).

    Article  PubMed  Google Scholar 

  13. Feurstein, S. K. et al. Germline predisposition variants occur in myelodysplastic syndrome patients of all ages. Blood 140, 2533–2548 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feurstein, S. et al. Germline variants drive myelodysplastic syndrome in young adults. Leukemia 35, 2439–2444 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Döhner, H. et al. Diagnosis and management of AML in Adults: 2022 ELN recommendations from an international expert panel. Blood 140, 1345–1377 (2022).

    Article  PubMed  Google Scholar 

  16. Makishima, H. et al. Germ line DDX41 mutations define a unique subtype of myeloid neoplasms. Blood 141, 534–549 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Cheloor Kovilakam, S. et al. Prevalence and significance of DDX41 gene variants in the general population. Blood 142, 1185–1192 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Saygin, C. et al. Allogeneic hematopoietic stem cell transplant outcomes in adults with inherited myeloid malignancies. Blood Adv. 7, 549–554 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Berger, G. et al. Re-emergence of acute myeloid leukemia in donor cells following allogeneic transplantation in a family with a germline DDX41 mutation. Leukemia 31, 520–522 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Hamidi, A. et al. Clinical guideline variability in the diagnosis of hereditary hematopoietic malignancy syndromes. Leuk. Lymphoma 64, 1562–1565 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Padron, E. et al. Germ line tissues for optimal detection of somatic variants in myelodysplastic syndromes. Blood 131, 2402–2405 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krystel-Whittemore, M. et al. Cell-free DNA from nail clippings as source of normal control for genomic studies in hematologic malignancies. Haematologica 109, 3269–3281 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ceyhan-Birsoy, O. et al. Universal germline genetic testing in patients with hematologic malignancies using DNA isolated from nail clippings. Haematologica 109, 3383–3390 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kosmidou, A., Tragiannidis, A. & Gavriilaki, E. Myeloid leukemia of Down syndrome. Cancers 15, 3265 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, J. & Kalev-Zylinska, M. L. Advances in molecular characterization of myeloid proliferations associated with Down syndrome. Front. Genet. 13, 891214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shallis, R. M., Wang, R., Davidoff, A., Ma, X. & Zeidan, A. M. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 36, 70–87 (2019).

    Article  PubMed  Google Scholar 

  27. Samsel, K. et al. Leukemia incidence by occupation and industry: a cohort study of 2.3 million workers from Ontario, Canada. Int. J. Environ. Res. Public Health 21, 981 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Maele-Fabry, G., Duhayon, S. & Lison, D. A systematic review of myeloid leukemias and occupational pesticide exposure. Cancer Causes Control. 18, 457–478 (2007).

    PubMed  Google Scholar 

  29. Tsai, R. J. et al. Acute myeloid leukemia risk by industry and occupation. Leuk. Lymphoma 55, 2584–2591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vigliani, E. C. & Saita, G. Benzene and leukemia. N. Engl. J. Med. 271, 872–876 (1964).

    Article  CAS  PubMed  Google Scholar 

  31. Loomis, D. et al. Carcinogenicity of benzene. Lancet Oncol. 18, 1574–1575 (2017).

    Article  PubMed  Google Scholar 

  32. Aksoy, M., Erdem, Ş & DinÇol, G. Leukemia in shoe-workers exposed chronically to benzene. Blood 44, 837–841 (1974).

    Article  CAS  PubMed  Google Scholar 

  33. Linet, M. S. et al. Benzene exposure response and risk of myeloid neoplasms in Chinese workers: a multicenter case–cohort study. J. Natl Cancer Inst. 111, 465–474 (2018).

    Article  PubMed Central  Google Scholar 

  34. National Toxicology Program. NTP toxicology and carcinogenesis studies of benzene (CAS No. 71-43-2) in F344/N rats and B6C3F1 mice (gavage studies). Natl Toxicol. Program Tech. Rep. Ser. 289, 1–277 (1986).

    Google Scholar 

  35. Maltoni, C., Ciliberti, A., Cotti, G., Conti, B. & Belpoggi, F. Benzene, an experimental multipotential carcinogen: results of the long-term bioassays performed at the Bologna institute of oncology. Env. Health Perspect. 82, 109–124 (1989).

    Article  CAS  Google Scholar 

  36. Ge, C. et al. Occupational exposure to benzene and mortality risk of lymphohaematopoietic cancers in the Swiss national cohort. Scand. J. Work. Env. Health 50, 351–358 (2024).

    Article  CAS  Google Scholar 

  37. Zhou, J. et al. Benzene-induced hematotoxicity enhances the self-renewal ability of HSPCs in Mll-Af9 mice. Toxicology 511, 154061 (2025).

    Article  CAS  PubMed  Google Scholar 

  38. Vivarelli, S., Sevim, C., Giambò, F. & Fenga, C. Integrated computational analysis reveals early genetic and epigenetic AML susceptibility biomarkers in benzene-exposed workers. Int. J. Mol. Sci. 26, 1138 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Galatro, D. et al. Considerations for using tree-based machine learning to assess causation between demographic and environmental risk factors and health outcomes. Env. Sci. Pollut. Res. Int. 31, 60927–60935 (2024).

    Article  Google Scholar 

  40. Allegra, A. et al. Formaldehyde exposure and acute myeloid leukemia: a review of the literature. Medicina 55, 638 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Checkoway, H. et al. Formaldehyde exposure and mortality risks from acute myeloid leukemia and other lymphohematopoietic malignancies in the US National Cancer Institute cohort study of workers in formaldehyde industries. J. Occup. Env. Med. 57, 785–794 (2015).

    Article  CAS  Google Scholar 

  42. Cox, L. A. Jr., Thompson, W. J. & Mundt, K. A. Interventional probability of causation (IPoC) with epidemiological and partial mechanistic evidence: benzene vs. formaldehyde and acute myeloid leukemia (AML). Crit. Rev. Toxicol. 54, 252–289 (2024).

    Article  PubMed  Google Scholar 

  43. International Agency for Research on Cancer. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Agents Classified by the IARC Monographs, Volumes 1–135 https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (2025).

  44. Poynter, J. N. et al. Obesity over the life course and risk of acute myeloid leukemia and myelodysplastic syndromes. Cancer Epidemiol. 40, 134–140 (2016).

    Article  PubMed  Google Scholar 

  45. Castillo, J. J. et al. Obesity but not overweight increases the incidence and mortality of leukemia in adults: a meta-analysis of prospective cohort studies. Leuk. Res. 36, 868–875 (2012).

    Article  PubMed  Google Scholar 

  46. Shamriz, O. et al. Higher body mass index in 16-19 year-old Jewish adolescents of North African, Middle Eastern and European origins is a predictor of acute myeloid leukemia: a cohort of 2.3 million Israelis. Cancer Causes Control. 28, 331–339 (2017).

    PubMed  Google Scholar 

  47. Foran, J. M. et al. Obesity in adult acute myeloid leukemia is not associated with inferior response or survival even when dose capping anthracyclines: an ECOG-ACRIN analysis. Cancer 129, 2479–2490 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Lange, B. J. et al. Mortality in overweight and underweight children with acute myeloid leukemia. JAMA 293, 203–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Inaba, H. et al. Effect of body mass index on the outcome of children with acute myeloid leukemia. Cancer 118, 5989–5996 (2012).

    Article  PubMed  Google Scholar 

  50. Medeiros, B. C., Othus, M., Estey, E. H., Fang, M. & Appelbaum, F. R. Impact of body-mass index on the outcome of adult patients with acute myeloid leukemia. Haematologica 97, 1401–1404 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wenzell, C. M. et al. Outcomes in obese and overweight acute myeloid leukemia patients receiving chemotherapy dosed according to actual body weight. Am. J. Hematol. 88, 906–909 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Fircanis, S., Merriam, P., Khan, N. & Castillo, J. J. The relation between cigarette smoking and risk of acute myeloid leukemia: an updated meta-analysis of epidemiological studies. Am. J. Hematol. 89, E125–E132 (2014).

    Article  PubMed  Google Scholar 

  53. Alqahtani, S., Figueroa, M., Ma, H. & Chandra, J. Investigating the impact of smoking traditional and E-cigarettes on acute myeloid leukemia progression. Blood 142, 5702 (2023).

    Article  Google Scholar 

  54. Fiebelkorn, S. & Meredith, C. Estimation of the leukemia risk in human populations exposed to benzene from tobacco smoke using epidemiological data. Risk Anal. 38, 1490–1501 (2018).

    Article  PubMed  Google Scholar 

  55. Bolton, K. L. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat. Genet. 52, 1219–1226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Levin, M. G. et al. Genetics of smoking and risk of clonal hematopoiesis. Sci. Rep. 12, 7248 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rota, M. et al. Alcohol drinking and risk of leukemia — a systematic review and meta-analysis of the dose–risk relation. Cancer Epidemiol. 38, 339–345 (2014).

    Article  PubMed  Google Scholar 

  58. Gorini, G. et al. Alcohol consumption and risk of leukemia: a multicenter case–control study. Leuk. Res. 31, 379–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. McNerney, M. E., Godley, L. A. & Le Beau, M. M. Therapy-related myeloid neoplasms: when genetics and environment collide. Nat. Rev. Cancer 17, 513–527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arber, D. A. et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemia: integrating morphological, clinical, and genomic data. Blood 140, 1200–1228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wong, T. N. et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518, 552–555 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Bolton, K. et al. Oncologic therapy for solid tumors alters the risk of clonal hematopoiesis. Blood 132, 747 (2018).

    Article  Google Scholar 

  63. Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21, 374–82.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meisel, M. et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557, 580–584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Douple, E. B. et al. Long-term radiation-related health effects in a unique human population: lessons learned from the atomic bomb survivors of Hiroshima and Nagasaki. Disaster Med. Public Health Prep. 5 (Suppl. 1), S122–S133 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kesminiene, A. et al. Risk of hematological malignancies among chernobyl liquidators. Radiat. Res. 170, 721–735 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mohan, A. K. et al. Cancer and other causes of mortality among radiologic technologists in the United States. Int. J. Cancer 103, 259–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Sekeres, M. A. & Taylor, J. Diagnosis and treatment of myelodysplastic syndromes: a review. JAMA 328, 872–880 (2022).

    Article  PubMed  Google Scholar 

  69. Hall, T., Gurbuxani, S. & Crispino, J. D. Malignant progression of preleukemic disorders. Blood 143, 2245–2255 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lindsley, R. C. et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125, 1367–1376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, T. et al. The clonal origins of leukemic progression of myelodysplasia. Leukemia 31, 1928–1935 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Makishima, H. et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat. Genet. 49, 204–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, J. et al. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat. Med. 25, 103–110 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tefferi, A. et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 124, 2507–2513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bewersdorf, J. P. & Rampal, R. K. Hitting the brakes on accelerated and blast-phase myeloproliferative neoplasms: current and emerging concepts. Hematology Am. Soc. Hematol. Educ. Program 2022, 218–224 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tefferi, A. et al. Blast phase myeloproliferative neoplasm: Mayo-AGIMM study of 410 patients from two separate cohorts. Leukemia 32, 1200–1210 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Palandri, F. et al. Risk factors for progression to blast phase and outcome in 589 patients with myelofibrosis treated with ruxolitinib: real-world data. Hematol. Oncol. 38, 372–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Tefferi, A. et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia 27, 1874–1881 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kiladjian, J. J. et al. Long-term incidence of hematological evolution in three French prospective studies of hydroxyurea and pipobroman in polycythemia vera and essential thrombocythemia. Semin. Thromb. Hemost. 32(4 Pt 2), 417–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Björkholm, M. et al. Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J. Clin. Oncol. 29, 2410–2415 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ortmann, C. A. et al. Effect of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 372, 601–612 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Miles, L. A. et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 587, 477–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lasho, T. L. et al. Targeted next-generation sequencing in blast phase myeloproliferative neoplasms. Blood Adv. 2, 370–380 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rampal, R. et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc. Natl Acad. Sci. USA 111, E5401–E5410 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lundberg, P. et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 123, 2220–2228 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Rodriguez-Meira, A. et al. Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution. Nat. Genet. 55, 1531–1541 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Koschmieder, S. & Chatain, N. Role of inflammation in the biology of myeloproliferative neoplasms. Blood Rev. https://doi.org/10.1016/j.blre.2020.100711 (2020).

    Article  PubMed  Google Scholar 

  89. Sun, L. & Babushok, D. V. Secondary myelodysplastic syndrome and leukemia in acquired aplastic anemia and paroxysmal nocturnal hemoglobinuria. Blood 136, 36–49 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Young, N. S. Aplastic anemia. N. Engl. J. Med. 379, 1643–1656 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yoshizato, T. et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N. Engl. J. Med. 373, 35–47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Park, H. S. et al. Telomere length and somatic mutations in correlation with response to immunosuppressive treatment in aplastic anaemia. Br. J. Haematol. 178, 603–615 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Dumitriu, B. et al. Telomere attrition and candidate gene mutations preceding monosomy 7 in aplastic anemia. Blood 125, 706–709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maciejewski, J. P., Risitano, A., Sloand, E. M., Nunez, O. & Young, N. S. Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood 99, 3129–3135 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Rogers, Z. R. et al. Immunosuppressive therapy for pediatric aplastic anemia: a North American Pediatric Aplastic Anemia Consortium study. Haematologica 104, 1974–1983 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. de Latour, R. P. et al. Paroxysmal nocturnal hemoglobinuria: natural history of disease subcategories. Blood 112, 3099–3106 (2008).

    Article  PubMed  Google Scholar 

  97. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weeks, L. D. et al. Prediction of risk for myeloid malignancy in clonal hematopoiesis. NEJM Evid. 2, EVIDoa2200310 (2023).

    Article  Google Scholar 

  101. Dores, G. M., Devesa, S. S., Curtis, R. E., Linet, M. S. & Morton, L. M. Acute leukemia incidence and patient survival among children and adults in the United States, 2001-2007. Blood 119, 34–43 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jaime-Pérez, J. C. et al. Characteristics and clinical evolution of patients with acute myeloblastic leukemia in northeast Mexico: an eight-year experience at a university hospital. Acta Haematol. 132, 144–151 (2014).

    Article  PubMed  Google Scholar 

  103. Colunga-Pedraza, P. R., Gomez-Cruz, G. B., Colunga-Pedraza, J. E. & Ruiz-Argüelles, G. J. Geographic hematology: some observations in Mexico. Acta Haematol. 140, 114–120 (2018).

    Article  PubMed  Google Scholar 

  104. Meng, C. Y., Noor, P. J., Ismail, A., Ahid, M. F. & Zakaria, Z. Cytogenetic profile of de novo acute myeloid leukemia patients in Malaysia. Int. J. Biomed. Sci. 9, 26–32 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bahl, A. et al. Long-term outcomes for patients with acute myeloid leukemia: a single-center experience from AIIMS, India. Asia Pac. J. Clin. Oncol. 11, 242–252 (2015).

    Article  PubMed  Google Scholar 

  106. Juliusson, G. et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish acute leukemia registry. Blood 113, 4179–4187 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Alshemmari, S. H., Almazyad, M., Ram, M., John, L. M. & Alhuraiji, A. Epidemiology of de novo acute myeloid leukemia in kuwait per the 2016 WHO classification. Med. Princ. Pract. 31, 284–292 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chien, L.-N. et al. Epidemiology and survival outcomes of acute myeloid leukemia patients in Taiwan: a national population-based analysis from 2001 to 2015. J. Formos. Med. Assoc. 122, 505–513 (2023).

    Article  PubMed  Google Scholar 

  109. Tettero, J. M., Cloos, J. & Bullinger, L. Acute myeloid leukemia: does sex matter? Leukemia 38, 2329–2331 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tebbi, C. K. Etiology of acute leukemia: a review. Cancers 13, 2256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. De-Morgan, A., Meggendorfer, M., Haferlach, C. & Shlush, L. Male predominance in AML is associated with specific preleukemic mutations. Leukemia 35, 867–870 (2021).

    Article  PubMed  Google Scholar 

  112. Douer, D. et al. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood 87, 308–313 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Brunner, A. M. et al. Population-based disparities in survival among patients with core-binding factor acute myeloid leukemia: a SEER database analysis. Leuk. Res. 38, 773–780 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wang, X. et al. Evolving racial/ethnic disparities in AML survival in the novel therapy era. Blood Adv. 9, 533–544 (2025).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, H. et al. Impact of patient demographics on treatment outcomes in AML: a population-based registry in England, 2013-2020. Blood Adv. 8, 4593–4605 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bhatnagar, B. et al. Poor survival and differential impact of genetic features of black patients with acute myeloid leukemia. Cancer Discov. 11, 626–637 (2021).

    Article  PubMed  Google Scholar 

  117. Hantel, A. et al. Racial and ethnic enrollment disparities and demographic reporting requirements in acute leukemia clinical trials. Blood Adv. 5, 4352–4360 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Olivieri, D. J. et al. Impact of socioeconomic disparities on outcomes in adults undergoing allogeneic hematopoietic cell transplantation for acute myeloid leukemia. Leukemia 38, 865–876 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Nielsen, L. H. et al. Socioeconomic status and overall survival among patients with hematological malignant neoplasms. JAMA Netw. Open 7, e241112 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Meyer, C. L. et al. Utilization of allogeneic hematopoietic stem cell transplantation among patients with newly diagnosed acute myeloid leukemia in California: a population-based linked dataset study. Haematologica 110, 368–377 (2025).

    PubMed  Google Scholar 

  121. Bhatt, V. R. et al. Early mortality and overall survival of acute myeloid leukemia based on facility type. Am. J. Hematol. 92, 764–771 (2017).

    Article  PubMed  Google Scholar 

  122. Ho, G. et al. Decreased early mortality associated with the treatment of acute myeloid leukemia at national cancer institute-designated cancer centers in California. Cancer 124, 1938–1945 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Bierenbaum, J. et al. Racial differences in presentation, referral and treatment patterns and survival in adult patients with acute myeloid leukemia: a single-institution experience. Leuk. Res. 36, 140–145 (2012).

    Article  PubMed  Google Scholar 

  124. Hahn, A., Giri, S., Yaghmour, G. & Martin, M. G. Early mortality in acute myeloid leukemia. Leuk. Res. 39, 505–509 (2015).

    Article  PubMed  Google Scholar 

  125. Zeidan, A. M. et al. Patterns of care and clinical outcomes with cytarabine-anthracycline induction chemotherapy for AML patients in the United States. Blood Adv. 4, 1615–1623 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Gershon, A. et al. Early real-world first-line treatment with venetoclax plus HMAs versus HMA monotherapy among patients with AML in a predominately US community setting. Clin. Lymphoma Myeloma Leuk. 23, e222–e231 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Vachhani, P. et al. Venetoclax and hypomethylating agents as first-line treatment in newly diagnosed patients with AML in a predominately community setting in the US. Oncologist 27, 907–918 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Bhatt, V. R. et al. Outcomes of older adults with AML treated in community versus academic centers: an analysis of alliance trials. JCO Oncol. Pract. 19, e877–e891 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Patel, D. et al. Global burden and trends in acute myeloid leukemia in the European Union from 1990 to 2021: insights from the Global Burden of Disease study, 2021. Clin. Lymphoma Myeloma Leuk. 24, S337 (2024).

    Article  Google Scholar 

  130. Othman, J. et al. Real-world outcomes of newly diagnosed AML treated with venetoclax and azacitidine or low-dose cytarabine in the UK NHS. Blood Neoplasia 1, 100017 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Benicio, M. T. L. et al. Evaluation of the European LeukemiaNet recommendations for predicting outcomes of patients with acute myeloid leukemia treated in low- and middle-income countries (LMIC): a Brazilian experience. Leuk. Res. 60, 109–114 (2017).

    Article  PubMed  Google Scholar 

  132. Demichelis-Gómez, R. et al. Acute myeloid leukemia in Mexico: the specific challenges of a developing country. Results from a multicenter national registry. Clin. Lymphoma Myeloma Leuk. 20, e295–e303 (2020).

    Article  PubMed  Google Scholar 

  133. Kanakasetty, G. B. et al. Treatment patterns and comparative analysis of non-intensive regimens in elderly acute myeloid leukemia patients — a real-world experience from India. Ann. Hematol. 98, 881–888 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Haier, J., Sleeman, J. & Schäfers, J. Editorial series: cancer care in low- and middle-income countries. Clin. Exp. Metastasis 36, 477–480 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Genç, E. E., Saraç, İ., Arslan, H. & Eşkazan, A. E. Diagnostic and treatment obstacles in acute myeloid leukemia: social, operational, and financial. Oncol. Ther. 11, 145–152 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Philip, C. et al. Acute myeloid leukaemia: challenges and real world data from India. Br. J. Haematol. 170, 110–117 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Jaime-Pérez, J. C. et al. Outcomes of adolescents and young adults with acute myeloid leukemia treated in a single Latin American center. Clin. Lymphoma Myeloma Leuk. 18, 286–292 (2018).

    Article  PubMed  Google Scholar 

  138. Jabo, B., Morgan, J. W., Martinez, M. E., Ghamsary, M. & Wieduwilt, M. J. Sociodemographic disparities in chemotherapy and hematopoietic cell transplantation utilization among adult acute lymphoblastic and acute myeloid leukemia patients. PLoS One 12, e0174760 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dehn, J. et al. Likelihood of proceeding to allogeneic hematopoietic cell transplantation in the United States after search activation in the national registry: impact of patient age, disease, and search prognosis. Transpl. Cell Ther. 27, 184.e1–e13 (2021).

    Google Scholar 

  140. Barker, J. N. et al. Racial disparities in access to HLA-matched unrelated donor transplants: a prospective 1312-patient analysis. Blood Adv. 3, 939–944 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bhatt, V. R., Chen, B., Gyawali, B. & Lee, S. J. Socioeconomic and health system factors associated with lower utilization of hematopoietic cell transplantation in older patients with acute myeloid leukemia. Bone Marrow Transpl. 53, 1288–1294 (2018).

    Article  CAS  Google Scholar 

  142. Paulson, K. et al. Inferior access to allogeneic transplant in disadvantaged populations: a center for international blood and marrow transplant research analysis. Biol. Blood Marrow Transpl. 25, 2086–2090 (2019).

    Article  Google Scholar 

  143. Delamater, P. L. & Uberti, J. P. Geographic access to hematopoietic cell transplantation services in the United States. Bone Marrow Transpl. 51, 241–248 (2016).

    Article  CAS  Google Scholar 

  144. Bona, K. et al. Neighborhood poverty and pediatric allogeneic hematopoietic cell transplantation outcomes: a CIBMTR analysis. Blood 137, 556–568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hong, S. et al. Community health status and outcomes after allogeneic hematopoietic cell transplantation in the United States. Cancer 127, 609–618 (2021).

    Article  PubMed  Google Scholar 

  146. Majhail, N. S. et al. Transplant center characteristics and survival after allogeneic hematopoietic cell transplantation in adults. Bone Marrow Transpl. 55, 906–917 (2020).

    Article  Google Scholar 

  147. Tokaz, M. C. et al. An analysis of the worldwide utilization of hematopoietic stem cell transplantation for acute myeloid leukemia. Transpl. Cell Ther. 29, 279.e1–e10 (2023).

    Google Scholar 

  148. Yates, J. W., Wallace, H. J. Jr., Ellison, R. R. & Holland, J. F. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother. Rep. 57, 485–488 (1973).

    CAS  PubMed  Google Scholar 

  149. Lambert, J. et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica 104, 113–119 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Amadori, S. et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 Trial. J. Clin. Oncol. 34, 972–979 (2016).

    Article  PubMed  Google Scholar 

  151. Stone, R. M. et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. J. Med. 377, 454–464 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Stein, E. M. et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130, 722–731 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lancet, J. E. et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J. Clin. Oncol. 36, 2684–2692 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. DiNardo, C. D. et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med. 383, 617–629 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Wei, A. H. et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood 135, 2137–2145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. DiNardo, C. D. et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl. J. Med. 378, 2386–2398 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Perl, A. E. et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-Mutated AML. N. Engl. J. Med. 381, 1728–1740 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Montesinos, P. et al. Ivosidenib and azacitidine in IDH1-mutated acute myeloid leukemia. N. Engl. J. Med. 386, 1519–1531 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. de Botton, S. et al. Olutasidenib (FT-2102) induces durable complete remissions in patients with relapsed or refractory IDH1-mutated AML. Blood Adv. 7, 3117–3127 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Wei, A. H. et al. Oral azacitidine maintenance therapy for acute myeloid leukemia in first remission. N. Engl. J. Med. 383, 2526–2537 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Erba, H. P. et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 401, 1571–1583 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Issa, G. C. et al. Menin inhibition with revumenib for KMT2A-rearranged relapsed or refractory acute leukemia (AUGMENT-101). J. Clin. Oncol. 43, 75–84 (2025).

    Article  CAS  PubMed  Google Scholar 

  163. Huls, G., Woolthuis, C. M. & Schuringa, J. J. Menin inhibitors in the treatment of acute myeloid leukemia. Blood 145, 561–566 (2025).

    Article  CAS  PubMed  Google Scholar 

  164. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease study 2015. Lancet 388, 1459–1544 (2016).

    Article  Google Scholar 

  165. Linet, M. S. et al. Survival of adult AML patients treated with chemotherapy in the U.S. population by age, race and ethnicity, sex, calendar-year period, and AML subgroup, 2001-2019. EClinicalMedicine 71, 102549 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Van Eycken, L. J. et al. Future of population-based cancer registries: a global perspective — a survey of population-based cancer registries. Int. J. Cancer 157, 1566–1576 (2025).

    Article  CAS  PubMed  Google Scholar 

  167. Anton-Vazquez, V. et al. Improving anaemia diagnosis using peripheral blood smear with remote interpretation in adults living with HIV with moderate to severe anaemia: a prospective study nested within the Kilombero and Ulanga antiretroviral cohort. PLoS One 18, e0293084 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chukwu, O. A., Nnogo, C. C. & Essue, B. Task shifting to nonphysician health workers for improving access to care and treatment for cancer in low- and middle-income countries — a systematic review. Res. Soc. Adm. Pharm. 19, 1511–1519 (2023).

    Article  Google Scholar 

  169. Varon, M. L. et al. Project ECHO cancer initiative: a tool to improve care and increase capacity along the continuum of cancer care. J. Cancer Educ. 36 (Suppl. 1), 25–38 (2021).

    Article  PubMed  Google Scholar 

  170. Bamodu, O. A. & Chung, C. C. Cancer care disparities: overcoming barriers to cancer control in low- and middle-income countries. JCO Glob. Oncol. 10, e2300439 (2024).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is partially supported by a grant from the Edwards P. Evans Foundation. The authors used an artificial intelligence-based tool designed for scholarly writing, specifically ‘Paperpal’, to assist in refining the language and improving the writing quality. No artificial intelligence tools were used to summarize the content or any other form of writing. The authors take full responsibility for the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Amer M. Zeidan.

Ethics declarations

Competing interests

F.E.C. has acted as a consultant and/or adviser of AbbVie, Amgen, the Association of Community Cancer Centers, Bristol Myers Squibb (BMS), CTI BioPharma, Daiichi Sankyo, DAVA Oncology, Geron, MorphoSys, Novartis, PharmaEssentia, Sobi, Sumitomo Pharma Oncology, Syndax and Taiho Oncology; he also received a travel grant from DAVA Oncology. M.S. has acted as a consultant and/or adviser of Boston Consulting, BMS, Dedham group, GSK, GLG Insights, Kymera, Kura, Novartis, Rigel, Sierra Oncology, Sobi and Syndax; has participated in CME activity for Clinical Care Options, Curis Oncology, Haymarket Media and Novartis; and is a member of the Medical Safety Monitoring Board for Keros Pharmaceuticals. A.M.Z. has participated in advisory boards, consulted for, participated in clinical trial committees for and/or received honoraria from AbbVie, Agios, Akesobio, Amgen, Astellas, Beigene, BioCryst, Boehringer-Ingelheim, Celgene/BMS, Chiesi/Cornerstone Biopharma, Daiichi Sankyo, Dr Reddy, Epizyme, Faron, Fibrogen, Genentech, Geron, Glycomimetics, Gilead, GSK, Janssen, Jasper, Karyopharm, Keros, Kura, Kyowa Kirin, Notable, Novartis, Orum, Otsuka, Pfizer, Regeneron, Rigel, Seattle Genetics, Shattuck Labs, Schrodinger, Syndax, Syros, Servier, Takeda, Treadwell, Taiho, Vincerx, and Zentalis. J.P.B. declares no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks the anonymous reviewers.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Chaer, F., Bewersdorf, J.P., Stahl, M. et al. The global epidemiology of acute myeloid leukaemia. Nat Rev Clin Oncol 23, 107–120 (2026). https://doi.org/10.1038/s41571-025-01099-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-025-01099-7

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer