Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide to cancer screening

Abstract

The aim of cancer screening is to identify pre-malignant conditions, which can be removed or treated, or earlier-stage disease, for which treatment is more likely to be curative, in non-symptomatic individuals. Currently, screening programmes are being consolidated for five cancer types (breast, prostate, cervical, colorectal and lung) and several other cancer types are the focus of specific initiatives. Cancer screening is at a point of potential major transformation owing to technological advances in detection. In this Review, we first recapitulate the general principles of cancer screening. We then provide a timely overview of the current screening practices for breast, cervical, colorectal, prostate and lung cancer, addressing major challenges and potential future changes in practice. We also discuss other malignancies for which screening initiatives might be worth considering. Finally, we highlight technological developments in cancer detection that might hold promise for screening an increasing number of cancers in the future, notably some that reflect unmet needs.

Key points

  • The main aims of cancer screening are to identify precursor states that can be removed or treated, or to detect disease at an early stage when treatment is more likely to be curative.

  • The screening intervention must reduce mortality and/or morbidity from the malignancy targeted.

  • Population screening programmes for breast, prostate, cervical, colorectal and lung cancer are widely implemented worldwide owing to their demonstrated benefits in incidence and/or mortality.

  • For a number of cancers, the evidence is not sufficiently compelling for population screening programmes to be set up; these include some cancers characterized by poor prognosis, such as oesophageal cancer.

  • Cancer screening might undergo major changes in the near future, notably with the advent of artificial intelligence tools for early detection and multicancer early detection tests. The latter are showing some promise for the early detection of some cancers that currently have a poor prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of invitation to mammographic screening on breast cancer-related mortality.

Similar content being viewed by others

References

  1. Wald, N. J. Guidance on terminology. J. Med. Screen. 1, 76–76 (1994).

    Article  Google Scholar 

  2. Smith, R. A. et al. Cancer screening in the United States, 2019: a review of current american cancer society guidelines and current issues in cancer screening. CA Cancer J. Clin. 69, 184–210 (2019).

    PubMed  Google Scholar 

  3. Sasieni, P. et al. Modelled mortality benefits of multi-cancer early detection screening in England. Br. J. Cancer 129, 72–80 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Smith, R. A. & Oeffinger, K. C. The importance of cancer screening. Med. Clin. 104, 919–938 (2020).

    Google Scholar 

  5. Jansen, E. E. L. et al. Effect of organised cervical cancer screening on cervical cancer mortality in Europe: a systematic review. Eur. J. Cancer 127, 207–223 (2020).

    Article  PubMed  Google Scholar 

  6. Duffy, S. W. et al. The relative contributions of screen-detected in situ and invasive breast carcinomas in reducing mortality from the disease. Eur. J. Cancer 39, 1755–1760 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Wilson J. M. G. & Gunner, J. Principles and Practice of Screening for Disease (WHO, 1968).

  8. Abdominal aortic aneurysm (AAA) screening. NHS https://www.nhs.uk/conditions/abdominal-aortic-aneurysm-screening/ (accessed 14 February 2024).

  9. Andermann, A., Blancquaert, I., Beauchamp, S. & Déry, V. Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bull. World Health Organ. 86, 317–319 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Massat, N. J., Moss, S. M., Halloran, S. P. & Duffy, S. W. Screening and primary prevention of colorectal cancer: a review of sex-specific and site-specific differences. J. Med. Screen. 20, 125–148 (2013).

    Article  PubMed  Google Scholar 

  11. Campbell, C. et al. Are there ethnic and religious variations in uptake of bowel cancer screening? A retrospective cohort study among 1.7 million people in Scotland. BMJ Open 10, e037011 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jack, R. H., Møller, H., Robson, T. & Davies, E. A. Breast cancer screening uptake among women from different ethnic groups in London: a population-based cohort study. BMJ Open 4, e005586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moser, K., Patnick, J. & Beral, V. Inequalities in reported use of breast and cervical screening in Great Britain: analysis of cross sectional survey data. Br. Med. J. 338, b2025 (2009).

    Article  Google Scholar 

  14. Webb, R., Richardson, J., Esmail, A. & Pickles, A. Uptake for cervical screening by ethnicity and place-of-birth: a population-based cross-sectional study. J. Public Health 26, 293–296 (2004).

    Article  CAS  Google Scholar 

  15. Aliu, A. E., Kerrison, R. S. & Marcu, A. A systematic review of barriers to breast cancer screening, and of interventions designed to increase participation, among women of Black African and Black caribbean descent in the UK. Psychooncology 34, e70093 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marlow, L. A. V., Waller, J. & Wardle, J. Barriers to cervical cancer screening among ethnic minority women: a qualitative study. J. Fam. Plan. Reprod. Health Care 41, 248–254 (2015).

    Article  Google Scholar 

  17. BreastScreen Norway. Norwegian Institute of Public Health https://www.fhi.no/en/cancer/screening/breastscreen/ (accessed 21 October 2025).

  18. Moshina, N. et al. Breast compression and reported pain during mammographic screening. Radiography 26, 133–139 (2020).

    Article  PubMed  CAS  Google Scholar 

  19. Breast screening programme, England, 2022–2023. NHS Digital https://digital.nhs.uk/data-and-information/publications/statistical/breast-screening-programme/england---2022-23 (accessed 27 August 2024).

  20. Marmot, M. G. et al. The benefits and harms of breast cancer screening: an independent review: a report jointly commissioned by cancer research UK and the department of Health (England) October 2012. Br. J. Cancer 108, 2205–2240 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Duffy, S. W. et al. Long-term benefits of breast screening. Breast Cancer Manag. 1, 31–38 (2012).

    Article  CAS  Google Scholar 

  22. Yaffe, M. J., Seely, J. M., Gordon, P. B., Appavoo, S. & Kopans, D. B. The randomized trial of mammography screening that was not — a cautionary tale. J. Med. Screen. 29, 7–11 (2022).

    Article  PubMed  Google Scholar 

  23. Seely, J. Failed randomization and explanation for the outlier results of the Canadian Breast Cancer Screening Studies. Borealis https://doi.org/10.5683/SP3/2DEY36 (2021).

  24. Maroni, R. et al. A case-control study to evaluate the impact of the breast screening programme on mortality in England. Br. J. Cancer 124, 736–743 (2021).

    Article  PubMed  CAS  Google Scholar 

  25. Kopans, D. B., Biggs, K. W., Pyatt, R. S., Smetherman, D. & Friedberg, E. B. The state of breast cancer screening guidelines: a question and answer summary. J. Am. Coll. Radiol. 17, 629–632 (2020).

    Article  PubMed  Google Scholar 

  26. Screening for Breast Cancer: Breast Cancer Screening Draft Recommendation Consumer Guide (US Preventive Services Task Force, 2023).

  27. Schünemann, H. J. et al. Breast cancer screening and diagnosis: a synopsis of the European breast guidelines. Ann. Intern. Med. 172, 46–56 (2020).

    Article  PubMed  Google Scholar 

  28. Giordano, L. et al. Mammographic screening programmes in Europe: organization, coverage and participation. J. Med. Screen. 19, 72–82 (2012).

    Article  PubMed  Google Scholar 

  29. Lauby-Secretan, B. et al. Breast-cancer screening — viewpoint of the IARC working group. N. Engl. J. Med. 372, 2353–2358 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Chaltiel, D. & Hill, C. Estimations of overdiagnosis in breast cancer screening vary between 0% and over 50%: why? BMJ Open 11, e046353 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Blyuss, O. et al. A case–control study to evaluate the impact of the breast screening programme on breast cancer incidence in England. Cancer Med. 12, 1878–1887 (2023).

    Article  PubMed  CAS  Google Scholar 

  32. Njor, S. H. et al. Overdiagnosis in screening mammography in Denmark: population based cohort study. Br. Med. J. 346, f1064 (2013).

    Article  Google Scholar 

  33. Potnis, K. C., Ross, J. S., Aneja, S., Gross, C. P. & Richman, I. B. Artificial intelligence in breast cancer screening: evaluation of FDA device regulation and future recommendations. JAMA Intern. Med. 182, 1306–1312 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hill, H. et al. The cost-effectiveness of risk-stratified breast cancer screening in the UK. Br. J. Cancer 129, 1801–1809 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hernström, V. et al. Screening performance and characteristics of breast cancer detected in the mammography screening with artificial intelligence trial (MASAI): a randomised, controlled, parallel-group, non-inferiority, single-blinded, screening accuracy study. Lancet Digit. Health 7, e175–e183 (2025).

    Article  PubMed  Google Scholar 

  36. Sechopoulos, I., Teuwen, J. & Mann, R. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art. Semin. Cancer Biol. 72, 214–225 (2021).

    Article  PubMed  Google Scholar 

  37. Duffy, S. W., de Jonge, L. & Duffy, T. E. Effects on cancer prevention from the COVID-19 pandemic. Annu. Rev. Med. 75, 1–11 (2024).

    Article  PubMed  CAS  Google Scholar 

  38. Dembrower, K., Crippa, A., Colón, E., Eklund, M. & Strand, F. Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study. Lancet Digit. Health 5, e703–e711 (2023).

    Article  PubMed  CAS  Google Scholar 

  39. Dembrower, K. E., Crippa, A., Eklund, M. & Strand, F. Human–AI interaction in the screentrustCAD trial: recall proportion and positive predictive value related to screening mammograms flagged by AI CAD versus a human reader. Radiology 314, e242566 (2025).

    Article  PubMed  Google Scholar 

  40. Lauritzen, A. D. et al. Early indicators of the impact of using AI in mammography screening for breast cancer. Radiology 311, e232479 (2024).

    Article  PubMed  Google Scholar 

  41. World-leading AI trial to tackle breast cancer launched. National Institute for Health and Care Excellence https://www.nihr.ac.uk/news/world-leading-ai-trial-tackle-breast-cancer-launched (accessed 12 February 2025).

  42. Bennett, R. L., Sellars, S. J. & Moss, S. M. Interval cancers in the NHS breast cancer screening programme in England, Wales and Northern Ireland. Br. J. Cancer 104, 571–577 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bevan, R. & Rutter, M. D. Colorectal cancer screening-who, how, and when. Clin. Endosc. 51, 37–49 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Primm, K. M., Malabay, A. J., Curry, T. & Chang, S. Who, where, when: colorectal cancer disparities by race and ethnicity, subsite, and stage. Cancer Med. 12, 14767–14780 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chung, S. W., Hakim, S., Siddiqui, S. & Cash, B. D. Update on flexible sigmoidoscopy, computed tomographic colonography, and capsule colonoscopy. Gastrointest. Endosc. Clin. 30, 569–583 (2020).

    Article  Google Scholar 

  46. Ansa, B. E. et al. Evaluation of colonoscopy and sigmoidoscopy utilization for colorectal cancer screening in Georgia, USA. Curr. Oncol. 29, 8955–8966 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Davis, M. M. et al. Geographic and population-level disparities in colorectal cancer testing: a multilevel analysis of Medicaid and commercial claims data. Prev. Med. 101, 44–52 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schreuders, E. H. et al. Colorectal cancer screening: a global overview of existing programmes. Gut 64, 1637–1649 (2015).

    Article  PubMed  Google Scholar 

  49. Senore, C. et al. Performance of colorectal cancer screening in the European Union member states: data from the second European screening report. Gut 68, 1232–1244 (2019).

    Article  PubMed  Google Scholar 

  50. Ola, I., Cardoso, R., Hoffmeister, M. & Brenner, H. Utilization of colorectal cancer screening tests: a systematic review and time trend analysis of nationally representative data. EClinicalMedicine 75, 102783 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wooldrage, K., Robbins, E. C., Duffy, S. W. & Cross, A. J. Long-term effects of once-only flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: 21-year follow-up of the UK Flexible Sigmoidoscopy Screening randomised controlled trial. Lancet Gastroenterol. Hepatol. 9, 811–824 (2024).

    Article  PubMed  CAS  Google Scholar 

  52. Holme, Ø et al. Effectiveness of flexible sigmoidoscopy screening in men and women and different age groups: pooled analysis of randomised trials. Br. Med. J. 356, i6673 (2017).

    Article  Google Scholar 

  53. Pinsky, P. F. et al. Number of adenomas removed and colorectal cancers prevented in randomized trials of flexible sigmoidoscopy screening. Gastroenterology 155, 1059–1068 (2018).

    Article  PubMed  Google Scholar 

  54. Moss, S. et al. Increased uptake and improved outcomes of bowel cancer screening with a faecal immunochemical test: results from a pilot study within the national screening programme in England. Gut 66, 1631–1644 (2017).

    Article  PubMed  CAS  Google Scholar 

  55. Breekveldt, E. C. H. et al. Colorectal cancer incidence, mortality, tumour characteristics, and treatment before and after introduction of the faecal immunochemical testing-based screening programme in the Netherlands: a population-based study. Lancet Gastroenterol. Hepatol. 7, 60–68 (2022).

    Article  PubMed  CAS  Google Scholar 

  56. Imperiale, T. F. et al. Next-generation multitarget stool DNA test for colorectal cancer screening. N. Engl. J. Med. 390, 984–993 (2024).

    Article  PubMed  CAS  Google Scholar 

  57. Imperiale, T. F. et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 370, 1287–1297 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. Wisse, P. H. A. et al. The multitarget faecal immunochemical test for improving stool-based colorectal cancer screening programmes: a Dutch population-based, paired-design, intervention study. Lancet Oncol. 25, 326–337 (2024).

    Article  PubMed  CAS  Google Scholar 

  59. de Klaver, W. et al. Clinical validation of a multitarget fecal immunochemical test for colorectal cancer screening : a diagnostic test accuracy study. Ann. Intern. Med. 174, 1224–1231 (2021).

    Article  PubMed  Google Scholar 

  60. Clark, G. R. C. et al. Interval cancers in a national colorectal screening programme based on faecal immunochemical testing: implications for faecal haemoglobin concentration threshold and sex inequality. J. Med. Screen. 31, 21–27 (2024).

    Article  PubMed  Google Scholar 

  61. Li, S. J. et al. Impact of changes to the interscreening interval and faecal immunochemical test threshold in the national bowel cancer screening programme in England: results from the FIT pilot study. Br. J. Cancer 127, 1525–1533 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Li, S. J. et al. Faecal immunochemical testing in bowel cancer screening: estimating outcomes for different diagnostic policies. J. Med. Screen. 28, 277–285 (2021).

    Article  PubMed  Google Scholar 

  63. Singer, A. 2 Cervical cancer screening: state of the art. Baillière’s Clin. Obstet. Gynaecol. 9, 39–64 (1995).

    Article  CAS  Google Scholar 

  64. Basu, P., Nessa, A., Majid, M., Rahman, J. N. & Ahmed, T. Evaluation of the national cervical cancer screening programme of Bangladesh and the formulation of quality assurance guidelines. BMJ Sex. Reprod. Health 36, 131–134 (2010).

    Google Scholar 

  65. Almonte, M. et al. Visual inspection after acetic acid (VIA) is highly heterogeneous in primary cervical screening in Amazonian Peru. PLoS ONE 10, e0115355 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Simms, K. T. et al. Benefits, harms and cost-effectiveness of cervical screening, triage and treatment strategies for women in the general population. Nat. Med. 29, 3050–3058 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Fontham, E. T. H. et al. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J. Clin. 70, 321–346 (2020).

    PubMed  Google Scholar 

  68. Tainio, K. et al. Clinical course of untreated cervical intraepithelial neoplasia grade 2 under active surveillance: systematic review and meta-analysis. Br. Med. J. 360, k499 (2018).

    Article  Google Scholar 

  69. Sigurdsson, K. The Icelandic and Nordic cervical screening programs, trends in incidence and mortality rates through 1995. Acta Obstet. Gynecol. Scand. 78, 478–485 (1999).

    Article  PubMed  CAS  Google Scholar 

  70. Kyrgiou, M. et al. Cervical screening: ESGO–EFC position paper of the european society of gynaecologic oncology (ESGO) and the European federation of colposcopy (EFC). Br. J. Cancer 123, 510–517 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bruni, L. et al. Cervical cancer screening programmes and age-specific coverage estimates for 202 countries and territories worldwide: a review and synthetic analysis. Lancet Glob. Health 10, e1115–e1127 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sasieni, P., Castanon, A. & Cuzick, J. Effectiveness of cervical screening with age: population based case-control study of prospectively recorded data. Br. Med. J. 339, b2968 (2009).

    Article  Google Scholar 

  73. Drysdale, H., Marlow, L. A. V., Lim, A. & Waller, J. Experiences of self-sampling and future screening preferences in non-attenders who returned an HPV vaginal self-sample in the youscreen study: findings from a cross-sectional questionnaire. Health Expect. 27, e14118 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lim, A. W. W. et al. Opportunistic offering of self-sampling to non-attenders within the English cervical screening programme: a pragmatic, multicentre, implementation feasibility trial with randomly allocated cluster intervention start dates (YouScreen). eClinicalMedicine 73, 102672 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rebolj, M., Sargent, A., Njor, S. H. & Cuschieri, K. Widening the offer of human papillomavirus self-sampling to all women eligible for cervical screening: make haste slowly. Int. J. Cancer 153, 8–19 (2023).

    Article  PubMed  CAS  Google Scholar 

  76. Arbyn, M., Smith, S. B., Temin, S., Sultana, F. & Castle, P. Detecting cervical precancer and reaching underscreened women by using HPV testing on self samples: updated meta-analyses. Br. Med. J. 363, k4823 (2018).

    Article  Google Scholar 

  77. Falcaro, M. et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study. Lancet 398, 2084–2092 (2021).

    Article  PubMed  Google Scholar 

  78. Douglas, E., Waller, J., Duffy, S. W. & Wardle, J. Socioeconomic inequalities in breast and cervical screening coverage in England: are we closing the gap? J. Med. Screen. 23, 98–103 (2016).

    Article  PubMed  Google Scholar 

  79. Bongaerts, T. H., Büchner, F. L., Middelkoop, B. J., Guicherit, O. R. & Numans, M. E. Determinants of (non-)attendance at the Dutch cancer screening programmes: a systematic review. J. Med. Screen. 27, 121–129 (2020).

    Article  PubMed  Google Scholar 

  80. Leinonen, M. K. et al. Personal and provider level factors influence participation to cervical cancer screening: a retrospective register-based study of 1.3 million women in Norway. Prev. Med. 94, 31–39 (2017).

    Article  PubMed  Google Scholar 

  81. Chorley, A. J., Marlow, L. A., Forster, A. S., Haddrell, J. B. & Waller, J. Experiences of cervical screening and barriers to participation in the context of an organised programme: a systematic review and thematic synthesis. Psychooncology 26, 161–172 (2017).

    Article  PubMed  Google Scholar 

  82. Wearn, A. & Shepherd, L. Determinants of routine cervical screening participation in underserved women: a qualitative systematic review. Psychol. Health 39, 145–170 (2024).

    Article  PubMed  Google Scholar 

  83. Falcaro, M., Soldan, K., Ndlela, B. & Sasieni, P. Effect of the HPV vaccination programme on incidence of cervical cancer and grade 3 cervical intraepithelial neoplasia by socioeconomic deprivation in England: population based observational study. Br. Med. J. 385, e077341 (2024).

    Article  Google Scholar 

  84. Duffy, S. W. & Wald, N. J. When primary prevention replaces screening. J. Med. Screen. 29, 67–67 (2022).

    Article  PubMed  Google Scholar 

  85. Gilham, C. & Peto, J. Is elimination of cervical cancer in sight in England? Prev. Med. 191, 108218 (2025).

    Article  PubMed  Google Scholar 

  86. Human Papillomavirus (HPV) vaccination coverage. World Health Organization https://immunizationdata.who.int/global/wiise-detail-page/ (accessed 23 May 2025)

  87. Castanon, A., Landy, R., Pesola, F., Windridge, P. & Sasieni, P. Prediction of cervical cancer incidence in England, UK, up to 2040, under four scenarios: a modelling study. Lancet Public Health 3, e34–e43 (2018).

    Article  PubMed  Google Scholar 

  88. Landy, R., Windridge, P., Gillman, M. S. & Sasieni, P. D. What cervical screening is appropriate for women who have been vaccinated against high risk HPV? A simulation study. Int. J. Cancer 142, 709–718 (2018).

    Article  PubMed  CAS  Google Scholar 

  89. Fenton, J. J. et al. Prostate-specific antigen–based screening for prostate cancer: evidence report and systematic review for the US Preventive Services Task Force. JAMA 319, 1914–1931 (2018).

    Article  PubMed  Google Scholar 

  90. Prostate cancer: diagnosis and management — NICE guideline NG131. National Institute for Health and Care Excellence https://www.nice.org.uk/guidance/ng131/chapter/recommendations#assessment-and-diagnosis (accessed 11 June 2025).

  91. Heidegger, I. et al. Age-adjusted PSA levels in prostate cancer prediction: updated results of the tyrol prostate cancer early detection program. PLoS ONE 10, e0134134 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hugosson, J. et al. A 16-yr follow-up of the european randomized study of screening for prostate cancer. Eur. Urol. 76, 43–51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shoag, J. E., Nyame, Y. A., Gulati, R., Etzioni, R. & Hu, J. C. Reconsidering the trade-offs of prostate cancer screening. N. Engl. J. Med. 382, 2465–2468 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Leenen, R. C. A. et al. Prostate cancer early detection in the European Union and UK. Eur. Urol. 87, 326–339 (2024).

    Article  PubMed  Google Scholar 

  95. Beyer, K. et al. Health policy for prostate cancer early detection in the european union and the impact of opportunistic screening: PRAISE-U consortium. J. Pers. Med. 14, 84 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gómez Rivas, J. et al. Navigating through the controversies and emerging paradigms in early detection of prostate cancer: bridging the gap from classic RCTs to modern population-based pilot programs. J. Pers. Med. 13, 1677 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Prostate cancer statistics. Cancer Research UK https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer (accessed 08 August 2024).

  98. Lodder, J. J. et al. A personalized, risk-based approach to active surveillance for prostate cancer with takeaways from broader oncology practices: a mixed methods review. J. Pers. Med. 15, 84 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tosoian, J. J., Penson, D. F. & Chinnaiyan, A. M. A pragmatic approach to prostate cancer screening. JAMA 331, 1448–1450 (2024).

    Article  PubMed  Google Scholar 

  100. Ahmed, H. U. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017).

    Article  PubMed  Google Scholar 

  101. Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ibraheem, N. et al. Innovations and emerging trends in prostate cancer management: a literature review. Cureus 16, e73128 (2024).

    PubMed  PubMed Central  Google Scholar 

  103. Bach, P. B., Kelley, M. J., Tate, R. C. & McCrory, D. C. Screening for lung cancer: a review of the current literature. Chest 123, 72S–82S (2003).

    Article  PubMed  Google Scholar 

  104. Henschke, C. I. et al. Early lung cancer action project: initial findings on repeat screenings. Cancer 92, 153–159 (2001).

    Article  PubMed  CAS  Google Scholar 

  105. Aberle, D. R. et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011).

    Article  PubMed  Google Scholar 

  106. de Koning, H. J. et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N. Engl. J. Med. 382, 503–513 (2020).

    Article  PubMed  Google Scholar 

  107. Field, J. K. et al. Lung cancer mortality reduction by LDCT screening: UKLS randomised trial results and international meta-analysis. Lancet Reg. Health Eur. 10, 100179 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Leiter, A., Veluswamy, R. R. & Wisnivesky, J. P. The global burden of lung cancer: current status and future trends. Nat. Rev. Clin. Oncol. 20, 624–639 (2023).

    Article  PubMed  Google Scholar 

  109. US Preventive Services Task Force. Screening for lung cancer: US preventive services task force recommendation statement. JAMA 325, 962–970 (2021).

  110. Adult screening programme — lung cancer. UK National Screening Committee https://view-health-screening-recommendations.service.gov.uk/lung-cancer/ (accessed 13 February 2025).

  111. Lam, S. et al. Current and future perspectives on computed tomography screening for lung cancer: a roadmap from 2023 to 2027 from the International Association for the Study of Lung Cancer. J. Thorac. Oncol. 19, 36–51 (2024).

    Article  PubMed  Google Scholar 

  112. Zhong, D. et al. Lung nodule management in low-dose CT screening for lung cancer: lessons from the NELSON trial. Radiology 313, e240535 (2024).

    Article  PubMed  Google Scholar 

  113. Callister, M. E. J. et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules: accredited by NICE. Thorax 70, ii1–ii54 (2015).

    Article  PubMed  Google Scholar 

  114. Lung-RADS — lung CT screening, reporting and data system. American College of Radiology https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Reporting-and-Data-Systems/Lung-RADS (accessed 31 October 2025).

  115. Pinsky, P. F. Assessing the benefits and harms of low-dose computed tomography screening for lung cancer. Lung Cancer Manag. 3, 491–498 (2014).

    Article  PubMed  Google Scholar 

  116. Lancaster, H. L. et al. Histological proven AI performance in the UKLS CT lung cancer screening study: potential for workload reduction. Eur. J. Cancer 220, 115324 (2025).

    Article  PubMed  Google Scholar 

  117. Geppert, J. et al. Software using artificial intelligence for nodule and cancer detection in CT lung cancer screening: systematic review of test accuracy studies. Thorax 79, 1040–1049 (2024).

    Article  PubMed  Google Scholar 

  118. Afridi, W. A. et al. Minimally invasive biomarkers for triaging lung nodules-challenges and future perspectives. Cancer Metastasis Rev. 44, 29 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Harrison, N. J. et al. ‘Every touch point is an opportunity’: tobacco control experts’ views on how to implement smoking cessation interventions within an Australian lung cancer screening program. Cancer Med. 14, e70963 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  120. de Nijs, K., Ten Haaf, K., van der Aalst, C. & de Koning, H. J. Projected effectiveness of lung cancer screening and concurrent smoking cessation support in the Netherlands. EClinicalMedicine 71, 102570 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Oesophageal cancer statistics. Cancer Research UK https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/oesophageal-cancer#heading-Two (accessed 12 February 2025).

  122. Puhr, H. C. et al. Viennese risk prediction score for advanced gastroesophageal carcinoma based on alarm symptoms (VAGAS score): characterisation of alarm symptoms in advanced gastro-oesophageal cancer and its correlation with outcome. ESMO Open 5, e000623 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hamade, N. et al. Significant decline in the prevalence of Barrett’s esophagus among patients with gastroesophageal reflux disease. Dis. Esophagus 34, doaa131 (2021).

    Article  PubMed  Google Scholar 

  124. Westhoff, B. et al. The frequency of Barrett’s esophagus in high-risk patients with chronic GERD. Gastrointest. Endosc. 61, 226–231 (2005).

    Article  PubMed  Google Scholar 

  125. Ronkainen, J. et al. Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology 129, 1825–1831 (2005).

    Article  PubMed  Google Scholar 

  126. Hvid-Jensen, F., Pedersen, L., Drewes, A. M., Sorensen, H. T. & Funch-Jensen, P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N. Engl. J. Med. 365, 1375–1383 (2011).

    Article  PubMed  CAS  Google Scholar 

  127. Januszewicz, W. & Fitzgerald, R. C. Early detection and therapeutics. Mol. Oncol. 13, 599–613 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Offman, J. et al. Barrett’s oESophagus trial 3 (BEST3): study protocol for a randomised controlled trial comparing the Cytosponge-TFF3 test with usual care to facilitate the diagnosis of oesophageal pre-cancer in primary care patients with chronic acid reflux. BMC Cancer 18, 784 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Fitzgerald, R. C. et al. Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a primary care setting: a multicentre, pragmatic, randomised controlled trial. Lancet 396, 333–344 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. BEST4 trial. University of Cambridge Early Cancer Institute https://www.earlycancer.cam.ac.uk/our-research/our-clinical-studies/best-4-trial (accessed 21 November 2024).

  131. Moon, S., Song, Y. S., Jung, K. Y., Lee, E. K. & Park, Y. J. Lower thyroid cancer mortality in patients detected by screening: a meta-analysis. Endocrinol. Metab. 38, 93–103 (2023).

    Article  Google Scholar 

  132. Lee, Y. K. et al. Changes in the diagnostic efficiency of thyroid fine-needle aspiration biopsy during the era of increased thyroid cancer screening in Korea. Cancer Res. Treat. 51, 1430–1436 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Toyoda, Y. et al. Increase in incidental detection of thyroid cancer in Osaka, Japan. Cancer Sci. 109, 2310–2314 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Li, M. et al. Mapping overdiagnosis of thyroid cancer in China. Lancet Diabetes Endocrinol. 9, 330–332 (2021).

    Article  PubMed  Google Scholar 

  135. Park, S. et al. Association between screening and the thyroid cancer “epidemic” in South Korea: evidence from a nationwide study. Br. Med. J. 355, i5745 (2016).

    Article  Google Scholar 

  136. Bibbins-Domingo, K. et al. Screening for thyroid cancer: US Preventive Services Task Force recommendation statement. JAMA 317, 1882–1887 (2017).

    Article  PubMed  Google Scholar 

  137. Operational framework management of common cancers. Ministry of Health and Family Welfare–Government of India https://nhsrcindia.org/sites/default/files/2021-03/Operational%20Framework%20Management%20of%20Common%20Cancers.pdf (accessed 30 June 2025).

  138. Sankaranarayanan, R. et al. Effect of screening on oral cancer mortality in Kerala, India: a cluster-randomised controlled trial. Lancet 365, 1927–1933 (2005).

    Article  PubMed  Google Scholar 

  139. Rumgay, H. et al. Global burden of oral cancer in 2022 attributable to smokeless tobacco and areca nut consumption: a population attributable fraction analysis. Lancet Oncol. 25, 1413–1423 (2024).

    Article  PubMed  Google Scholar 

  140. Parak, U., Carvalho, A. L., Roitberg, F. & Mandrik, O. Effectiveness of screening for oral cancer and oral potentially malignant disorders (OPMD): a systematic review. Prev. Med. Rep. 30, 101987 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mayerhoefer, M. E., Kienzle, A., Woo, S. & Vargas, H. A. Update on liquid biopsy. Radiology 315, e241030 (2025).

    Article  PubMed  Google Scholar 

  142. Nielsen, S. & Narayan, A. K. Breast cancer screening modalities, recommendations, and novel imaging techniques. Surg. Clin. North. Am. 103, 63–82 (2023).

    Article  PubMed  Google Scholar 

  143. Taylor, L. C. et al. Acceptability of risk stratification within population-based cancer screening from the perspective of the general public: a mixed-methods systematic review. Health Expect. 26, 989–1008 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Parums, D. V. Artificial intelligence (AI), digital image analysis, and the future of cancer diagnosis and prognosis. Med. Sci. Monit. 30, e947038 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Guerra, C. E., Sharma, P. V. & Castillo, B. S. Multi-cancer early detection: the new frontier in cancer early detection. Annu. Rev. Med. 75, 67–81 (2024).

    Article  PubMed  CAS  Google Scholar 

  146. Sasieni, P., Swanton, C. & Neal, R. D. The National Health Service—Galleri multi-cancer screening trial: explanation and justification of unique and important design issues. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djaf218 (2025).

    Article  PubMed  Google Scholar 

  147. Klein, E. A. et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann. Oncol. 32, 1167–1177 (2021).

    Article  PubMed  CAS  Google Scholar 

  148. Wan, J. C. M., Sasieni, P. & Rosenfeld, N. Promises and pitfalls of multi-cancer early detection using liquid biopsy tests. Nat. Rev. Clin. Oncol. 22, 566–580 (2025).

    Article  PubMed  Google Scholar 

  149. Shapiro, S. Periodic screening for breast cancer: the HIP randomized controlled trial. JNCI Monogr. 1997, 27–30 (1997).

    Article  Google Scholar 

  150. Duffy, S. W. et al. The Swedish two-county trial of mammographic screening: cluster randomisation and end point evaluation. Ann. Oncol. 14, 1196–1198 (2003).

    Article  PubMed  CAS  Google Scholar 

  151. Andersson, I. et al. Mammographic screening and mortality from breast cancer: the Malmö mammographic screening trial. Br. Med. J. 297, 943–948 (1988).

    Article  CAS  Google Scholar 

  152. Andersson, I. & Janzon, L. Reduced breast cancer mortality in women under age 50: updated results from the Malmö mammographic screening program. JNCI Monogr. 1997, 63–67 (1997).

    Article  Google Scholar 

  153. Frisell, J. & Lidbrink, E. The Stockholm mammographic screening trial: risks and benefits in age group 40-49 Years. JNCI Monogr. 1997, 49–51 (1997).

    Article  Google Scholar 

  154. Bjurstam, N. et al. The Gothenburg breast screening trial. Cancer 97, 2387–2396 (2003).

    Article  PubMed  Google Scholar 

  155. Duffy, S. W. et al. Effect of mammographic screening from age 40 years on breast cancer mortality (UK Age trial): final results of a randomised, controlled trial. Lancet Oncol. 21, 1165–1172 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.O. receives support from the Barts Charity (grant G-001522/MGU0461).

Author information

Authors and Affiliations

Authors

Contributions

S.W.D. researched data for the article. J.O. and S.W.D. wrote, reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Stephen W. Duffy or Judith Offman.

Ethics declarations

Competing interests

S.W.D has occasionally been a consultant for Grail and Roche, both on methodological aspects. J.O. has occasionally been a consultant for Hardian Health.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks P. Basu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duffy, S.W., Offman, J. A guide to cancer screening. Nat Rev Clin Oncol (2026). https://doi.org/10.1038/s41571-025-01112-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41571-025-01112-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer