Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Discovery of predictive biomarkers for cancer therapy through computational approaches

Abstract

Precision oncology involves the use of predictive biomarkers to personalize treatment. However, for most cancer therapeutics or combination regimens, effective biomarkers have been elusive. This challenge has fuelled efforts to interrogate increasingly diverse and complex clinical and molecular determinants of treatment response. Some molecular predictors have been identified (for example, based on analysis of transcriptomic or imaging data), although the limited reproducibility and robustness of many of these candidate biomarkers make them difficult to apply in clinical practice. Moreover, different types of predictor must often be combined to optimize treatment selection (for example, gene signatures plus patient characteristics). Computational methods, including machine learning and artificial intelligence approaches, provide opportunities to identify predictive patterns in both clinical data and preclinical datasets and to predict treatment response for individual patients. Such approaches also offer opportunities to predict the efficacy or synergy of drug combinations, for example, via extrapolation from correlations of monotherapy responses or by linking the cellular responses observed in preclinical drug screens with molecular and clinical data from patients. In this Review, we describe the application of computational methods to predictive biomarker discovery, including current progress, key challenges facing this field, and future opportunities.

Key points

  • The discovery and validation of predictive biomarkers is an essential prerequisite to advances in personalized cancer therapies.

  • Predictive biomarkers can be derived from analyses of molecular, radiological and/or histopathological data as well as clinical data, and multiple modalities can be combined to capture more complex biological associations.

  • Both preclinical models and patient data are useful sources for the discovery of predictive biomarkers, and several publicly available collections exist that can also support biomarker investigations.

  • Computational methods and machine learning algorithms can be used to predict responses to treatment both with monotherapies and combination regimens.

  • Several remaining challenges relating to the discovery of predictive biomarkers must be addressed in order to improve the generalizability of predictive models, to better capture tumour heterogeneity and to overcome the various limitations that can hinder clinical translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sources of predictive biomarkers based on patient profiling data.
Fig. 2: Overview of advances in computational methods and data collection.
Fig. 3: Overview of computational methods for biomarker discovery.

Similar content being viewed by others

References

  1. Ashley, E. A. Towards precision medicine. Nat. Rev. Genet. 17, 507–522 (2016).

    PubMed  Google Scholar 

  2. Ballman, K. V. Biomarker: predictive or prognostic? J. Clin. Oncol. 33, 3968–3971 (2015).

    PubMed  Google Scholar 

  3. Drilon, A. et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N. Engl. J. Med. 378, 731–739 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Meric-Bernstam, F. et al. Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: primary results from the DESTINY-PanTumor02 phase II trial. J. Clin. Oncol. 42, 47–58 (2024).

    PubMed  Google Scholar 

  5. Hilas, O. Trends in FDA-approved cancer therapies. U.S. Pharmacist https://www.uspharmacist.com/article/trends-in-fdaapproved-cancer-therapies (2023).

  6. Mullard, A. NCI-MATCH trial pushes cancer umbrella trial paradigm. Nat. Rev. Drug Discov. 14, 513–515 (2015).

    PubMed  Google Scholar 

  7. Tsimberidou, A.-M. et al. Personalized medicine for patients with advanced cancer in the phase I program at MD Anderson: validation and landmark analyses. Clin. Cancer Res. 20, 4827–4836 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Stockley, T. L. et al. Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: the Princess Margaret IMPACT/COMPACT trial. Genome Med. 8, 109 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Weiss, F., Lauffenburger, D. & Friedl, P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat. Rev. Cancer 22, 157–173 (2022).

    PubMed  PubMed Central  Google Scholar 

  10. Schmitt, M. W., Loeb, L. A. & Salk, J. J. The influence of subclonal resistance mutations on targeted cancer therapy. Nat. Rev. Clin. Oncol. 13, 335–347 (2016).

    PubMed  Google Scholar 

  11. De Roock, W., De Vriendt, V., Normanno, N., Ciardiello, F. & Tejpar, S. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 12, 594–603 (2011).

    PubMed  Google Scholar 

  12. Ding, M. Q., Chen, L., Cooper, G. F., Young, J. D. & Lu, X. Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics. Mol. Cancer Res. 16, 269–278 (2018).

    PubMed  Google Scholar 

  13. Adam, G. et al. Machine learning approaches to drug response prediction: challenges and recent progress. NPJ Precis. Oncol. 4, 19 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Bhinder, B., Gilvary, C., Madhukar, N. S. & Elemento, O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 11, 900–915 (2021).

    PubMed  PubMed Central  Google Scholar 

  15. Tran, K. A. et al. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 13, 152 (2021).

    PubMed  PubMed Central  Google Scholar 

  16. Chiu, Y.-C. et al. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med. Genomics 12, 18 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Kuenzi, B. M. et al. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 38, 672–684.e6 (2020).

    PubMed  PubMed Central  Google Scholar 

  18. Alix-Panabières, C. & Pantel, K. Advances in liquid biopsy: from exploration to practical application. Cancer Cell 43, 161–165 (2024).

    PubMed  Google Scholar 

  19. Passaro, A. et al. Cancer biomarkers: emerging trends and clinical implications for personalized treatment. Cell 187, 1617–1635 (2024).

    PubMed  PubMed Central  Google Scholar 

  20. Mateo, J. et al. Delivering precision oncology to patients with cancer. Nat. Med. 28, 658–665 (2022).

    PubMed  Google Scholar 

  21. Cai, Z., Poulos, R. C., Liu, J. & Zhong, Q. Machine learning for multi-omics data integration in cancer. iScience 25, 103798 (2022).

    PubMed  PubMed Central  Google Scholar 

  22. Jee, J. et al. Automated real-world data integration improves cancer outcome prediction. Nature 636, 728–736 (2024).

    PubMed  PubMed Central  Google Scholar 

  23. Dumbrava, E. E. I. et al. Targeting ERBB2 (HER2) amplification identified by next-generation sequencing in patients with advanced or metastatic solid tumors beyond conventional indications. JCO Precis. Oncol. 3, PO.18.00345 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Suehnholz, S. P. et al. Quantifying the expanding landscape of clinical actionability for patients with cancer. Cancer Discov. 14, 49–65 (2024).

    PubMed  Google Scholar 

  25. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    PubMed  Google Scholar 

  26. Shiao, S. L. et al. Single-cell and spatial profiling identify three response trajectories to pembrolizumab and radiation therapy in triple negative breast cancer. Cancer Cell 42, 70–84.e8 (2024).

    PubMed  Google Scholar 

  27. Zuo, C. et al. stClinic dissects clinically relevant niches by integrating spatial multi-slice multi-omics data in dynamic graphs. Nat. Commun. 16, 5317 (2025).

    PubMed  PubMed Central  Google Scholar 

  28. Cescon, D. W., Bratman, S. V., Chan, S. M. & Siu, L. L. Circulating tumor DNA and liquid biopsy in oncology. Nat. Cancer 1, 276–290 (2020).

    PubMed  Google Scholar 

  29. Feng, L. et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study. Lancet Digit. Health 4, e8–e17 (2022).

    PubMed  Google Scholar 

  30. Vanguri, R. S. et al. Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer. Nat. Cancer 3, 1151–1164 (2022).

    PubMed  PubMed Central  Google Scholar 

  31. Hwang, C.-I., Boj, S. F., Clevers, H. & Tuveson, D. A. Preclinical models of pancreatic ductal adenocarcinoma. J. Pathol. 238, 197–204 (2016).

    PubMed  Google Scholar 

  32. Gengenbacher, N., Singhal, M. & Augustin, H. G. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat. Rev. Cancer 17, 751–765 (2017).

    PubMed  Google Scholar 

  33. Mirabelli, P., Coppola, L. & Salvatore, M. Cancer cell lines are useful model systems for medical research. Cancers 11, 1098 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Domcke, S., Sinha, R., Levine, D. A., Sander, C. & Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 4, 2126 (2013).

    PubMed  Google Scholar 

  35. Jin, H. et al. Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation. Nat. Commun. 14, 5417 (2023).

    PubMed  PubMed Central  Google Scholar 

  36. Mouradov, D. et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 74, 3238–3247 (2014).

    PubMed  Google Scholar 

  37. Najgebauer, H. et al. CELLector: genomics-guided selection of cancer in vitro models. Cell Syst. 10, 424–432.e6 (2020).

    PubMed  Google Scholar 

  38. Warren, A. et al. Global computational alignment of tumor and cell line transcriptional profiles. Nat. Commun. 12, 22 (2021).

    PubMed  PubMed Central  Google Scholar 

  39. Mourragui, S., Loog, M., van de Wiel, M. A., Reinders, M. J. T. & Wessels, L. F. A. PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors. Bioinformatics 35, i510–i519 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Ma, J. et al. Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients. Nat. Cancer 2, 233–244 (2021).

    PubMed  PubMed Central  Google Scholar 

  41. Ashok, G. & Ramaiah, S. A critical review of datasets and computational suites for improving cancer theranostics and biomarker discovery. Med. Oncol. 39, 206 (2022).

    PubMed  Google Scholar 

  42. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6, 813–823 (2006).

    PubMed  Google Scholar 

  45. Klijn, C. et al. A comprehensive transcriptional portrait of human cancer cell lines. Nat. Biotechnol. 33, 306–312 (2015).

    PubMed  Google Scholar 

  46. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    PubMed  Google Scholar 

  48. Funk, J. S. et al. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat. Genet. 57, 140–153 (2025).

    PubMed  PubMed Central  Google Scholar 

  49. Bottomly, D. et al. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell 40, 850–864.e9 (2022).

    PubMed  PubMed Central  Google Scholar 

  50. Pemovska, T. et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 519, 102–105 (2015).

    PubMed  Google Scholar 

  51. Lee, S. et al. High-throughput identification of repurposable neuroactive drugs with potent anti-glioblastoma activity. Nat. Med. 30, 3196–3208 (2024).

    PubMed  PubMed Central  Google Scholar 

  52. Acanda De La Rocha, A. M. et al. Feasibility of functional precision medicine for guiding treatment of relapsed or refractory pediatric cancers. Nat. Med. 30, 990–1000 (2024).

    PubMed  PubMed Central  Google Scholar 

  53. Dolgin, E. The future of precision cancer therapy might be to try everything. Nature 626, 470–473 (2024).

    PubMed  Google Scholar 

  54. Kytölä, S. et al. Ex vivo venetoclax sensitivity predicts clinical response in acute myeloid leukemia in the prospective VenEx trial. Blood 145, 409–421 (2025).

    PubMed  Google Scholar 

  55. Lee, S. H. R. et al. Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response. Nat. Med. 29, 170–179 (2023).

    PubMed  PubMed Central  Google Scholar 

  56. Sarno, F. et al. A phase III randomized trial of integrated genomics and avatar models for personalized treatment of pancreatic cancer: the AVATAR trial. Clin. Cancer Res. 31, 278–287 (2025).

    PubMed  Google Scholar 

  57. Ayala Solares, J. R. et al. Deep learning for electronic health records: a comparative review of multiple deep neural architectures. J. Biomed. Inf. 101, 103337 (2020).

    Google Scholar 

  58. Bareche, Y. et al. Leveraging big data of immune checkpoint blockade response identifies novel potential targets. Ann. Oncol. 33, 1304–1317 (2022).

    PubMed  Google Scholar 

  59. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).

    PubMed  PubMed Central  Google Scholar 

  60. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Hoppe, M. M., Sundar, R., Tan, D. S. P. & Jeyasekharan, A. D. Biomarkers for homologous recombination deficiency in cancer. J. Natl Cancer Inst. 110, 704–713 (2018).

    PubMed  Google Scholar 

  63. Telli, M. L. et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin. Cancer Res. 22, 3764–3773 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Figueroa, M. E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17, 13–27 (2010).

    PubMed  PubMed Central  Google Scholar 

  65. Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Macintyre, G. et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat. Genet. 50, 1262–1270 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    PubMed  PubMed Central  Google Scholar 

  70. Billan, S., Kaidar-Person, O. & Gil, Z. Treatment after progression in the era of immunotherapy. Lancet Oncol. 21, e463–e476 (2020).

    PubMed  Google Scholar 

  71. Borcoman, E. et al. Novel patterns of response under immunotherapy. Ann. Oncol. 30, 385–396 (2019).

    PubMed  Google Scholar 

  72. Nathan, P. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 385, 1196–1206 (2021).

    PubMed  Google Scholar 

  73. van ’t Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    PubMed  Google Scholar 

  74. Cardoso, F. et al. 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N. Engl. J. Med. 375, 717–729 (2016).

    PubMed  Google Scholar 

  75. Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Zhao, E. Y. et al. Homologous recombination deficiency and platinum-based therapy outcomes in advanced breast cancer. Clin. Cancer Res. 23, 7521–7530 (2017).

    PubMed  Google Scholar 

  77. Patsouris, A. et al. Rucaparib in patients presenting a metastatic breast cancer with homologous recombination deficiency, without germline BRCA1/2 mutation. Eur. J. Cancer 159, 283–295 (2021).

    PubMed  Google Scholar 

  78. Smirnov, P. et al. Evaluation of statistical approaches for association testing in noisy drug screening data. BMC Bioinformatics 23, 188 (2022).

    PubMed  PubMed Central  Google Scholar 

  79. Anagnostou, V. et al. Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer. Nat. Cancer 1, 99–111 (2020).

    PubMed  PubMed Central  Google Scholar 

  80. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    PubMed  Google Scholar 

  81. Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010).

    PubMed  Google Scholar 

  82. Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012).

    PubMed  Google Scholar 

  83. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    PubMed  Google Scholar 

  84. Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Filipits, M. et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin. Cancer Res. 17, 6012–6020 (2011).

    PubMed  Google Scholar 

  86. Christopoulos, P. et al. Plasma proteome-based test for first-line treatment selection in metastatic non-small cell lung cancer. JCO Precis. Oncol. 8, e2300555 (2024).

    PubMed  PubMed Central  Google Scholar 

  87. Ali, M. & Aittokallio, T. Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys. Rev. 11, 31–39 (2019).

    PubMed  Google Scholar 

  88. Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).

    PubMed  Google Scholar 

  89. Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C. & Collins, J. J. Next-generation machine learning for biological networks. Cell 173, 1581–1592 (2018).

    PubMed  Google Scholar 

  90. Sharifi-Noghabi, H. et al. Drug sensitivity prediction from cell line-based pharmacogenomics data: guidelines for developing machine learning models. Brief. Bioinform. 22, bbab294 (2021).

    PubMed  PubMed Central  Google Scholar 

  91. Ishwaran, H., Kogalur, U. B., Blackstone, E. H. & Lauer, M. S. Random survival forests. Ann. Appl. Stat. 2, 841–860 (2008).

    Google Scholar 

  92. Pölsterl, S., Navab, N. & Katouzian, A. In: Machine Learning and Knowledge Discovery in Databases (eds Appice, A. et al.) 243–259 (Springer, 2015).

  93. Unger, M. & Kather, J. N. A systematic analysis of deep learning in genomics and histopathology for precision oncology. BMC Med. Genomics 17, 48 (2024).

    PubMed  PubMed Central  Google Scholar 

  94. Katzman, J. L. et al. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18, 24 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Schmauch, B. et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat. Commun. 11, 3877 (2020).

    PubMed  PubMed Central  Google Scholar 

  96. Hoang, D.-T. et al. Prediction of DNA methylation-based tumor types from histopathology in central nervous system tumors with deep learning. Nat. Med. 30, 1952–1961 (2024).

    PubMed  Google Scholar 

  97. Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).

    PubMed  Google Scholar 

  99. Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789–799 (2020).

    PubMed  PubMed Central  Google Scholar 

  100. Hoang, D.-T. et al. A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics. Nat. Cancer 5, 1305–1317 (2024).

    PubMed  PubMed Central  Google Scholar 

  101. Vaswani, A. et al. Attention is all you need. In Proc. 31st Conference on Neural Information Processing Systems 6000–6010 (NeurIPS, 2017).

  102. Yang, X. et al. A large language model for electronic health records. NPJ Digit. Med. 5, 194 (2022).

    PubMed  PubMed Central  Google Scholar 

  103. Pai, S. et al. Foundation model for cancer imaging biomarkers. Nat. Mach. Intell. 6, 354–367 (2024).

    PubMed  PubMed Central  Google Scholar 

  104. Chen, R. J. et al. Towards a general-purpose foundation model for computational pathology. Nat. Med. 30, 850–862 (2024).

    PubMed  PubMed Central  Google Scholar 

  105. Xu, H. et al. A whole-slide foundation model for digital pathology from real-world data. Nature 630, 181–188 (2024).

    PubMed  PubMed Central  Google Scholar 

  106. Wang, X. et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 634, 970–978 (2024).

    PubMed  PubMed Central  Google Scholar 

  107. Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470–1480 (2024).

    PubMed  Google Scholar 

  108. Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

    PubMed  PubMed Central  Google Scholar 

  109. Hao, M. et al. Large-scale foundation model on single-cell transcriptomics. Nat. Methods 21, 1481–1491 (2024).

    PubMed  Google Scholar 

  110. Wang, C. et al. ScGPT-spatial: continual pretraining of single-cell foundation model for spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2025.02.05.636714 (2025).

  111. Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    PubMed  Google Scholar 

  112. van de Haar, J. et al. Combining genomic biomarkers to guide immunotherapy in non-small cell lung cancer. Clin. Cancer Res. 30, 1307–1318 (2024).

    PubMed  PubMed Central  Google Scholar 

  113. Usset, J. et al. Five latent factors underlie response to immunotherapy. Nat. Genet. 56, 2112–2120 (2024).

    PubMed  PubMed Central  Google Scholar 

  114. Chang, T.-G. et al. LORIS robustly predicts patient outcomes with immune checkpoint blockade therapy using common clinical, pathologic and genomic features. Nat. Cancer 5, 1158–1175 (2024).

    PubMed  PubMed Central  Google Scholar 

  115. Steyaert, S. et al. Multimodal data fusion for cancer biomarker discovery with deep learning. Nat. Mach. Intell. 5, 351–362 (2023).

    PubMed  PubMed Central  Google Scholar 

  116. Lipkova, J. et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40, 1095–1110 (2022).

    PubMed  PubMed Central  Google Scholar 

  117. Carrillo-Perez, F. et al. Machine-learning-based late fusion on multi-omics and multi-scale data for non-small-cell lung cancer diagnosis. J. Pers. Med. 12, 601 (2022).

    PubMed  PubMed Central  Google Scholar 

  118. Cheerla, A. & Gevaert, O. Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 35, i446–i454 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Ma, S. et al. Moving towards genome-wide data integration for patient stratification with Integrate Any Omics. Nat. Mach. Intell. 7, 29–42 (2025).

    Google Scholar 

  120. Xu, P., Zhu, X. & Clifton, D. A. Multimodal learning with Transformers: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 12113–12132 (2023).

    PubMed  Google Scholar 

  121. Xiang, J. et al. A vision-language foundation model for precision oncology. Nature 638, 769–778 (2025).

    PubMed  Google Scholar 

  122. Cui, H. et al. Towards multimodal foundation models in molecular cell biology. Nature 640, 623–633 (2025).

    PubMed  Google Scholar 

  123. Arango-Argoty, G. et al. Pretrained transformers applied to clinical studies improve predictions of treatment efficacy and associated biomarkers. Nat. Commun. 16, 2101 (2025).

    PubMed  PubMed Central  Google Scholar 

  124. Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J. & Shah, S. P. Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22, 114–126 (2022).

    PubMed  Google Scholar 

  125. Singhal, A. et al. The hallmarks of predictive oncology. Cancer Discov. 15, 271–285 (2025).

    PubMed  PubMed Central  Google Scholar 

  126. Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W. & O’Sullivan, J. M. A review of feature selection methods for machine learning-based disease risk prediction. Front. Bioinform. 2, 927312 (2022).

    PubMed  PubMed Central  Google Scholar 

  127. Cao, Y., Geddes, T. A., Yang, J. Y. H. & Yang, P. Ensemble deep learning in bioinformatics. Nat. Mach. Intell. 2, 500–508 (2020).

    Google Scholar 

  128. Sammut, S.-J. et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 601, 623–629 (2022).

    PubMed  Google Scholar 

  129. Zhang, Y. & Yang, Q. An overview of multi-task learning. Natl Sci. Rev. 5, 30–43 (2018).

    Google Scholar 

  130. Thung, K.-H. & Wee, C.-Y. A brief review on multi-task learning. Multimed. Tools Appl. 77, 29705–29725 (2018).

    Google Scholar 

  131. White, B. S. et al. Bayesian multi-source regression and monocyte-associated gene expression predict BCL-2 inhibitor resistance in acute myeloid leukemia. NPJ Precis. Oncol. 5, 71 (2021).

    PubMed  PubMed Central  Google Scholar 

  132. Costello, J. C. et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol. 32, 1202–1212 (2014).

    PubMed  PubMed Central  Google Scholar 

  133. Kowald, A. et al. Transfer learning of clinical outcomes from preclinical molecular data, principles and perspectives. Brief. Bioinform. 23, bbac133 (2022).

    PubMed  PubMed Central  Google Scholar 

  134. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl Acad. Sci. USA 114, 3521–3526 (2017).

    PubMed  PubMed Central  Google Scholar 

  135. Li, Z. & Hoiem, D. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2935–2947 (2018).

    PubMed  Google Scholar 

  136. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. P. & Wayne, G. Experience replay for continual learning. In Proc. 33rd Conference on Neural Information Processing Systems 350–360 (NeurIPS 2019).

  137. Rusu, A. A. et al. Progressive neural networks. Preprint at https://doi.org/10.48550/arXiv.1606.04671 (2016).

  138. Lopez-Paz, D. & Ranzato, M. Gradient episodic memory for continual learning. In Proc. 31st International Conference on Neural Information Processing Systems 6470–6479 (NeurIPS, 2017).

  139. Xu, Y. et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin. Cancer Res. 25, 3266–3275 (2019).

    PubMed  PubMed Central  Google Scholar 

  140. Kummar, S. et al. Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat. Rev. Drug Discov. 9, 843–856 (2010).

    PubMed  Google Scholar 

  141. Jin, H., Wang, L. & Bernards, R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat. Rev. Drug Discov. 22, 213–234 (2023).

    PubMed  Google Scholar 

  142. Conroy, T. et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N. Engl. J. Med. 379, 2395–2406 (2018).

    PubMed  Google Scholar 

  143. Von Hoff, D. D. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691–1703 (2013).

    Google Scholar 

  144. Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821 (2020).

    PubMed  Google Scholar 

  145. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    PubMed  Google Scholar 

  146. Loupakis, F. et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med. 371, 1609–1618 (2014).

    PubMed  Google Scholar 

  147. Jaaks, P. et al. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 603, 166–173 (2022).

    PubMed  PubMed Central  Google Scholar 

  148. Sicklick, J. K. et al. Molecular profiling of advanced malignancies guides first-line N-of-1 treatments in the I-PREDICT treatment-naïve study. Genome Med. 13, 155 (2021).

    PubMed  PubMed Central  Google Scholar 

  149. Sicklick, J. K. et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nat. Med. 25, 744–750 (2019).

    PubMed  PubMed Central  Google Scholar 

  150. Meric-Bernstam, F. et al. National Cancer Institute combination therapy platform trial with molecular analysis for therapy choice (ComboMATCH). Clin. Cancer Res. 29, 1412–1422 (2023).

    PubMed  PubMed Central  Google Scholar 

  151. Li, X. et al. Precision combination therapies based on recurrent oncogenic coalterations. Cancer Discov. 12, 1542–1559 (2022).

    PubMed  PubMed Central  Google Scholar 

  152. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05674825 (2025).

  153. Menden, M. P. et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat. Commun. 10, 2674 (2019).

    PubMed  PubMed Central  Google Scholar 

  154. Kong, W. et al. Systematic review of computational methods for drug combination prediction. Comput. Struct. Biotechnol. J. 20, 2807–2814 (2022).

    PubMed  PubMed Central  Google Scholar 

  155. Dinstag, G. et al. Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. Med 4, 15–30.e8 (2023).

    PubMed  Google Scholar 

  156. Kuru, H. I., Cicek, A. E. & Tastan, O. From cell lines to cancer patients: personalized drug synergy prediction. Bioinformatics 40, btae134 (2022).

    PubMed  Google Scholar 

  157. Chen, Y. et al. A machine learning-based strategy predicts selective and synergistic drug combinations for relapsed acute myeloid leukemia. Cancer Res. 85, 2753–2768 (2025).

    PubMed  PubMed Central  Google Scholar 

  158. Pomeroy, A. E., Schmidt, E. V., Sorger, P. K. & Palmer, A. C. Drug independence and the curability of cancer by combination chemotherapy. Trends Cancer 8, 915–929 (2022).

    PubMed  PubMed Central  Google Scholar 

  159. Bunne, C. et al. Learning single-cell perturbation responses using neural optimal transport. Nat. Methods 20, 1759–1768 (2023).

    PubMed  PubMed Central  Google Scholar 

  160. Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. 42, 927–935 (2024).

    PubMed  Google Scholar 

  161. Zhang, W. et al. Integration of pan-cancer cell line and single-cell transcriptomic profiles enables inference of therapeutic vulnerabilities in heterogeneous tumors. Cancer Res. 84, 2021–2033 (2024).

    PubMed  PubMed Central  Google Scholar 

  162. Schrod, S., Zacharias, H. U., Beißbarth, T., Hauschild, A.-C. & Altenbuchinger, M. CODEX: counterfactual deep learning for the in silico exploration of cancer cell line perturbations. Bioinformatics 40, i91–i99 (2024).

    PubMed  PubMed Central  Google Scholar 

  163. Maeser, D., Zhang, W., Huang, Y. & Huang, R. S. A review of computational methods for predicting cancer drug response at the single-cell level through integration with bulk RNAseq data. Curr. Opin. Struct. Biol. 84, 102745 (2024).

    PubMed  Google Scholar 

  164. Ianevski, A. et al. Patient-tailored design for selective co-inhibition of leukemic cell subpopulations. Sci. Adv. 7, eabe4038 (2021).

    PubMed  PubMed Central  Google Scholar 

  165. Sinha, S. et al. PERCEPTION predicts patient response and resistance to treatment using single-cell transcriptomics of their tumors. Nat. Cancer 5, 938–952 (2024).

    PubMed  Google Scholar 

  166. Ianevski, A. et al. Single-cell transcriptomes identify patient-tailored therapies for selective co-inhibition of cancer clones. Nat. Commun. 15, 8579 (2024).

    PubMed  PubMed Central  Google Scholar 

  167. Kornauth, C. et al. Functional precision medicine provides clinical benefit in advanced aggressive hematologic cancers and identifies exceptional responders. Cancer Discov. 12, 372–387 (2022).

    PubMed  Google Scholar 

  168. Miglino, N. et al. Feasibility of multiomics tumor profiling for guiding treatment of melanoma. Nat. Med. 31, 2430–2441 (2025).

    PubMed  PubMed Central  Google Scholar 

  169. Sheridan, C. Can single-cell biology realize the promise of precision medicine? Nat. Biotechnol. 42, 159–162 (2024).

    PubMed  Google Scholar 

  170. PromethION. Oxford Nanopore Technologies https://nanoporetech.com/products/sequence/promethion (2025).

  171. Tang, C. et al. Personalized tumor combination therapy optimization using the single-cell transcriptome. Genome Med. 15, 105 (2023).

    PubMed  PubMed Central  Google Scholar 

  172. Tatarova, Z. et al. A multiplex implantable microdevice assay identifies synergistic combinations of cancer immunotherapies and conventional drugs. Nat. Biotechnol. 40, 1823–1833 (2022).

    PubMed  PubMed Central  Google Scholar 

  173. Lundberg, S. & Lee, S.-I. A unified approach to interpreting model predictions. In Proc. 31st International Conference on Neural Information Processing Systems 4765–4774 (2017).

  174. Ribeiro, M. T., Singh, S. & Guestrin, C. Why should I trust you?’: explaining the predictions of any classifier. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Vol. 16, 1135–1144 (Association for Computing Machinery, 2016).

  175. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for discriminative localization. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2921–2929 (IEEE, 2016).

  176. Tomaszewski, M. R. & Gillies, R. J. The biological meaning of radiomic features. Radiology 298, 505–516 (2021).

    PubMed  Google Scholar 

  177. Ancona, M., Ceolini, E., Öztireli, C. & Gross, M. Towards better understanding of gradient-based attribution methods for deep neural networks. in Proc. 6th International Conference on Learning Representations https://doi.org/10.3929/ethz-b-000249929 (ICLR, 2018).

  178. Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. In Proc. 34th International Conference on Machine Learning 3145–3153 (PMLR, 2017).

  179. Elmarakeby, H. A. et al. Biologically informed deep neural network for prostate cancer discovery. Nature 598, 348–352 (2021).

    PubMed  PubMed Central  Google Scholar 

  180. Park, S. et al. A deep learning model of tumor cell architecture elucidates response and resistance to CDK4/6 inhibitors. Nat. Cancer 5, 996–1009 (2024).

    PubMed  PubMed Central  Google Scholar 

  181. Haibe-Kains, B. et al. Transparency and reproducibility in artificial intelligence. Nature 586, E14–E16 (2020).

    PubMed  PubMed Central  Google Scholar 

  182. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    PubMed  PubMed Central  Google Scholar 

  183. Rieke, N. et al. The future of digital health with federated learning. NPJ Digit. Med. 3, 119 (2020).

    PubMed  PubMed Central  Google Scholar 

  184. Ogier du Terrail, J. et al. Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer. Nat. Med. 29, 135–146 (2023).

    PubMed  Google Scholar 

  185. Terry Fox Research Institute Marathon of Hope Cancer Centers Network. The Terry Fox Research Institute Marathon of Hope Cancer Centres Network: a pan-Canadian precision oncology initiative. Cancer Cell 43, 587–592 (2025).

    Google Scholar 

  186. Mahon, P. et al. A federated learning system for precision oncology in Europe: DigiONE. Nat. Med. 30, 334–337 (2024).

    PubMed  Google Scholar 

  187. Wen, J. et al. A survey on federated learning: challenges and applications. Int. J. Mach. Learn. Cybern. 14, 513–535 (2023).

    PubMed  Google Scholar 

  188. Moon, I. et al. Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary. Nat. Med. 29, 2057–2067 (2023).

    PubMed  PubMed Central  Google Scholar 

  189. Ianni, J. D. et al. Tailored for real-world: a whole slide image classification system validated on uncurated multi-site data emulating the prospective pathology workload. Sci. Rep. 10, 3217 (2020).

    PubMed  PubMed Central  Google Scholar 

  190. Feuerriegel, S. et al. Causal machine learning for predicting treatment outcomes. Nat. Med. 30, 958–968 (2024).

    PubMed  Google Scholar 

  191. Lone, S. N. et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 21, 79 (2022).

    PubMed  PubMed Central  Google Scholar 

  192. Sanz-Garcia, E., Zhao, E., Bratman, S. V. & Siu, L. L. Monitoring and adapting cancer treatment using circulating tumor DNA kinetics: current research, opportunities, and challenges. Sci. Adv. 8, eabi8618 (2022).

    PubMed  PubMed Central  Google Scholar 

  193. Rozenblatt-Rosen, O. et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    PubMed  PubMed Central  Google Scholar 

  194. Frampton, G. M. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31, 1023–1031 (2013).

    PubMed  PubMed Central  Google Scholar 

  195. Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L. & Siu, L. L. Molecular profiling for precision cancer therapies. Genome Med. 12, 8 (2020).

    PubMed  PubMed Central  Google Scholar 

  196. Cai, Z. et al. Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning. Nat. Commun. 15, 10390 (2024).

    PubMed  PubMed Central  Google Scholar 

  197. Thangaraj, P. M., Shankar, S. V., Oikonomou, E. K. & Khera, R. RCT-Twin-GAN generates digital twins of randomized control trials adapted to real-world patients to enhance their inference and application. Preprint at medRxiv https://doi.org/10.1101/2023.12.06.23299464 (2023).

  198. AACR Project GENIE Consortium. AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).

    Google Scholar 

  199. Turnbull, C. et al. The 100 000 genomes project: bringing whole genome sequencing to the NHS. BMJ 361, k1687 (2018).

    PubMed  Google Scholar 

  200. Topol, E. J. Welcoming new guidelines for AI clinical research. Nat. Med. 26, 1318–1320 (2020).

    PubMed  Google Scholar 

  201. Liu, X. et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).

    PubMed  PubMed Central  Google Scholar 

  202. Cruz Rivera, S. et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat. Med. 26, 1351–1363 (2020).

    PubMed  PubMed Central  Google Scholar 

  203. Collins, G. S. et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 385, e078378 (2024).

    PubMed  PubMed Central  Google Scholar 

  204. Gallifant, J. et al. The TRIPOD-LLM reporting guideline for studies using large language models. Nat. Med. 31, 60–69 (2025).

    PubMed  PubMed Central  Google Scholar 

  205. Garassino, M. C. et al. PL02.11 Normalized membrane ratio of TROP2 by quantitative continuous scoring is predictive of clinical outcomes in TROPION-lung 01. J. Thorac. Oncol. 19, S2–S3 (2024).

    Google Scholar 

  206. Foy, R., Lew, K. X. & Saurin, A. T. The search for CDK4/6 inhibitor biomarkers has been hampered by inappropriate proliferation assays. NPJ Breast Cancer 10, 19 (2024).

    PubMed  PubMed Central  Google Scholar 

  207. U.S. Food and Drug Administration. Principles for Codevelopment of an In Vitro Companion Diagnostic Device with a Therapeutic Product https://www.fda.gov/regulatory-information/search-fda-guidance-documents/principles-codevelopment-in-vitro-companion-diagnostic-device-therapeutic-product (2019).

  208. Maliepaard, M., Nibi, P., Nibi, G. & Pasmooij, A. M. G. Evaluation of companion diagnostics in scientific advice and drug marketing authorization applications by the European Medicines Agency. Front. Med. 9, 893028 (2022).

    Google Scholar 

  209. Horgan, D. et al. Bringing greater accuracy to Europe’s healthcare systems: the unexploited potential of biomarker testing in oncology. Biomed. Hub. 5, 182–223 (2020).

    PubMed  PubMed Central  Google Scholar 

  210. de Moor, J. S., Gray, S. W., Mitchell, S. A., Klabunde, C. N. & Freedman, A. N. Oncologist confidence in genomic testing and implications for using multimarker tumor panel tests in practice. JCO Precis. Oncol. 4, 620–631 (2020).

    Google Scholar 

  211. Mateo, J. et al. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol. 29, 1895–1902 (2018).

    PubMed  PubMed Central  Google Scholar 

  212. Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Asghar, U. S. & Chung, C. Application of digital twins for personalized oncology. Nat. Rev. Cancer 25, 823–825 (2025).

    PubMed  Google Scholar 

  214. Bhatt, D. L. & Mehta, C. Adaptive designs for clinical trials. N. Engl. J. Med. 375, 65–74 (2016).

    PubMed  Google Scholar 

  215. Thorlund, K., Haggstrom, J., Park, J. J. & Mills, E. J. Key design considerations for adaptive clinical trials: a primer for clinicians. BMJ 360, k698 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. Wang, H. & Yee, D. I-SPY 2: a neoadjuvant adaptive clinical trial designed to improve outcomes in high-risk breast cancer. Curr. Breast Cancer Rep. 11, 303–310 (2019).

    PubMed  PubMed Central  Google Scholar 

  217. Marret, G., Herrera, M. & Siu, L. L. Turning the kaleidoscope: innovations shaping the future of clinical trial design. Cancer Cell 43, 597–605 (2025).

    PubMed  Google Scholar 

  218. Drukker, C. A. et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int. J. Cancer 133, 929–936 (2013).

    PubMed  PubMed Central  Google Scholar 

  219. Sparano, J. A. et al. Prospective validation of a 21-gene expression assay in breast cancer. N. Engl. J. Med. 373, 2005–2014 (2015).

    PubMed  PubMed Central  Google Scholar 

  220. Alvarez, M. J. et al. A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nat. Genet. 50, 979–989 (2018).

    PubMed  PubMed Central  Google Scholar 

  221. Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019).

    PubMed  PubMed Central  Google Scholar 

  222. Mu, W. et al. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. J. Immunother. Cancer 9, e002118 (2021).

    PubMed  PubMed Central  Google Scholar 

  223. Wagner, S. J. et al. Transformer-based biomarker prediction from colorectal cancer histology: a large-scale multicentric study. Cancer Cell 41, 1650–1661.e4 (2023).

    PubMed  PubMed Central  Google Scholar 

  224. Sun, R. et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 19, 1180–1191 (2018).

    PubMed  Google Scholar 

  225. Preuer, K. et al. DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 34, 1538–1546 (2018).

    PubMed  Google Scholar 

  226. Xia, F. et al. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinformatics 19, 486 (2018).

    PubMed  PubMed Central  Google Scholar 

  227. Zhang, T., Zhang, L., Payne, P. R. O. & Li, F. Synergistic drug combination prediction by integrating multiomics data in deep learning models. Methods Mol. Biol. 2194, 223–238 (2021).

    PubMed  Google Scholar 

  228. Kim, Y. et al. Anticancer drug synergy prediction in understudied tissues using transfer learning. J. Am. Med. Inf. Assoc. 28, 42–51 (2021).

    Google Scholar 

  229. Yang, J., Xu, Z., Wu, W. K. K., Chu, Q. & Zhang, Q. GraphSynergy: a network-inspired deep learning model for anticancer drug combination prediction. J. Am. Med. Inf. Assoc. 28, 2336–2345 (2021).

    Google Scholar 

  230. Liu, Q. & Xie, L. TranSynergy: mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. PLoS Comput. Biol. 17, e1008653 (2021).

    PubMed  PubMed Central  Google Scholar 

  231. Kuru, H. I., Tastan, O. & Cicek, A. E. MatchMaker: a deep learning framework for drug synergy prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 19, 2334–2344 (2022).

    PubMed  Google Scholar 

  232. Wang, X. et al. PRODeepSyn: predicting anticancer synergistic drug combinations by embedding cell lines with protein-protein interaction network. Brief. Bioinform. 23, bbab587 (2022).

    PubMed  PubMed Central  Google Scholar 

  233. Hu, J. et al. DTSyn: a dual-transformer-based neural network to predict synergistic drug combinations. Brief. Bioinform. 23, bbac302 (2022).

    PubMed  Google Scholar 

  234. Tang, Y.-C. & Gottlieb, A. SynPathy: predicting drug synergy through drug-associated pathways using deep learning. Mol. Cancer Res. 20, 762–769 (2022).

    PubMed  Google Scholar 

  235. Hosseini, S.-R. & Zhou, X. CCSynergy: an integrative deep-learning framework enabling context-aware prediction of anti-cancer drug synergy. Brief. Bioinform. 24, bbac588 (2023).

    PubMed  Google Scholar 

  236. Xu, M. et al. DFFNDDS: prediction of synergistic drug combinations with dual feature fusion networks. J. Cheminform. 15, 33 (2023).

    PubMed  PubMed Central  Google Scholar 

  237. El Khili, M. R., Memon, S. A. & Emad, A. MARSY: a multitask deep-learning framework for prediction of drug combination synergy scores. Bioinformatics 39, btad177 (2023).

    PubMed  PubMed Central  Google Scholar 

  238. Zhang, P. & Tu, S. MGAE-DC: predicting the synergistic effects of drug combinations through multi-channel graph autoencoders. PLoS Comput. Biol. 19, e1010951 (2023).

    PubMed  PubMed Central  Google Scholar 

  239. Li, T.-H., Wang, C.-C., Zhang, L. & Chen, X. SNRMPACDC: computational model focused on Siamese network and random matrix projection for anticancer synergistic drug combination prediction. Brief. Bioinform. 24, bbac503 (2023).

    PubMed  Google Scholar 

  240. Verkerk, K. & Voest, E. E. Generating and using real-world data: a worthwhile uphill battle. Cell 187, 1636–1650 (2024).

    PubMed  Google Scholar 

  241. Yu, Y. et al. Association of survival and immune-related biomarkers with immunotherapy in patients with non-small cell lung cancer: a meta-analysis and individual patient-level analysis. JAMA Netw. Open 2, e196879 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank L. Siu of the Princess Margaret Cancer Centre for her insightful comments on this Review. The authors’ research is supported by funding from the ARPA-H ADAPT Program (OT 140D042590013 to T.I. and B.H.-K.).

Author information

Authors and Affiliations

Authors

Contributions

X.W. and J.N. initiated and coordinated the Review. X.W., J.N., K.N., M.M., P.W., A.S., T.A. and B.H.-K. researched data for the manuscript and made a substantial contribution to discussions of content. X.W. and P.L.B. provided clinical input. T.I., T.A. and B.H.-K. supervised the Review. All authors edited and/or reviewed the manuscript prior to submission.

Corresponding authors

Correspondence to Trey Ideker, Tero Aittokallio or Benjamin Haibe-Kains.

Ethics declarations

Competing interests

P.L.B. reports research funding (to the institution) from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bicara Therapeutics, Bristol Myers Squibb, Daiichi Sankyo, Genentech/Roche, GlaxoSmithKline, LegoChem, Lilly, Merck, Medicenna, Novartis, Seagen/Pfizer, Takeda and Zymeworks. He also reports uncompensated honoraria/consultancy with Amgen, Daiichi Sankyo, Gilead, Janssen, Lilly, Merck, Repare, Seattle Genetics and Zymeworks, and a compensated advisory role for Boehringer Ingelheim. T.I. is a co-founder, member of the advisory board, and has an equity interest in Data4Cure and Serinus Biosciences, is a consultant of and has an equity interest in Ideaya Biosciences, and is a member of the advisory editorial board of The EMBO Journal. The terms of all consultancy and equity arrangements have been reviewed and approved by the University of California, San Diego in accordance with its conflict-of-interest policies. B.H.-K. is part of the scientific advisory boards of Break Through Cancer, Commonwealth Cancer Consortium (USA), Consortium de Recherche Biopharmaceutique (CQDM; Quebec, Canada), the Canadian Institute of Health Research — Institute of Genetics, Cancer Grand Challenges (UK) and Chriners Children (Florida, USA), is a co-founder of the MAQC (Massive Analysis and Quality Control) Society and is part of the board of directors of AACR International (Canada) and The American Association for Cancer Research (USA). X.W., J.N., K.N., M.M., P.W., A.S. and T.A. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks C. Cheng, V. Fortino, J. Kather and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Nguyen, J., Nader, K. et al. Discovery of predictive biomarkers for cancer therapy through computational approaches. Nat Rev Clin Oncol (2026). https://doi.org/10.1038/s41571-025-01109-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41571-025-01109-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing