Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs in oncology: a translational perspective in the era of AI

Abstract

Over the past three decades, knowledge of microRNA (miRNA) biology has advanced from the initial discovery of their regulatory functions to the finding of abnormal activity in leukaemias, and then to a comprehensive understanding of the roles of miRNAs in both normal physiology and most diseases, with cancer being extensively studied. miRNA dysregulation contributes to tumorigenesis, with certain miRNAs acting as either tumour suppressors or oncogenic factors in a context-dependent manner. A subset of miRNAs have shown promise as tumour biomarkers and therapeutic targets in preclinical studies, with several miRNA-based diagnostic tools and treatments progressing to clinical trials. Artificial intelligence (AI) and machine learning techniques began to be introduced into cancer research and oncology a decade ago and are now on the verge of revolutionizing biomarker identification and clinical trials. In this Review, we highlight important roles of miRNAs in cancer biology and their potential as diagnostic tools and therapeutic targets. In particular, we discuss emerging challenges and opportunities presented by AI-driven data analysis and combinatorial strategies, and how advances in these areas have addressed previous doubts on the clinical translation of miRNA-based biomarkers and therapeutics.

Key points

  • Despite extensive studies, microRNAs (miRNAs) are not used clinically as biomarkers, owing to insufficient diagnostic specificity and sensitivity.

  • Contemporary studies of miRNA biomarkers aim to improve diagnostic tools by using miRNA profiles, considering miRNA transport mechanisms, integrating miRNA and other omics data, and applying machine learning (ML) and other artificial intelligence (AI) methods to integrate the data.

  • AI and ML enable complex data analysis to identify multi-miRNA signatures for cancer subtyping, early detection and pan-cancer diagnostics using models such as random forests, deep learning and foundation models.

  • AI and ML tools are also advancing the development of miRNA-based therapeutics, although challenges relating to data quality and algorithm transparency highlight the need for standardized, collaborative and interpretable frameworks for reliable translational research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrative landscape of miRNA biology and miRNA-based therapeutics in cancer.
Fig. 2: Landscape of AI and ML applications in oncology and miRNA-based cancer research and biomarker development.

Similar content being viewed by others

References

  1. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Drula, R. & Calin, G. A. MicroRNAs: where brilliance, perseverance, and ambition converged. J. Clin. Invest. 135, e189625 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stefani, G. & Slack, F. J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 9, 219–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Dragomir, M. P., Knutsen, E. & Calin, G. A. Classical and noncanonical functions of miRNAs in cancers. Trends Genet. 38, 379–394 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martino, M. T. D., Tagliaferri, P. & Tassone, P. MicroRNA in cancer therapy: breakthroughs and challenges in early clinical applications. J. Exp. Clin. Cancer Res. 44, 126 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Slack, F. J. & Chinnaiyan, A. M. The role of non-coding RNAs in oncology. Cell 179, 1033–1055 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tentori, A. M. et al. Quantitative and multiplex microRNA assays from unprocessed cells in isolated nanoliter well arrays. Lab. Chip 18, 2410–2424 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alvarez-Torres, M.dM., Fu, X. & Rabadan, R. Illuminating the noncoding genome in cancer using artificial intelligence. Cancer Res. 85, 2368–2375 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shenoy, A. & Blelloch, R. H. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat. Rev. Mol. Cell Biol. 15, 565–576 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davis, B. N. & Hata, A. Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun. Signal. 7, 18 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Blow, M. J. et al. RNA editing of human microRNAs. Genome Biol. 7, R27 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hwang, H. W., Wentzel, E. A. & Mendell, J. T. Cell–cell contact globally activates microRNA biogenesis. Proc. Natl Acad. Sci. USA 106, 7016–7021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwanhian, W. et al. MicroRNA-142 is mutated in about 20% of diffuse large B-cell lymphoma. Cancer Med. 1, 141–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bracken, C. P., Scott, H. S. & Goodall, G. J. A network-biology perspective of microRNA function and dysfunction in cancer. Nat. Rev. Genet. 17, 719–732 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Broseghini, E., Dika, E., Londin, E. & Ferracin, M. MicroRNA isoforms contribution to melanoma pathogenesis. Noncoding RNA 7, 63 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo, H., Zhang, N., Huang, T. & Shen, N. MicroRNA-200c in cancer generation, invasion, and metastasis. Int. J. Mol. Sci. 26, 710 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Di Leva, G. & Croce, C. M. Roles of small RNAs in tumor formation. Trends Mol. Med. 16, 257–267 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chirshev, E., Oberg, K. C., Ioffe, Y. J. & Unternaehrer, J. J. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin. Transl. Med. 8, 24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Baer, C. et al. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nat. Cell Biol. 18, 790–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Hwang, H. W., Wentzel, E. A. & Mendell, J. T. A hexanucleotide element directs microRNA nuclear import. Science 315, 97–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA 109, E2110–E2116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Setrerrahmane, S. et al. Cancer-related micropeptides encoded by ncRNAs: promising drug targets and prognostic biomarkers. Cancer Lett. 547, 215723 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davalos, V. et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31, 2062–2074 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Toyota, M. et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 68, 4123–4132 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bayraktar, R. et al. The mutational landscape and functional effects of noncoding ultraconserved elements in human cancers. Sci. Adv. 11, eado2830 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anfossi, S., Babayan, A., Pantel, K. & Calin, G. A. Clinical utility of circulating non-coding RNAs — an update. Nat. Rev. Clin. Oncol. 15, 541–563 (2018).

    Article  PubMed  Google Scholar 

  34. Dragomir, M. P., Kopetz, S., Ajani, J. A. & Calin, G. A. Non-coding RNAs in GI cancers: from cancer hallmarks to clinical utility. Gut 69, 748–763 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Matsuzaki, J. et al. Prediction of tissue-of-origin of early stage cancers using serum miRNomes. JNCI Cancer Spectr. 7, pkac080 (2023).

    Article  PubMed  Google Scholar 

  36. Hogdall, D. et al. Whole blood microRNAs capture systemic reprogramming and have diagnostic potential in patients with biliary tract cancer. J. Hepatol. 77, 1047–1058 (2022).

    Article  PubMed  Google Scholar 

  37. Miyoshi, J. et al. Liquid biopsy to identify Barrett’s oesophagus, dysplasia and oesophageal adenocarcinoma: the EMERALD multicentre study. Gut 74, 169–181 (2025).

    Article  CAS  PubMed  Google Scholar 

  38. Pardini, B. et al. A fecal microRNA signature by small RNA sequencing accurately distinguishes colorectal cancers: results from a multicenter study. Gastroenterology 165, 582–599.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Naccarati, A. et al. Fecal miRNA profiles in colorectal cancers with mucinous morphology. Mutagenesis 40, 71–79 (2025).

    Article  CAS  PubMed  Google Scholar 

  40. Wu, P. et al. Pan-cancer characterization of cell-free immune-related miRNA identified as a robust biomarker for cancer diagnosis. Mol. Cancer 23, 31 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Metcalf, G. A. D. MicroRNAs: circulating biomarkers for the early detection of imperceptible cancers via biosensor and machine-learning advances. Oncogene 43, 2135–2142 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ko, S. Y. et al. The glycoprotein CD147 defines miRNA-enriched extracellular vesicles that derive from cancer cells. J. Extracell. Vesicles 12, e12318 (2023).

    Article  PubMed  Google Scholar 

  43. Li, B. et al. Five miRNAs identified in fucosylated extracellular vesicles as non-invasive diagnostic signatures for hepatocellular carcinoma. Cell Rep. Med. 5, 101716 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Mitchell, M. I. et al. Exhaled breath condensate contains extracellular vesicles (EVs) that carry miRNA cargos of lung tissue origin that can be selectively purified and analyzed. J. Extracell. Vesicles 13, e12440 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, K. et al. Salivary extracellular microRNAs for early detection and prognostication of esophageal cancer: a clinical study. Gastroenterology 165, 932–945.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Lei, Y. et al. Simultaneous subset tracing and miRNA profiling of tumor-derived exosomes via dual-surface-protein orthogonal barcoding. Sci. Adv. 9, eadi1556 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cai, S. et al. Single-molecule amplification-free multiplexed detection of circulating microRNA cancer biomarkers from serum. Nat. Commun. 12, 3515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou, J. et al. High-throughput single-EV liquid biopsy: rapid, simultaneous, and multiplexed detection of nucleic acids, proteins, and their combinations. Sci. Adv. 6, eabc1204 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li, Z. et al. Colocalization of protein and microRNA markers reveals unique extracellular vesicle subpopulations for early cancer detection. Sci. Adv. 10, eadh8689 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moisoiu, T. et al. Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer. Mol. Med. 28, 39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, Y. et al. DNA-methylation signature accurately differentiates pancreatic cancer from chronic pancreatitis in tissue and plasma. Gut 72, 2344–2353 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Pastorino, U. et al. Baseline computed tomography screening and blood microRNA predict lung cancer risk and define adequate intervals in the BioMILD trial. Ann. Oncol. 33, 395–405 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Nappi, L. et al. Integrated expression of circulating miR375 and miR371 to identify teratoma and active germ cell malignancy components in malignant germ cell tumors. Eur. Urol. 79, 16–19 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Li, X. et al. A predictive system comprising serum microRNAs and radiomics for residual retroperitoneal masses in metastatic nonseminomatous germ cell tumors. Cell Rep. Med. 5, 101843 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, Y. et al. Tumor-derived EV miRNA signatures surpass total EV miRNA in supplementing mammography for precision breast cancer diagnosis. Theranostics 14, 6587–6604 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bhinder, B., Gilvary, C., Madhukar, N. S. & Elemento, O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 11, 900–915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lotter, W. et al. Artificial intelligence in oncology: current landscape, challenges, and future directions. Cancer Discov. 14, 711–726 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhu, W. & Kan, X. Neural network cascade optimizes microRNA biomarker selection for nasopharyngeal cancer prognosis. PLoS ONE 9, e110537 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Luna-Aguirre, C. M. et al. Circulating microRNA expression profile in B-cell acute lymphoblastic leukemia. Cancer Biomark 15, 299–310 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Kong, D., Wang, K., Zhang, Q.-N. & Bing, Z.-T. Systematic analysis reveals key microRNAs as diagnostic and prognostic factors in progressive stages of lung cancer. Preprint at arXiv https://doi.org/10.48550/arXiv.2201.05408 (2022).

  64. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hosseiniyan Khatibi, S. M., Ardalan, M., Teshnehlab, M., Vahed, S. Z. & Pirmoradi, S. Panels of mRNAs and miRNAs for decoding molecular mechanisms of renal cell carcinoma (RCC) subtypes utilizing artificial intelligence approaches. Sci. Rep. 12, 16393 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Katipally, R. R. et al. Integrated clinical-molecular classification of colorectal liver metastases: a biomarker analysis of the phase 3 new EPOC randomized clinical trial. JAMA Oncol. 9, 1245–1254 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Keller, A. et al. Competitive learning suggests circulating miRNA profiles for cancers decades prior to diagnosis. RNA Biol. 17, 1416–1426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, J., Zhang, H. & Gao, F. Identification of miRNA biomarkers for breast cancer by combining ensemble regularized multinomial logistic regression and cox regression. BMC Bioinforma. 23, 434 (2022).

    Article  CAS  Google Scholar 

  69. Sarkar, J. P., Saha, I., Sarkar, A. & Maulik, U. Machine learning integrated ensemble of feature selection methods followed by survival analysis for predicting breast cancer subtype specific miRNA biomarkers. Comput. Biol. Med. 131, 104244 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, J., Rui, H. & Hu, H. Noninvasive multi-cancer detection using blood-based cell-free microRNAs. Sci. Rep. 14, 22136 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kamkar, L., Saberi, S., Totonchi, M. & Kavousi, K. Circulating microRNA panels for multi-cancer detection and gastric cancer screening: leveraging a network biology approach. BMC Med. Genomics 18, 27 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, D. et al. Large language models in oncology: a review. BMJ Oncol. 4, e000759 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dong, B., Sun, W., Xu, D., Wang, G. & Zhang, T. MDformer: a transformer-based method for predicting miRNA-Disease associations using multi-source feature fusion and maximal meta-path instances encoding. Comput. Biol. Med. 167, 107585 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Waqas, A. et al. Self-normalizing foundation model for enhanced multi-omics data analysis in oncology. Preprint at arXiv https://doi.org/10.48550/arXiv.2405.08226 (2024).

  75. Angeles, A. et al. Matching plasma and tissue miRNA expression analysis to detect viable ovarian germ cell tumors. PLoS ONE 20, e0322477 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun, F. et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 582, 1564–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Zhao, Y. & Wang, X. miR-34a targets BCL-2 to suppress the migration and invasion of sinonasal squamous cell carcinoma. Oncol. Lett. 16, 6566–6572 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cortez, M. A. et al. PDL1 regulation by p53 via miR-34. J. Natl Cancer Inst. 108, djv303 (2016).

    Article  PubMed  Google Scholar 

  79. Adams, B. D., Parsons, C. & Slack, F. J. The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert. Opin. Ther. Targets 20, 737–753 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Beg, M. S. et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs 35, 180–188 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Hong, D. S. et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 122, 1630–1637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Telford, B. J. et al. Multi-modal effects of 1B3, a novel synthetic miR-193a-3p mimic, support strong potential for therapeutic intervention in oncology. Oncotarget 12, 422–439 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Issa, H. et al. Preclinical testing of miRNA-193b-3p mimic in acute myeloid leukemias. Leukemia 37, 1583–1587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van den Bosch, M. T. J. et al. Transcriptome-wide analysis reveals insight into tumor suppressor functions of 1B3, a novel synthetic miR-193a-3p mimic. Mol. Ther. Nucleic Acids 23, 1161–1171 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kim, T. & Croce, C. M. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp. Mol. Med. 55, 1314–1321 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Duurland, C. L. et al. INT-1B3, an LNP formulated miR-193a-3p mimic, promotes anti-tumor immunity by enhancing T cell mediated immune responses via modulation of the tumor microenvironment and induction of immunogenic cell death. Oncotarget 15, 470–485 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  87. van den Bosch, M. T. J. et al. The tumor suppressor 5A2, a synthetic miR-7-5p mimic, targets oncogenic and metabolic pathways, as revealed by transcriptome-wide analysis. Front. Drug Discov. 3, 1181637 (2023).

    Article  Google Scholar 

  88. Seto, A. G. et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br. J. Haematol. 183, 428–444 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Sun, X., Setrerrahmane, S., Li, C., Hu, J. & Xu, H. Nucleic acid drugs: recent progress and future perspectives. Signal. Transduct. Target. Ther. 9, 316 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  90. He, X. et al. Non-coding RNAs in the spotlight of the pathogenesis, diagnosis, and therapy of cutaneous T cell lymphoma. Cell Death Discov. 10, 400 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Querfeld, C. et al. Phase 1 trial of cobomarsen, an inhibitor of Mir-155, in cutaneous T cell lymphoma [abstract]. Blood 132, 2903 (2018).

    Article  Google Scholar 

  92. Taubel, J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 42, 178–188 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Jdiaa, S. S., Mustafa, R. A. & Yu, A. S. L. Treatment of autosomal-dominant polycystic kidney disease. Am. J. Kidney Dis. 85, 491–500 (2025).

    Article  CAS  PubMed  Google Scholar 

  94. Badanina, D. M. et al. Therapeutic potential of modulating gene-microRNA crosstalk in burn injury. Int. J. Mol. Sci. 26, 10060 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang, N. et al. MicroRNAs: pleiotropic regulators in the tumor microenvironment. Front. Immunol. 9, 2491 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jovelin, R. Pleiotropic constraints, expression level, and the evolution of miRNA sequences. J. Mol. Evol. 77, 206–220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lehmann, S. M. et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. 15, 827–835 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Feng, Y. et al. Extracellular microRNAs induce potent innate immune responses via TLR7/MyD88-dependent mechanisms. J. Immunol. 199, 2106–2117 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Rasko, J. E. & Wong, J. J. Nuclear microRNAs in normal hemopoiesis and cancer. J. Hematol. Oncol. 10, 8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhou, H. et al. A peptide encoded by pri-miRNA-31 represses autoimmunity by promoting Treg differentiation. EMBO Rep. 23, e53475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mestdagh, P. et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Methods 11, 809–815 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Zelli, V. et al. Emerging role of isomiRs in cancer: state of the art and recent advances. Genes 12, 1447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pinzon, N. et al. microRNA target prediction programs predict many false positives. Genome Res. 27, 234–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hum, N. R. et al. Comparative molecular analysis of cancer behavior cultured in vitro, in vivo, and ex vivo. Cancers 12, 690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Almarza, E. et al. Characteristics of lentiviral vectors harboring the proximal promoter of the vav proto-oncogene: a weak and efficient promoter for gene therapy. Mol. Ther. 15, 1487–1494 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Wittrup, A. & Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet. 16, 543–552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McDonald, J. S., Milosevic, D., Reddi, H. V., Grebe, S. K. & Algeciras-Schimnich, A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin. Chem. 57, 833–840 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Leidinger, P. et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 14, R78 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Libbrecht, M. W. & Noble, W. S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16, 321–332 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. van Rooij, E. & Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 6, 851–864 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Faridani, O. R. et al. Single-cell sequencing of the small-RNA transcriptome. Nat. Biotechnol. 34, 1264–1266 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. McKellar, D. W. et al. Spatial mapping of the total transcriptome by in situ polyadenylation. Nat. Biotechnol. 41, 513–520 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Su, J. et al. Cell–cell communication: new insights and clinical implications. Signal. Transduct. Target. Ther. 9, 196 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ijee, S. et al. Efficient deletion of microRNAs using CRISPR/Cas9 with dual guide RNAs. Front. Mol. Biosci. 10, 1295507 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zafra, M. P. et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotechnol. 36, 888–893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Klemke, M. et al. Loss of let-7 binding sites resulting from truncations of the 3′ untranslated region of HMGA2 mRNA in uterine leiomyomas. Cancer Genet. Cytogenet. 196, 119–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, K. et al. The overlooked fact: fundamental need for spike-in control for virtually all genome-wide analyses. Mol. Cell Biol. 36, 662–667 (2015).

    Article  PubMed  Google Scholar 

  126. ElHefnawi, M., Soliman, B., Abu-Shahba, N. & Amer, M. An integrative meta-analysis of microRNAs in hepatocellular carcinoma. Genomics Proteom. Bioinforma. 11, 354–367 (2013).

    Article  CAS  Google Scholar 

  127. Fu, L. & Peng, Q. A deep ensemble model to predict miRNA–disease association. Sci. Rep. 7, 14482 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zhang, Y., Parmigiani, G. & Johnson, W. E. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR. Genom. Bioinform 2, lqaa078 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun, Y. & Qiu, P. Domain adaptation for supervised integration of scRNA-seq data. Commun. Biol. 6, 274 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wagner, V., Meese, E. & Keller, A. The intricacies of isomiRs: from classification to clinical relevance. Trends Genet. 40, 784–796 (2024).

    Article  CAS  PubMed  Google Scholar 

  132. Pla, A., Zhong, X. & Rayner, S. miRAW: a deep learning-based approach to predict microRNA targets by analyzing whole microRNA transcripts. PLoS Comput. Biol. 14, e1006185 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gu, T., Zhao, X., Barbazuk, W. B. & Lee, J. H. miTAR: a hybrid deep learning-based approach for predicting miRNA targets. BMC Bioinforma. 22, 96 (2021).

    Article  CAS  Google Scholar 

  134. Dalla-Torre, H. et al. Nucleotide Transformer: building and evaluating robust foundation models for human genomics. Nat. Methods 22, 287–297 (2025).

    Article  CAS  PubMed  Google Scholar 

  135. Xie, X., Wang, Y., He, K. & Sheng, N. Predicting miRNA-disease associations based on PPMI and attention network. BMC Bioinforma. 24, 113 (2023).

    Article  CAS  Google Scholar 

  136. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zuo, L. et al. Exosomes-coated miR-34a displays potent antitumor activity in pancreatic cancer both in vitro and in vivo. Drug Des. Devel. Ther. 14, 3495–3507 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Paliwal, S. R., Paliwal, R. & Vyas, S. P. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv. 22, 231–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Yuba, E. Design of pH-sensitive polymer-modified liposomes for antigen delivery and their application in cancer immunotherapy. Polym. J. 48, 761–771 (2016).

    Article  CAS  Google Scholar 

  140. Kocak, G., Tuncer, C. & Bücün, V. pH-Responsive polymers. Polym. Chem. 8, 144–176 (2017).

    Article  CAS  Google Scholar 

  141. Sun, L. et al. Smart nanoparticles for cancer therapy. Signal. Transduct. Target. Ther. 8, 418 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sugahara, K. N. et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16, 510–520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Juang, V., Chang, C. H., Wang, C. S., Wang, H. E. & Lo, Y. L. pH-Responsive PEG-shedding and targeting peptide-modified nanoparticles for dual-delivery of irinotecan and microRNA to enhance tumor-specific therapy. Small 15, e1903296 (2019).

    Article  PubMed  Google Scholar 

  144. Kim, H. I. et al. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp. Mol. Med. 56, 836–849 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Volpini, L., Monaco, F., Santarelli, L., Neuzil, J. & Tomasetti, M. Advances in RNA cancer therapeutics: new insight into exosomes as miRNA delivery. Asp. Mol. Med. 1, 100005 (2023).

    Article  Google Scholar 

  146. EL Andaloussi, S., Mäger, I., Breakefield, X. O. & Wood, M. J. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Ohno, S. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21, 185–191 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jurj, A., Fontana, B., Varani, G. & Calin, G. A. Small molecules targeting microRNAs: new opportunities and challenges in precision cancer therapy. Trends Cancer 10, 809–824 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tadesse, K. & Benhamou, R. I. Targeting microRNAs with small molecules. Noncoding RNA 10, 17 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Sidharthan, V. et al. Use of a small molecule microarray screen to identify inhibitors of the catalytic RNA subunit of Methanobrevibacter smithii RNase P. Nucleic Acids Res. 53, gkae1190 (2025).

    Article  PubMed  Google Scholar 

  152. Sedgwick, A. C. et al. Indicator displacement assays (IDAs): the past, present and future. Chem. Soc. Rev. 50, 9–38 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Bood, M. et al. Interbase-FRET binding assay for pre-microRNAs. Sci. Rep. 11, 9396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu, M., Huang, W., Yang, N. & Liu, Y. Learn from antibody–drug conjugates: consideration in the future construction of peptide–drug conjugates for cancer therapy. Exp. Hematol. Oncol. 11, 93 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Meng, Q. et al. Antibody-oligonucleotide conjugates in cancer therapy: potential and promise. Crit. Rev. Oncology/Hematology 215, 104858 (2025).

    Article  Google Scholar 

  156. Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Kashyap, D. & Booth, M. J. Nucleic acid conjugates: unlocking therapeutic potential. ACS Bio Med Chem Au 5, 3–15 (2025).

    Article  CAS  PubMed  Google Scholar 

  158. Cancer Genome Atlas Research Network The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  PubMed Central  Google Scholar 

  159. Clough, E. & Barrett, T. The Gene Expression Omnibus database. Methods Mol. Biol. 1418, 93–110 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Cui, S. et al. miRTarBase 2025: updates to the collection of experimentally validated microRNA-target interactions. Nucleic Acids Res. 53, D147–D156 (2025).

    Article  PubMed  Google Scholar 

  161. Li, R. et al. CancerMIRNome: an interactive analysis and visualization database for miRNome profiles of human cancer. Nucleic Acids Res. 50, D1139–D1146 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. de Gonzalo-Calvo, D. et al. Machine learning for catalysing the integration of noncoding RNA in research and clinical practice. EBioMedicine 106, 105247 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Qi, B., Fiori, L. M., Turecki, G. & Trakadis, Y. J. Machine learning analysis of blood microRNA data in major depression: a case-control study for biomarker discovery. Int. J. Neuropsychopharmacol. 23, 505–510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang, Y. et al. Machine learning-based exceptional response prediction of nivolumab monotherapy with circulating microRNAs in non-small cell lung cancer. Lung Cancer 173, 107–115 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Fehlmann, T. et al. Evaluating the use of circulating microRNA profiles for lung cancer detection in symptomatic patients. JAMA Oncol. 6, 714–723 (2020).

    Article  PubMed  Google Scholar 

  166. Wang, Y., Carter, B. Z., Li, Z. & Huang, X. Application of machine learning methods in clinical trials for precision medicine. JAMIA Open. 5, ooab107 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zhang, B. et al. Harnessing artificial intelligence to improve clinical trial design. Commun. Med. 3, 191 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kavalci, E. & Hartshorn, A. Improving clinical trial design using interpretable machine learning based prediction of early trial termination. Sci. Rep. 13, 121 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Franke, J. K., Runge, F., Köksal, R., Backofen, R. & Hutter, F. RNAformer: a simple yet effective deep learning model for RNA secondary structure prediction. Preprint at bioRxiv https://doi.org/10.1101/2024.02.12.579881 (2024).

  170. Li, F. et al. Advancing mRNA subcellular localization prediction with graph neural network and RNA structure. Bioinformatics 40, btae504 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Karimi, M., Wu, D., Wang, Z. & Shen, Y. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35, 3329–3338 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Krishnan, S. R., Roy, A. & Gromiha, M. M. Reliable method for predicting the binding affinity of RNA-small molecule interactions using machine learning. Brief. Bioinform. 25, bbae002 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Sun, S. & Gao, L. Contrastive pre-training and 3D convolution neural network for RNA and small molecule binding affinity prediction. Bioinformatics 40, btae155 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Galeano, D. et al. sChemNET: a deep learning framework for predicting small molecules targeting microRNA function. Nat. Commun. 15, 9149 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tong, Y. et al. Programming inactive RNA-binding small molecules into bioactive degraders. Nature 618, 169–179 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dietterich, T. Overfitting and undercomputing in machine learning. ACM Comput. Surv. 27, 326–327 (1995).

    Article  Google Scholar 

  178. Shi, W. et al. Integrating a microRNA signature as a liquid biopsy-based tool for the early diagnosis and prediction of potential therapeutic targets in pancreatic cancer. Br. J. Cancer 130, 125–134 (2024).

    Article  CAS  PubMed  Google Scholar 

  179. Hamidi, F. et al. Identifying potential circulating miRNA biomarkers for the diagnosis and prediction of ovarian cancer using machine-learning approach: application of Boruta. Front. Digit. Health 5, 1187578 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Guidotti, R. et al. A survey of methods for explaining black box models. ACM Comput. Surv. 51, 93 (2018).

    Google Scholar 

  181. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Dwivedi, R. et al. Explainable AI (XAI): core ideas, techniques, and solutions. ACM Comput. Surv. 55, 194 (2023).

    Article  Google Scholar 

  183. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Chafik, A. Machine learning-based selection of key miRNA biomarkers for breast cancer diagnostics. J. Appl. Sci. 15, 597–603 (2025).

    Google Scholar 

  185. Yerukala Sathipati, S., Tsai, M. J., Shukla, S. K. & Ho, S. Y. Artificial intelligence-driven pan-cancer analysis reveals miRNA signatures for cancer stage prediction. HGG Adv. 4, 100190 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Singh, S. et al. Integrating miRNA profiling and machine learning for improved prostate cancer diagnosis. Sci. Rep. 15, 30477 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Pawelka, D. et al. Machine-learning-based analysis identifies miRNA expression profile for diagnosis and prediction of colorectal cancer: a preliminary study. Cancer Genomics Proteom. 19, 503–511 (2022).

    Article  CAS  Google Scholar 

  188. Sathipati, S. Y. et al. An evolutionary learning-based method for identifying a circulating miRNA signature for breast cancer diagnosis prediction. NAR. Genom. Bioinform 6, lqae022 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Azari, H. et al. Machine learning algorithms reveal potential miRNAs biomarkers in gastric cancer. Sci. Rep. 13, 6147 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kantamnen, S., Hegde, P., Patil, N. Utilizing deep learning methods for cancer detection through analysis of microRNA expression profiles. 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) https://doi.org/10.1109/ICCCNT61001.2024.10725601 (IEEE, 2024).

  191. Pal, J. K. & Rami, B. R. Machine learning based identification of candidate miRNA biomarkers for micro-invasive breast cancer diagnosis. Preprint at bioRxiv https://doi.org/10.1101/2024.08.16.608025 (2024).

  192. Alizadeh Savareh, B. et al. A machine learning approach identified a diagnostic model for pancreatic cancer through using circulating microRNA signatures. Pancreatology 20, 1195–1204 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Sarkar, A., Das, T., Das, G. & Ghosh, Z. MicroRNA mediated gene regulatory circuits leads to machine learning based preliminary detection of acute myeloid leukemia. Comput. Biol. Chem. 104, 107859 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Wang, C., Kouznetsova, V. L., Kesari, S. & Tsigelny, I. F. Developing a novel medulloblastoma diagnostic with miRNA biomarkers and machine learning. Childs Nerv. Syst. 41, 221 (2025).

    Article  PubMed  Google Scholar 

  195. Tassone, P. et al. Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: a first-in-human, phase 1, open-label, dose-escalation study. J. Hematol. Oncol. 16, 68 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. van Zandwijk, N. et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18, 1386–1396 (2017).

    Article  PubMed  Google Scholar 

  197. Haniff, H. S. et al. Design of a small molecule that stimulates vascular endothelial growth factor A enabled by screening RNA fold-small molecule interactions. Nat. Chem. 12, 952–961 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chang, L., Zhou, G., Soufan, O. & Xia, J. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 48, W244–W251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wen, M., Cong, P., Zhang, Z., Lu, H. & Li, T. DeepMirTar: a deep-learning approach for predicting human miRNA targets. Bioinformatics 34, 3781–3787 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Lee, B., Baek, J., Park, J., Yoon, S. deepTarget: end-to-end learning framework for microRNA target prediction using deep recurrent neural networks. BCB '16: Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics 434–442 (Association for Computing Machinery, 2016).

  201. Hitzler, P., Eberhart, A., Ebrahimi, M., Sarker, M. K. & Zhou, L. Neuro-symbolic approaches in artificial intelligence. Natl Sci. Rev. 9, nwac035 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Coronato, A., Naeem, M., De Pietro, G. & Paragliola, G. Reinforcement learning for intelligent healthcare applications: a survey. Artif. Intell. Med. 109, 101964 (2020).

    Article  PubMed  Google Scholar 

  203. Harshvardhan, G. M., Mahendra, K. G., Manjusha, P. & Siddharth, S. R. A comprehensive survey and analysis of generative models in machine learning. Computer Sci. Rev. 38, 100285 (2020).

    Article  Google Scholar 

  204. Noble, W. S. What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006).

    Article  CAS  PubMed  Google Scholar 

  205. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  206. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems vol. 25 (eds Pereira, F., Burges, C. J., Bottou, L. & Weinberger, K. Q.) (Curran Associates, 2012).

  207. Ehteshami Bejnordi, B. et al. Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies. Mod. Pathol. 31, 1502–1512 (2018).

    Article  PubMed  Google Scholar 

  208. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Castro-Vega, L. J. et al. Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat. Commun. 6, 6044 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Yang, X. et al. A large language model for electronic health records. NPJ Digit. Med. 5, 194 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Pai, S. et al. Foundation model for cancer imaging biomarkers. Nat. Mach. Intell. 6, 354–367 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Vorontsov, E. et al. A foundation model for clinical-grade computational pathology and rare cancers detection. Nat. Med. 30, 2924–2935 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  215. Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. Support vector machines. IEEE Intell. Syst. their Appl. 13, 18–28 (1998).

    Article  Google Scholar 

  216. Gurney, K. An Introduction to Neural Networks (CRC Press, 2018).

  217. Huang, Y. et al. Spatial dissection of invasive front from tumor mass enables discovery of novel microRNA drivers of glioblastoma invasion. Adv. Sci. 8, e2101923 (2021).

    Article  Google Scholar 

  218. Giubellino, A., Ricketts, C. J., Moreno, V., Linehan, W. M. & Merino, M. J. MicroRNA profiling of morphologically heterogeneous clear cell renal cell carcinoma. J. Cancer 12, 5375–5384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Isakova, A., Fehlmann, T., Keller, A. & Quake, S. R. A mouse tissue atlas of small noncoding RNA. Proc. Natl Acad. Sci. USA 117, 25634–25645 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

    Article  CAS  PubMed  Google Scholar 

  222. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Junker, J. P. et al. Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 662–675 (2014).

    Article  CAS  PubMed  Google Scholar 

  225. Jayaprakash, A. D., Jabado, O., Brown, B. D. & Sachidanandam, R. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res. 39, e141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Maji, R. K., Leisegang, M. S., Boon, R. A. & Schulz, M. H. Revealing microRNA regulation in single cells. Trends Genet. 41, 522–536 (2025).

    Article  CAS  PubMed  Google Scholar 

  227. Linsen, S. E. et al. Limitations and possibilities of small RNA digital gene expression profiling. Nat. Methods 6, 474–476 (2009).

    Article  CAS  PubMed  Google Scholar 

  228. Shore, S. et al. Small RNA library preparation method for next-generation sequencing using chemical modifications to prevent adapter dimer formation. PLoS ONE 11, e0167009 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Hucker, S. M. et al. Single-cell microRNA sequencing method comparison and application to cell lines and circulating lung tumor cells. Nat. Commun. 12, 4316 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Xiao, Z. et al. Holo-Seq: single-cell sequencing of holo-transcriptome. Genome Biol. 19, 163 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Wang, N. et al. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat. Commun. 10, 95 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Isakova, A., Neff, N. & Quake, S. R. Single-cell quantification of a broad RNA spectrum reveals unique noncoding patterns associated with cell types and states. Proc. Natl Acad. Sci. USA 118, e2113568118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Bai, Z. et al. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell 187, 6760–6779.e24 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

G.A.C. is the Charles B. Barker Chair. Work in G.A.C.’s laboratory is supported by NCI grant 1R01CA222007-01A1, NIDCR grant R01DE032018, DoD CDRMP Idea Award BC200208P1 (W81XWH-21-1-0030), Team DoD Grant in Gastric Cancer CA200990P2 (W81XWH-21-1-0715), DoD Idea Award PC230419 (HT9425-24-1-0052), the 2019 Faculty Achievement Award, CLL Global Research Foundation 2019 grant, CLL Global Research Foundation 2020 grant, CLL Global Research Foundation 2022 grant, CLL Global Research Foundation 2024 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation, an Institutional Research Grant 2024, a Development Grant associated with the Brain SPORE 2P50CA127001, an Institutional Bridge Funding grant 2023, and the Ben and Catherine Ivy Foundation grant. The work of Z.L. was partially supported by US NIGMS grant R35GM159819 and a Translational and Basic Science Research in Early Lesions (TBEL) Coordinating and Data Management Center (CDMC) grant U24CA274212. The work of M.P.D. is supported by the Berlin Institute of Health Clinician Scientist Program, a German Cancer Research Center (DKTK) Berlin Young Investigator Grant 2022, the Berliner Krebsgesellschaft DRFF202204, and an Else Kröner-Fresenius Foundation First and Second Applications Grant (2024_EKEA.77).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding authors

Correspondence to Ziyi Li or George A. Calin.

Ethics declarations

Competing interests

G.A.C. is one of the scientific founders of Ithax Therapeutics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks H.-D. Huang, N. Seki and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adaptor dimer

Sequencing phenomenon whereby two adaptors bind to each other or build short adaptor-only fragments with consequences such as wasted sequencing reads and/or reduced depth per-cell depth, especially problematic when cDNA amounts are low.

Adaptor ligation bias

Certain RNA sequences are favoured during adaptor ligation, which can distort gene expression quantification and result in cell type-specific artefacts.

Artificial intelligence

A broad field focused on building computational systems that mimic human intelligence, including reasoning, learning and decision-making.

Black box

A term used to describe artificial intelligence and machine learning models with internal decision-making processes that are difficult to interpret, with a lack of transparency regarding the biological rationale underlying their predictions that might reduce trust in the outputs, thus posing challenges for clinical translation.

Decision trees

A supervised machine learning method that uses a tree-like structure to make predictions. At each branching point (‘node’), the algorithm applies a decision rule based on one feature, splitting the data into subgroups. This process continues until terminal nodes (‘leaves’), which assign a final prediction, are reached. Decision trees are highly interpretable and form the basis for many ensemble approaches such as random forests and boosting algorithms.

Ensemble learning

A machine learning strategy in which multiple predictive models (for example, decision trees, neural networks or statistical classifiers) are combined to improve overall performance.

Feature spaces

Multidimensional spaces in which each dimension represents a measurable attribute or feature of the data. Each sample can be visualized as a point in such a space, and the geometric relationships between points often reflect underlying biological or clinical differences. Machine learning models operate within these feature spaces to detect patterns, classify samples, or make predictions.

Hyperplane

A hyperplane is a mathematical boundary that separates data points into different groups within a multidimensional feature space. In machine learning, classifiers such as support vector machines use hyperplanes to distinguish between classes by finding the boundary that best maximizes the margin between them.

Kernel tricks

A computational technique used in algorithms such as support vector machines to analyse data that are not linearly separable. The kernel trick maps the original data into a higher-dimensional feature space whereby a simple linear boundary (hyperplane) can separate the classes without explicitly computing the high-dimensional transformation. This approach enables efficient modelling of complex, non-linear relationships.

Locked nucleic acid

(LNA). A chemically modified nucleic acid analogue in which the ribose sugar is conformationally constrained by a 2′-O,4′-C methylene bridge. This ‘locked’ C3′ endo conformation increases the thermal stability and affinity of LNA-containing oligonucleotides for complementary RNA, enhances mismatch discrimination, and provides strong resistance to nuclease degradation. LNAs are widely used in antisense and microRNA-based therapeutics to improve potency, specificity and in vivo stability.

Machine learning

A key form of artificial intelligence in which data are used to train computational models to identify patterns and make predictions or decisions without explicit programming.

miRNA signatures

Defined sets of microRNAs (miRNAs), the combined expression pattern of which distinguishes biological states such as cancer from non-malignant tissue and tumour subtypes as well as disease prognosis or responsiveness to therapy. Unlike single miRNA species, miRNA signatures capture the network-level regulation of gene expression and often provide greater sensitivity, specificity and robustness in clinical applications.

miRNome

The complete set of microRNAs (miRNAs) expressed in a specific cell type, tissue or organism under defined conditions. Analysis of the miRNome enables comprehensive profiling of miRNA expression patterns, identification of disease-associated miRNA signatures and the study of regulatory networks involving miRNAs.

Seed matching

Putative microRNA (miRNA) targets are identified by complementarity within the seed region (nucleotides 2–7/8 of the miRNA). Although seed pairing is the primary determinant of target specificity, it often yields false-positive results because short complementary motifs occur by chance, and functional targeting also requires favourable mRNA structure, site accessibility, sequence context and co-expression of the miRNA and its target.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurj, A., Dragomir, M.P., Li, Z. et al. MicroRNAs in oncology: a translational perspective in the era of AI. Nat Rev Clin Oncol (2026). https://doi.org/10.1038/s41571-025-01114-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41571-025-01114-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer