Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The quintessential role for CAR T cell therapy in children, adolescents and young adults with cancer

Abstract

Early successes achieved with the CD19-targeted chimeric antigen receptor (CAR) T cell product tisagenlecleucel for the treatment of paediatric B cell acute lymphoblastic leukaemia (B-ALL) led to a historic first FDA approval of a gene therapy. Widespread CAR T cell commercialization followed, along with expansion to other indications and earlier disease settings owing to clear survival benefits. However, commercial development of additional cell therapies for paediatric malignancies has stagnated, despite several products being brought to market as treatments for various haematological malignancies in adults. In contrast to the consistent efficacy achieved across B cell malignancies, CAR T cell approaches have yet to demonstrate durable activity in patients with acute myeloid leukaemia (AML), T cell acute lymphoblastic leukaemia, solid tumours and/or central nervous system cancers, with both biological factors and broader issues of development and access constraining the field. Herein, we showcase the foundational leaps achieved through the initial trials and commercialization of CAR T cell products and contextualize how these early experiences have moulded the field. We review currently approved and investigational CAR T cell therapies for paediatric and young-adult patients, including key considerations regarding safety, access and future directions. We also discuss additional immunotherapy options that guide clinical decision-making regarding optimal utilization of CAR T cells. Although clearly tolerable and efficacious, the CD19-targeted CAR T cell strategy requires ongoing refinement, and research efforts are now geared towards fully exploiting CAR T cells and other immunotherapies to improve survival with broadened access across disease states.

Key points

  • Three chimeric antigen receptor (CAR) T cell products are approved for the treatment of B cell acute lymphoblastic leukaemia (B-ALL), although only tisagenlecleucel is licensed for use in paediatric patients, and for limited indications, with a resultant reliance on this single agent for the survival gains conferred by CAR T cell therapy in paediatric B-ALL.

  • Despite high response rates in children and young adults receiving tisagenlecleucel for B-ALL, relapse rates of ~50% present an urgent need to develop and further study optimized CAR T cell constructs and approaches.

  • Risk stratification based on pre-infusion clinical characteristics can identify subsets of patients who are at high risk of CAR T cell resistance and toxicities, and thus guide optimal bridging and consolidative strategies.

  • Current CAR T cell therapy achieves excellent health-related quality of life, with low rates of treatment-related morbidity and mortality, with a tolerability profile permissive to further development of CAR T cell therapies for non-B-cell malignancies and even non-malignant diseases.

  • CAR T cells provide unique advantages over other immunotherapies, yet the optimal sequencing of these treatments, including the role of haematopoietic stem cell transplantation, remains an active area of research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laetsch, T. W. et al. Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial. J. Clin. Oncol. 41, 1664–1669 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Laetsch, T. W. et al. Patient-reported quality of life after tisagenlecleucel infusion in children and young adults with relapsed or refractory B-cell acute lymphoblastic leukaemia: a global, single-arm, phase 2 trial. Lancet Oncol. 20, 1710–1718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhai, Y. et al. Comparison of blinatumomab and CAR T-cell therapy in relapsed/refractory acute lymphoblastic leukemia: a systematic review and meta-analysis. Expert Rev. Hematol. 17, 67–76 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Sun, W. et al. Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia & lymphoma study. Leukemia 32, 2316–2325 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chessells, J. M. et al. Long-term follow-up of relapsed childhood acute lymphoblastic leukaemia. Br. J. Haematol. 123, 396–405 (2003).

    Article  PubMed  Google Scholar 

  7. Hunger, S. P. & Raetz, E. A. How I treat relapsed acute lymphoblastic leukemia in the pediatric population. Blood 136, 1803–1812 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Ko, R. H. et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J. Clin. Oncol. 28, 648–654 (2010).

    Article  PubMed  Google Scholar 

  9. Kuhlen, M. et al. Outcome of relapse after allogeneic HSCT in children with ALL enrolled in the ALL-SCT 2003/2007 trial. Br. J. Haematol. 180, 82–89 (2018).

    Article  PubMed  Google Scholar 

  10. Lund, T. C. et al. Outcomes after second hematopoietic cell transplantation in children and young adults with relapsed acute leukemia. Biol. Blood Marrow Transpl. 25, 301–306 (2019).

    Article  Google Scholar 

  11. Reismuller, B. et al. Outcome of children and adolescents with a second or third relapse of acute lymphoblastic leukemia (ALL): a population-based analysis of the Austrian ALL-BFM (Berlin-Frankfurt-Munster) study group. J. Pediatr. Hematol. Oncol. 35, e200–e204 (2013).

    Article  PubMed  Google Scholar 

  12. Schrappe, M. et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. N. Engl. J. Med. 366, 1371–1381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yaniv, I. et al. Second hematopoietic stem cell transplantation for post-transplantation relapsed acute leukemia in children: a retrospective EBMT-PDWP study. Biol. Blood Marrow Transpl. 24, 1629–1642 (2018).

    Article  Google Scholar 

  14. Eckert, C. et al. Risk factors and outcomes in children with high-risk B-cell precursor and T-cell relapsed acute lymphoblastic leukaemia: combined analysis of ALLR3 and ALL-REZ BFM 2002 clinical trials. Eur. J. Cancer 151, 175–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Gardner, R. A. et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129, 3322–3331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. O’Leary, M. C. et al. FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin. Cancer Res. 25, 1142–1146 (2019).

    Article  PubMed  Google Scholar 

  18. Pasquini, M. C. et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 4, 5414–5424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schultz, L. M. et al. Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: a pediatric real-world chimeric antigen receptor consortium report. J. Clin. Oncol. 40, 945–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Rives, S. et al. Tisagenlecleucel in pediatric and young adult patients with relapsed/refractory b-cell acute lymphoblastic leukemia (B-ALL): final analyses from the ELIANA study [abstract S112]. HemaSphere 6, 13–14 (2022).

    Article  Google Scholar 

  21. John, S. et al. Real-world data for tisagenlecleucel in patients with R/R B-ALL: subgroup analyses from the CIBMTR registry. Blood Adv. 9, 5249–5262 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bouchkouj, N. et al. FDA approval summary: brexucabtagene autoleucel for treatment of adults with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Oncologist 27, 892–899 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shah, B. D. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398, 491–502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. US Food and Drug Administration. FDA approves obecabtagene autoleucel for adults with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. fda.gov https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-obecabtagene-autoleucel-adults-relapsed-or-refractory-b-cell-precursor-acute (2024).

  25. Roddie, C. et al. Obecabtagene autoleucel in adults with B-cell acute lymphoblastic leukemia. N. Engl. J. Med. 391, 2219–2230 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frey, N. V. Approval of brexucabtagene autoleucel for adults with relapsed and refractory acute lymphocytic leukemia. Blood 140, 11–15 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Shah, B. D. et al. KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood 138, 11–22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roloff, G. W. et al. Outcomes after brexucabtagene autoleucel administered as a standard therapy for adults with relapsed/refractory B-cell ALL. J. Clin. Oncol. 43, 558–566 (2025).

    Article  CAS  PubMed  Google Scholar 

  29. Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shah, N. N. et al. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. J. Clin. Oncol. 39, 1650–1659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pulsipher, M. A. et al. Next-generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute lymphoblastic leukemia. Blood Cancer Discov. 3, 66–81 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Wayne, A. S. et al. Three-year results from phase I of ZUMA-4: KTE-X19 in pediatric relapsed/refractory acute lymphoblastic leukemia. Haematologica 108, 747–760 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Roddie, C. et al. Durable responses and low toxicity after fast off-rate CD19 chimeric antigen receptor-T therapy in adults with relapsed or refractory B-cell acute lymphoblastic leukemia. J. Clin. Oncol. 39, 3352–3363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hines, M. R. et al. Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. Transpl. Cell Ther. 29, 438.e1–438.e16 (2023).

    Google Scholar 

  36. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transpl. 25, 625–638 (2019).

    Article  CAS  Google Scholar 

  37. Rouce, R. H. et al. Evolution of tisagenlecleucel use for the treatment of pediatric and young adult relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL): Center for International Blood & Marrow Transplant Research (CIBMTR) registry results [abstract]. J. Clin. Oncol. 42, 10016 (2024).

    Article  Google Scholar 

  38. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gardner, R. A. et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood 134, 2149–2158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kadauke, S. et al. Risk-adapted preemptive tocilizumab to prevent severe cytokine release syndrome after CTL019 for pediatric B-cell acute lymphoblastic leukemia: a prospective clinical trial. J. Clin. Oncol. 39, 920–930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hogan, L. E. et al. Severe toxicity and poor efficacy of reinduction chemotherapy are associated with overall poor outcomes in relapsed B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group AALL1331 trial. Haematologica 110, 2930–2941 (2025).

    PubMed  PubMed Central  Google Scholar 

  43. Oskarsson, T. et al. Treatment-related mortality in relapsed childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer 65, e26909 (2018).

    Article  Google Scholar 

  44. Peters, C. et al. Total body irradiation or chemotherapy conditioning in childhood ALL: a multinational, randomized, noninferiority phase III study. J. Clin. Oncol. 39, 295–307 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Naik, S. et al. Outcomes after second hematopoietic stem cell transplantations in pediatric patients with relapsed hematological malignancies. Biol. Blood Marrow Transpl. 21, 1266–1272 (2015).

    Article  Google Scholar 

  46. Kamal, M. et al. Patient-reported outcomes for cancer patients with hematological malignancies undergoing chimeric antigen receptor T cell therapy: a systematic review. Transpl. Cell Ther. 27, 390.e1–390.e7 (2021).

    CAS  Google Scholar 

  47. Bansal, M., Sharma, K. K., Vatsa, M. & Bakhshi, S. Comparison of health-related quality of life of children during maintenance therapy with acute lymphoblastic leukemia versus siblings and healthy children in India. Leuk. Lymphoma 54, 1036–1041 (2013).

    Article  PubMed  Google Scholar 

  48. Fardell, J. E. et al. Health-related quality of life of children on treatment for acute lymphoblastic leukemia: a systematic review. Pediatr. Blood Cancer 64, e26489 (2017).

    Article  Google Scholar 

  49. Bhakta, N. et al. The cumulative burden of surviving childhood cancer: an initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet 390, 2569–2582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dixon, S. B. et al. Specific causes of excess late mortality and association with modifiable risk factors among survivors of childhood cancer: a report from the Childhood Cancer Survivor Study cohort. Lancet 401, 1447–1457 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Eichinger, A. et al. Incidence of subsequent malignancies after total body irradiation-based allogeneic HSCT in children with ALL — long-term follow-up from the prospective ALL-SCT 2003 trial. Leukemia 36, 2567–2576 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shalabi, H. et al. Beyond the storm — subacute toxicities and late effects in children receiving CAR T cells. Nat. Rev. Clin. Oncol. 18, 363–378 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kampouri, E., Walti, C. S., Gauthier, J. & Hill, J. A. Managing hypogammaglobulinemia in patients treated with CAR-T-cell therapy: key points for clinicians. Expert Rev. Hematol. 15, 305–320 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Epperly, R. & Shah, N. N. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. Hematol. Am. Soc. Hematol Educ. Program. 2023, 77–83 (2023).

    Article  Google Scholar 

  55. Fried, S. et al. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transpl. 54, 1643–1650 (2019).

    Article  CAS  Google Scholar 

  56. Nair, M. S. et al. Development of ALL-Hematotox (ALL-HT): predicting post CAR T-cell hematotoxicity in B-cell acute lymphoblastic leukemia. Blood 145, 1136–1148 (2025).

    Article  CAS  PubMed  Google Scholar 

  57. Levine, J. E. et al. Pooled safety analysis of tisagenlecleucel in children and young adults with B cell acute lymphoblastic leukemia. J. Immunother. Cancer 9, e002287 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Naik, S. et al. Characterization and prediction of prolonged severe neutropenia in pediatric patients receiving tisagenlecleucel. Blood Adv. 9, 5070–5084 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hsieh, E. M. et al. Low rate of subsequent malignant neoplasms after CD19 CAR T-cell therapy. Blood Adv. 6, 5222–5226 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tix, T. et al. Second primary malignancies after CAR T-Cell therapy: a systematic review and meta-analysis of 5,517 lymphoma and myeloma patients. Clin. Cancer Res. 30, 4690–4700 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. US Food and Drug Administration. FDA investigating serious risk of T-cell malignancy following BCMA-directed or CD19-directed autologous chimeric antigen receptor (CAR) T cell immunotherapies. fda.gov https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/fda-investigating-serious-risk-t-cell-malignancy-following-bcma-directed-or-cd19-directed-autologous (2023).

  62. Dulery, R. et al. T cell malignancies after CAR T cell therapy in the DESCAR-T registry. Nat. Med. 31, 1130–1133 (2025).

    Article  CAS  PubMed  Google Scholar 

  63. Lamble, A. J. et al. Risk of T-cell malignancy after CAR T-cell therapy in children, adolescents, and young adults. Blood Adv. 8, 3544–3548 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bhojwani, D. & Pui, C. H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 14, e205–e217 (2013).

    Article  PubMed  Google Scholar 

  65. Rheingold, S. R. et al. Determinants of survival after first relapse of acute lymphoblastic leukemia: a Children’s Oncology Group study. Leukemia 38, 2382–2394 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tallen, G. et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J. Clin. Oncol. 28, 2339–2347 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Leahy, A. B. et al. Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CAR T-cell therapy. Blood 139, 2173–2185 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lamble, A. J. et al. Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv. 7, 575–585 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Ghorashian, S. et al. Tisagenlecleucel therapy for relapsed or refractory B-cell acute lymphoblastic leukaemia in infants and children younger than 3 years of age at screening: an international, multicentre, retrospective cohort study. Lancet Haematol. 9, e766–e775 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Pan, J. et al. Frequent occurrence of CD19-negative relapse after CD19 CAR T and consolidation therapy in 14 TP53-mutated r/r B-ALL children. Leukemia 34, 3382–3387 (2020).

    Article  PubMed  Google Scholar 

  71. Cox, W. P. J. et al. Loss of p53 impairs death receptor expression and confers resistance to CD19 CAR T-cell therapy in BCP-ALL. Blood Neoplasia 2, 100060 (2025).

    Article  PubMed  Google Scholar 

  72. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mavuluri, J. et al. GPR65 inactivation in tumor cells drives antigen-independent CAR-T cell resistance via macrophage remodeling. Cancer Discov. 15, 1018–1036 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Masih, K. E. et al. A stem cell epigenome is associated with primary nonresponse to CD19 CAR T cells in pediatric acute lymphoblastic leukemia. Blood Adv. 7, 4218–4232 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Singh, N. et al. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction. Cancer Discov. 10, 552–567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barsan, V. et al. Tisagenlecleucel utilisation and outcomes across refractory, first relapse and multiply relapsed B-cell acute lymphoblastic leukemia: a retrospective analysis of real-world patterns. EClinicalMedicine 65, 102268 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bader, P. et al. CD19 CAR T cells are an effective therapy for posttransplant relapse in patients with B-lineage ALL: real-world data from Germany. Blood Adv. 7, 2436–2448 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maude, S. L., Barrett, D., Teachey, D. T. & Grupp, S. A. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 20, 119–122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Myers, R. M. et al. Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL. J. Clin. Oncol. 40, 932–944 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Dourthe, M. E. et al. Determinants of CD19-positive vs CD19-negative relapse after tisagenlecleucel for B-cell acute lymphoblastic leukemia. Leukemia 35, 3383–3393 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Leahy, A. B. et al. CD19-targeted chimeric antigen receptor T-cell therapy for CNS relapsed or refractory acute lymphocytic leukaemia: a post-hoc analysis of pooled data from five clinical trials. Lancet Haematol. 8, e711–e722 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fabrizio, V. A. et al. Tisagenlecleucel outcomes in relapsed/refractory extramedullary ALL: a Pediatric Real World CAR Consortium report. Blood Adv. 6, 600–610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ortiz-Maldonado, V. et al. Results of ARI-0001 CART19 cell therapy in patients with relapsed/refractory CD19-positive acute lymphoblastic leukemia with isolated extramedullary disease. Am. J. Hematol. 97, 731–739 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Bachy, E. et al. A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. Nat. Med. 28, 2145–2154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jacoby, E. et al. CD19 CAR T-cells for pediatric relapsed acute lymphoblastic leukemia with active CNS involvement: a retrospective international study. Leukemia 36, 1525–1532 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Holland, E. M. et al. Characterization of extramedullary disease in B-ALL and response to CAR T-cell therapy. Blood Adv. 6, 2167–2182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shahid, S. et al. Impact of bridging chemotherapy on clinical outcomes of CD19-specific CAR T cell therapy in children/young adults with relapsed/refractory B cell acute lymphoblastic leukemia. Transpl. Cell Ther. 28, 72.e1–72.e8 (2022).

    CAS  Google Scholar 

  88. Brivio, E. et al. A phase 1 study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study). Blood 137, 1582–1590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown, P. A. et al. Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA 325, 833–842 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pillai, V. et al. CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy. Blood Adv. 3, 3539–3549 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sahai, I. et al. Incidence of preexisting B-cell aplasia in B-ALL: implications for post-CAR T-cell monitoring. Blood Adv. 8, 6329–6333 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gardner, R. et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127, 2406–2410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gupta, S. et al. Blinatumomab in standard-risk B-cell acute lymphoblastic leukemia in children. N. Engl. J. Med. 392, 875–891 (2025).

    Article  CAS  PubMed  Google Scholar 

  94. Ceolin, V. et al. Outcome of chimeric antigen receptor T-cell therapy following treatment with inotuzumab ozogamicin in children with relapsed or refractory acute lymphoblastic leukemia. Leukemia 37, 53–60 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Dekker, L. et al. Fludarabine exposure predicts outcome after CD19 CAR T-cell therapy in children and young adults with acute leukemia. Blood Adv. 6, 1969–1976 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fabrizio, V. A. et al. Optimal fludarabine lymphodepletion is associated with improved outcomes after CAR T-cell therapy. Blood Adv. 6, 1961–1968 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ramos, C. A. et al. Anti-CD30 CAR-T cell therapy in relapsed and refractory Hodgkin lymphoma. J. Clin. Oncol. 38, 3794–3804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hirayama, A. V. et al. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood 133, 1876–1887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Klebanoff, C. A., Khong, H. T., Antony, P. A., Palmer, D. C. & Restifo, N. P. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 26, 111–117 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Scordo, M. et al. Identifying an optimal fludarabine exposure for improved outcomes after axi-cel therapy for aggressive B-cell non-Hodgkin lymphoma. Blood Adv. 7, 5579–5585 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. von Stackelberg, A. et al. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J. Clin. Oncol. 34, 4381–4389 (2016).

    Article  Google Scholar 

  103. Locatelli, F. et al. Blinatumomab in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia: RIALTO expanded access study final analysis. Blood Adv. 6, 1004–1014 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gore, L. et al. Survival after blinatumomab treatment in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood Cancer J. 8, 80 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Llaurador, G. et al. Blinatumomab therapy is associated with favorable outcomes after allogeneic hematopoietic cell transplantation in pediatric patients with B cell acute lymphoblastic leukemia. Transpl. Cell Ther. 30, 217–227 (2024).

    CAS  Google Scholar 

  106. Gokbuget, N. et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 131, 1522–1531 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Litzow, M. R. et al. Blinatumomab for MRD-negative acute lymphoblastic leukemia in adults. N. Engl. J. Med. 391, 320–333 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van der Sluis, I. M. et al. Blinatumomab added to chemotherapy in infant lymphoblastic leukemia. N. Engl. J. Med. 388, 1572–1581 (2023).

    Article  PubMed  Google Scholar 

  109. Aldoss, I. et al. Correlates of resistance and relapse during blinatumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am. J. Hematol. 92, 858–865 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Slaney, C. Y., Wang, P., Darcy, P. K. & Kershaw, M. H. CARs versus BiTEs: a comparison between T cell-redirection strategies for cancer treatment. Cancer Discov. 8, 924–934 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Coyle, L. et al. Open-label, phase 2 study of blinatumomab as second salvage therapy in adults with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Leuk. Lymphoma 61, 2103–2112 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Dufner, V. et al. Long-term outcome of patients with relapsed/refractory B-cell non-Hodgkin lymphoma treated with blinatumomab. Blood Adv. 3, 2491–2498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zugmaier, G., Subklewe, M. & Locatelli, F. Immunotherapy with blinatumomab in B-cell acute lymphoblastic leukemia: a narrative review of efficacy, toxicity, and patient management in relapse and consolidation. Ann. Blood https://doi.org/10.21037/aob-25-5 (2025).

    Article  Google Scholar 

  114. Jabbour, E. et al. Single agent subcutaneous blinatumomab for advanced acute lymphoblastic leukemia. Am. J. Hematol. 99, 586–595 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. O’Brien, M. M. et al. Phase II trial of inotuzumab ozogamicin in children and adolescents with relapsed or refractory B-cell acute lymphoblastic leukemia: Children’s Oncology Group protocol AALL1621. J. Clin. Oncol. 40, 956–967 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kantarjian, H. M. et al. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia in the INO-VATE trial: CD22 pharmacodynamics, efficacy, and safety by baseline CD22. Clin. Cancer Res. 27, 2742–2754 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Pennesi, E. et al. Inotuzumab ozogamicin as single agent in pediatric patients with relapsed and refractory acute lymphoblastic leukemia: results from a phase II trial. Leukemia 36, 1516–1524 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bhojwani, D. et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia 33, 884–892 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Kantarjian, H. M. et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med. 375, 740–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kouhi, A. et al. Brain disposition of antibody-based therapeutics: dogma, approaches and perspectives. Int. J. Mol. Sci. 22, 6442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. DeAngelo, D. J. et al. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia: outcomes by disease burden. Blood Cancer J. 10, 81 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pennesi, E. et al. Inotuzumab ozogamicin combined with chemotherapy in pediatric B-cell precursor CD22+ acute lymphoblastic leukemia: results of the phase IB ITCC-059 trial. Haematologica 109, 3157–3166 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kayser, S. et al. Impact of inotuzumab ozogamicin on outcome in relapsed or refractory acute B-cell lymphoblastic leukemia patients prior to allogeneic hematopoietic stem cell transplantation and risk of sinusoidal obstruction syndrome/venous occlusive disease. Haematologica 109, 1385–1392 (2024).

    CAS  PubMed  Google Scholar 

  124. Rubinstein, J. D. & O’Brien, M. M. Inotuzumab ozogamicin in B-cell precursor acute lymphoblastic leukemia: efficacy, toxicity, and practical considerations. Front. Immunol. 14, 1237738 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Grupp, S. A. et al. Defibrotide plus best standard of care compared with best standard of care alone for the prevention of sinusoidal obstruction syndrome (HARMONY): a randomised, multicentre, phase 3 trial. Lancet Haematol. 10, e333–e345 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Kebriaei, P. et al. Management of important adverse events associated with inotuzumab ozogamicin: expert panel review. Bone Marrow Transpl. 53, 449–456 (2018).

    Article  CAS  Google Scholar 

  127. Brivio, E. et al. Sinusoidal obstruction syndrome in children with CD22+ B-cell precursors acute lymphoblastic leukemia (BCP-ALL) treated with inotuzumab ozogamicin in trial ITCC-059: risk factors and outcomes [abstract]. Blood 144, 310–311 (2024).

    Article  Google Scholar 

  128. Pulsipher, M. A. et al. IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients. Blood 125, 3501–3508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Abdel-Azim, H. et al. Next generation sequence minimal residual disease (NGS-MRD) predicts outstanding event free survival (EFS) regardless of hematopoietic cell transplantation (HCT) preparative approach or graft alpha/beta depletion in children with acute lymphoblastic leukemia (ALL) [abstract]. Blood 134, 4624 (2019).

    Article  Google Scholar 

  130. Gaballa, M. R. et al. Blinatumomab maintenance after allogeneic hematopoietic cell transplantation for B-lineage acute lymphoblastic leukemia. Blood 139, 1908–1919 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Summers, C. et al. Hematopoietic cell transplantation after CD19 chimeric antigen receptor T cell-induced acute lymphoblastic lymphoma remission confers a leukemia-free survival advantage. Transpl. Cell Ther. 28, 21–29 (2022).

    CAS  Google Scholar 

  132. Fabrizio, V. A. et al. Low toxicity and favorable overall survival in relapsed/refractory B-ALL following CAR T cells and CD34-selected T-cell depleted allogeneic hematopoietic cell transplant. Bone Marrow Transpl. 55, 2160–2169 (2020).

    Article  CAS  Google Scholar 

  133. Contreras, C. F. et al. Clinical utilization of blinatumomab and inotuzumab immunotherapy in children with relapsed or refractory B-acute lymphoblastic leukemia. Pediatr. Blood Cancer 68, e28718 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Gibson, A. et al. Combination low-intensity chemotherapy plus inotuzumab ozogamicin, blinatumomab and rituximab for pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia. Haematologica 109, 3042–3047 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kantarjian, H. et al. Results of salvage therapy with mini-hyper-CVD and inotuzumab ozogamicin with or without blinatumomab in pre-B acute lymphoblastic leukemia. J. Hematol. Oncol. 16, 44 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jabbour, E. et al. Chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD, with or without blinatumomab, is highly effective in patients with Philadelphia chromosome-negative acute lymphoblastic leukemia in first salvage. Cancer 124, 4044–4055 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Kantarjian, H. et al. Hyper-CVAD and sequential blinatumomab without and with inotuzumab in young adults with newly diagnosed Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia. Am. J. Hematol. 100, 402–407 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cordoba, S. et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat. Med. 27, 1797–1805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shalabi, H. et al. CD19/22 CAR T cells in children and young adults with B-ALL: phase 1 results and development of a novel bicistronic CAR. Blood 140, 451–463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Spiegel, J. Y. et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat. Med. 27, 1419–1431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pan, J. et al. Sequential CD19-22 CAR T therapy induces sustained remission in children with r/r B-ALL. Blood 135, 387–391 (2020).

    Article  PubMed  Google Scholar 

  142. Wang, T. et al. Coadministration of CD19- and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J. Clin. Oncol. 41, 1670–1683 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Hunger, S. P. et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children’s Oncology Group. J. Clin. Oncol. 30, 1663–1669 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Turcotte, L. M. et al. Real-world cost of pediatric acute lymphoblastic leukemia care among commercially insured individuals in the United States: effect of era and age at diagnosis. JCO Oncol. Pract. 18, e1750–e1761 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sarkar, R. R., Gloude, N. J., Schiff, D. & Murphy, J. D. Cost-effectiveness of chimeric antigen receptor T-cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. J. Natl Cancer Inst. 111, 719–726 (2019).

    Article  PubMed  Google Scholar 

  146. Laetsch, T. et al. Evolving evidence-based value assessment of one-time therapies: tisagenlecleucel as a case study. Appl. Health Econ. Health Policy 22, 749–765 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Palani, H. K. et al. Safety, efficacy and total cost of point-of-care manufactured anti-CD19 CAR-T cell therapy in India: VELCART trial. Mol. Ther. Oncol. 33, 200977 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rehman, M. A. & Arshad, H. A discount on the cost of cancer: India’s homegrown CAR-T cell therapy. Blood Cell Ther. 7, 121–123 (2024).

    PubMed  PubMed Central  Google Scholar 

  149. Martinez-Cibrian, N. et al. The academic point-of-care anti-CD19 chimeric antigen receptor T-cell product varnimcabtagene autoleucel (ARI-0001 cells) shows efficacy and safety in the treatment of relapsed/refractory B-cell non-Hodgkin lymphoma. Br. J. Haematol. 204, 525–533 (2024).

    Article  CAS  PubMed  Google Scholar 

  150. Goncalves, E. CAR-T cell therapies: patient access and affordability solutions. Future Sci. OA 11, 2483613 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Cliff, E. R. S. et al. High cost of chimeric antigen receptor T-cells: challenges and solutions. Am. Soc. Clin. Oncol. Educ. Book. 43, e397912 (2023).

    Article  PubMed  Google Scholar 

  152. Geethakumari, P. R., Ramasamy, D. P., Dholaria, B., Berdeja, J. & Kansagra, A. Balancing quality, cost, and access during delivery of newer cellular and immunotherapy treatments. Curr. Hematol. Malig. Rep. 16, 345–356 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Gupta, S., Maude, S. L., O’Brien, M. M., Rau, R. E. & McNeer, J. L. How the COG is approaching the high-risk patient with ALL: incorporation of immunotherapy into frontline treatment. Clin. Lymphoma Myeloma Leuk. 20, S8–S11 (2020).

    Article  PubMed  Google Scholar 

  154. Bartram, J., Ancliff, P. & Vora, A. How I treat infant acute lymphoblastic leukemia. Blood 145, 35–42 (2025).

    Article  CAS  PubMed  Google Scholar 

  155. Pieters, R. et al. Outcome of infants younger than 1 year with acute lymphoblastic leukemia treated with the Interfant-06 protocol: results from an international phase III randomized study. J. Clin. Oncol. 37, 2246–2256 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Brown, P., Pieters, R. & Biondi, A. How I treat infant leukemia. Blood 133, 205–214 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Fong, D., Tiwari, R., Acker, C., Clough, L. & Willert, J. Leukapheresis and tisagenlecleucel manufacturing outcomes in patients age <3 years with relapsed/refractory acute lymphoblastic leukemia. Transpl. Cell Ther. 29, 579.e1–579.e10 (2023).

    CAS  Google Scholar 

  158. Annesley, C. et al. Feasibility and favorable responses following investigational CAR T-cell therapy for relapsed and refractory infant ALL. Blood Adv. 9, 2068–2078 (2025).

    Article  CAS  PubMed  Google Scholar 

  159. Rabin, K. R. et al. Outcomes in children, adolescents, and young adults with Down syndrome and all: a report from the Children’s Oncology Group. J. Clin. Oncol. 42, 218–227 (2024).

    Article  CAS  PubMed  Google Scholar 

  160. Laetsch, T. W. et al. Tisagenlecleucel in pediatric and young adult patients with Down syndrome-associated relapsed/refractory acute lymphoblastic leukemia. Leukemia 36, 1508–1515 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Aldoss, I. et al. Donor-derived CD19-targeted chimeric antigen receptor T cells in adult transplant recipients with relapsed/refractory acute lymphoblastic leukemia. Blood Cancer J. 13, 107 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Del Bufalo, F. et al. Allogeneic, donor-derived, second-generation, CD19-directed CAR-T cells for the treatment of pediatric relapsed/refractory BCP-ALL. Blood 142, 146–157 (2023).

    PubMed  Google Scholar 

  163. Dourthe, M. E. et al. Success of donor-derived CAR-T cells after failure of autologous CD19 CAR-T cells (tisagenlecleucel) in B-cell acute lymphoblastic leukaemia. Br. J. Haematol. 205, 373–377 (2024).

    Article  CAS  PubMed  Google Scholar 

  164. Laetsch, T. W., DuBois, S. G., Bender, J. G., Macy, M. E. & Moreno, L. Opportunities and challenges in drug development for pediatric cancers. Cancer Discov. 11, 545–559 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Singh, K. et al. Breaking the silence: challenges and opportunities in pediatric drug development. Pediatr. Res. 98, 807–812 (2025).

    Article  PubMed  Google Scholar 

  166. Martinez-Gamboa, D. A. et al. CAR T-cell therapy landscape in pediatric, adolescent and young adult oncology — a comprehensive analysis of clinical trials. Crit. Rev. Oncol. Hematol. 209, 104648 (2025).

    Article  PubMed  Google Scholar 

  167. Pearson, A. D. et al. Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur. J. Cancer 160, 112–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 20, 31–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Locke, F. L. et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N. Engl. J. Med. 386, 640–654 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Neelapu, S. S. et al. Axicabtagene ciloleucel car T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Minard-Colin, V. et al. Rituximab for high-risk, mature B-cell non-Hodgkin’s lymphoma in children. N. Engl. J. Med. 382, 2207–2219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Minard-Colin, V. et al. Efficacy and safety of tisagenlecleucel in pediatric and young adult patients (pts) with relapsed or refractory (r/r) mature B-cell non-Hodgkin lymphoma (NHL): the phase II BIANCA study [abstract S255]. HemaSphere 6, 156–157 (2022).

    Article  Google Scholar 

  174. Liu, Y. et al. Sequential different B-cell antigen-targeted CAR T-cell therapy for pediatric refractory/relapsed Burkitt lymphoma. Blood Adv. 6, 717–730 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bender, J. D. et al. Real-world use of tisagenlecleucel in children and young adults with relapsed or refractory B-cell lymphomas. Blood Adv. 8, 4164–4168 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Minson, A. G. & Dickinson, M. J. New bispecific antibodies in diffuse large B-cell lymphoma. Haematologica 110, 1483–1499 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Schipani, M. et al. Bispecific monoclonal antibodies in diffuse large B-cell lymphoma: dawn of a new era in targeted therapy. Cancers 17, 3258 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Shah, N. N. et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J. Clin. Oncol. 38, 1938–1950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Xiao, X., Ho, M., Zhu, Z., Pastan, I. & Dimitrov, D. S. Identification and characterization of fully human anti-CD22 monoclonal antibodies. MAbs 1, 297–303 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  180. CARGO Therapeutics. CARGO Therapeutics to discontinue FIRCE-1 phase 2 study of firi-cel; advances remaining programs while evaluating strategic options. GlobeNewswire https://www.globenewswire.com/news-release/2025/01/29/3017565/0/en/CARGO-Therapeutics-to-Discontinue-FIRCE-1-Phase-2-Study-of-Firi-cel-Advances-Remaining-Programs-While-Evaluating-Strategic-Options.html (2025).

  181. Ghorashian, S. et al. CD19/CD22 targeting with cotransduced CAR T cells to prevent antigen-negative relapse after CAR T-cell therapy for B-cell ALL. Blood 143, 118–123 (2024).

    Article  CAS  PubMed  Google Scholar 

  182. Dai, H. et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J. Hematol. Oncol. 13, 30 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yang, T. et al. Prominent efficacy and good safety of sequential CD19 and CD22 CAR-T therapy in relapsed/refractory adult B-cell acute lymphoblastic leukemia. Exp. Hematol. Oncol. 14, 2 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Frey, N. V. et al. CART22-65s co-administered with huCART19 in adult patients with relapsed or refractory ALL [abstract]. Blood 138, 469 (2021).

    Article  Google Scholar 

  185. Marcus, A., Waks, T. & Eshhar, Z. Redirected tumor-specific allogeneic T cells for universal treatment of cancer. Blood 118, 975–983 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Kochenderfer, J. N. et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122, 4129–4139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Benjamin, R. et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet 396, 1885–1894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Benjamin, R. et al. UCART19, a first-in-class allogeneic anti-CD19 chimeric antigen receptor T-cell therapy for adults with relapsed or refractory B-cell acute lymphoblastic leukaemia (CALM): a phase 1, dose-escalation trial. Lancet Haematol. 9, e833–e843 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ottaviano, G. et al. Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia. Sci. Transl. Med. 14, eabq3010 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, eaaj2013 (2017).

    Article  PubMed  Google Scholar 

  191. Xiao, X. et al. CD19-CAR-DNT cells (RJMty19) in patients with relapsed or refractory large B-cell lymphoma: a phase 1, first-in-human study. EClinicalMedicine 70, 102516 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Pan, J. et al. Allogeneic CD5-specific CAR-T therapy for relapsed/refractory T-ALL: a phase 1 trial. Nat. Med. 31, 126–136 (2025).

    Article  CAS  PubMed  Google Scholar 

  193. Chiesa, R. et al. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N. Engl. J. Med. 389, 899–910 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Ghobadi, A. et al. Phase 1/2 trial of anti-CD7 allogeneic WU-CART-007 for patients with relapsed/refractory T-cell malignancies. Blood 146, 1163–1173 (2025).

    Article  CAS  PubMed  Google Scholar 

  195. Li, S. et al. Eradication of T-ALL Cells by CD7-targeted Universal CAR-T cells and initial test of ruxolitinib-based CRS management. Clin. Cancer Res. 27, 1242–1246 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Xu, X. et al. HLA fully-mismatched sibling-derived CD7 CAR-T therapy bridging to haploidentical hematopoietic stem cell transplantation for hepatosplenic γδ T-cell lymphoma. Cell Transpl. 32, 9636897231194265 (2023).

    Article  Google Scholar 

  197. Zhang, Y. et al. Allogenic and autologous anti-CD7 CAR-T cell therapies in relapsed or refractory T-cell malignancies. Blood Cancer J. 13, 61 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Pemmaraju, N. et al. CD123-directed allogeneic chimeric-antigen receptor T-cell therapy (CAR-T) in blastic plasmacytoid dendritic cell neoplasm (BPDCN): clinicopathological insights. Leuk. Res. 121, 106928 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Brown, C. E. et al. Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro Oncol. 24, 1318–1330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hill, L. C. et al. Antitumor efficacy and safety of unedited autologous CD5.CAR T cells in relapsed/refractory mature T-cell lymphomas. Blood 143, 1231–1241 (2024).

    Article  CAS  PubMed  Google Scholar 

  201. Hu, Y. et al. Genetically modified CD7-targeting allogeneic CAR-T cell therapy with enhanced efficacy for relapsed/refractory CD7-positive hematological malignancies: a phase I clinical study. Cell Res. 32, 995–1007 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lu, P. et al. Naturally selected CD7 CAR-T therapy without genetic manipulations for T-ALL/LBL: first-in-human phase 1 clinical trial. Blood 140, 321–334 (2022).

    CAS  PubMed  Google Scholar 

  203. Zhang, M. et al. Autologous nanobody-derived fratricide-resistant CD7-CAR T-cell therapy for patients with relapsed and refractory T-cell acute lymphoblastic leukemia/lymphoma. Clin. Cancer Res. 28, 2830–2843 (2022).

    Article  CAS  PubMed  Google Scholar 

  204. Oh, B. L. Z. et al. Fratricide-resistant CD7-CAR T cells in T-ALL. Nat. Med. 30, 3687–3696 (2024).

    Article  CAS  PubMed  Google Scholar 

  205. Mu, W. et al. Case report: differential diagnosis of highly amplified anti-CD5 CAR T cells and relapsed lymphoma cells in a patient with refractory ALK positive anaplastic large cell lymphoma. Front. Immunol. 14, 1280007 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Shah, N. N. et al. CD33 CAR T-Cells (CD33CART) for children and young adults with relapsed/refractory AML: dose-escalation results from a phase I/II multicenter trial [abstract]. Blood 142, 771 (2023).

    Article  Google Scholar 

  207. Naik, S. et al. Safety and anti-leukemic activity of CD123-CAR T cells in pediatric patients with AML: preliminary results from a phase 1 trial [abstract]. Blood 140, 4584–4585 (2022).

    Article  Google Scholar 

  208. Naik, S. et al. CD123-CAR T cells manufactured in the presence of dasatinib induce high grade CRS and/or IEC-HS without improving efficacy in pediatric patients with recurrent/refractory leukemia [abstract]. Blood 144, 2076 (2024).

    Article  Google Scholar 

  209. Geyer, M. B. et al. CD371-targeted CAR T cells secreting interleukin-18 exhibit robust expansion and clear refractory acute myeloid leukemia. Blood 146, 3163–3174 (2025).

    Article  CAS  PubMed  Google Scholar 

  210. Bhagwat, A. S. et al. Cytokine-mediated CAR T therapy resistance in AML. Nat. Med. 30, 3697–3708 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Haubner, S. et al. Cooperative CAR targeting to selectively eliminate AML and minimize escape. Cancer Cell 41, 1871–1891.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Caruso, S. et al. Safe and effective off-the-shelf immunotherapy based on CAR.CD123-NK cells for the treatment of acute myeloid leukaemia. J. Hematol. Oncol. 15, 163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Perkins, S. M., Shinohara, E. T., DeWees, T. & Frangoul, H. Outcome for children with metastatic solid tumors over the last four decades. PLoS ONE 9, e100396 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Pule, M. A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Li, C. H. et al. Long-term outcomes of GD2-directed CAR-T cell therapy in patients with neuroblastoma. Nat. Med. 31, 1125–1129 (2025).

    Article  CAS  PubMed  Google Scholar 

  217. Albelda, S. M. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat. Rev. Clin. Oncol. 21, 47–66 (2024).

    Article  PubMed  Google Scholar 

  218. Ligon, J. A. et al. INSPIRED Symposium Part 4B: chimeric antigen receptor T cell correlative studies — established findings and future priorities. Transpl. Cell Ther. 30, 155–170 (2024).

    CAS  Google Scholar 

  219. Ramakrishna, S., Barsan, V. & Mackall, C. Prospects and challenges for use of CAR T cell therapies in solid tumors. Expert Opin. Biol. Ther. 20, 503–516 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Dyson, K. A. et al. Emerging trends in immunotherapy for pediatric sarcomas. J. Hematol. Oncol. 12, 78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Theruvath, J. et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat. Med. 26, 712–719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Monje, M. et al. Intravenous and intracranial GD2-CAR T cells for H3K27M+ diffuse midline gliomas. Nature 637, 708–715 (2025).

    Article  CAS  PubMed  Google Scholar 

  223. Dominguez-Prieto, V. et al. Understanding CAR T cell therapy and its role in ovarian cancer and peritoneal carcinomatosis from ovarian cancer. Front. Oncol. 13, 1104547 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kaczanowska, S. et al. Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy. Cancer Cell 42, 35–51 e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  225. Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Heitzeneder, S. et al. GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell 40, 53–69.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  227. Bosse, K. R. et al. Identification of GPC2 as an oncoprotein and candidate immunotherapeutic target in high-risk neuroblastoma. Cancer Cell 32, 295–309.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Yarmarkovich, M. et al. Targeting of intracellular oncoproteins with peptide-centric CARs. Nature 623, 820–827 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Majzner, R. G. et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Heczey, A. et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 25, 2214–2224 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Ye, Z. et al. Phenotypic plasticity of myeloid cells in glioblastoma development, progression, and therapeutics. Oncogene 40, 6059–6070 (2021).

    Article  CAS  PubMed  Google Scholar 

  232. Tcyganov, E., Mastio, J., Chen, E. & Gabrilovich, D. I. Plasticity of myeloid-derived suppressor cells in cancer. Curr. Opin. Immunol. 51, 76–82 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Del Bufalo, F. et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N. Engl. J. Med. 388, 1284–1295 (2023).

    Article  PubMed  Google Scholar 

  234. Steffin, D. et al. Interleukin-15-armoured GPC3 CAR T cells for patients with solid cancers. Nature 637, 940–946 (2025).

    Article  CAS  PubMed  Google Scholar 

  235. Jansen, L., Wienke, J., Molkenbur, R., Rossig, C. & Meissner, R. B7-H3 in the tumor microenvironment: implications for CAR T cell therapy in pediatric solid tumors. Cancer Metastasis Rev. 44, 77 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Giudice, A. M. et al. Reprogramming the neuroblastoma tumor immune microenvironment to enhance GPC2 CAR T cells. Mol. Ther. 33, 4552–4569 (2025).

    Article  CAS  PubMed  Google Scholar 

  237. Nguyen, D. T. et al. CAR T cell locomotion in solid tumor microenvironment. Cells 11, 1974 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Hegde, M. et al. Autologous HER2-specific CAR T cells after lymphodepletion for advanced sarcoma: a phase 1 trial. Nat. Cancer 5, 880–894 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Pinto, N. et al. STRIvE-02: a first-in-human phase I study of systemically administered B7-H3 chimeric antigen receptor T cells for patients with relapsed/refractory solid tumors. J. Clin. Oncol. 42, 4163–4172 (2024).

    Article  CAS  PubMed  Google Scholar 

  240. Vitanza, N. A. et al. Intracerebroventricular B7-H3-targeting CAR T cells for diffuse intrinsic pontine glioma: a phase 1 trial. Nat. Med. 31, 861–868 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Schett, G. & June, C. H. CAR T cells in autoimmune disease: on the road to remission. Immunity 57, 2705–2709 (2024).

    Article  CAS  PubMed  Google Scholar 

  242. Schett, G. et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat. Rev. Rheumatol. 20, 531–544 (2024).

    Article  PubMed  Google Scholar 

  243. Chung, J. B., Brudno, J. N., Borie, D. & Kochenderfer, J. N. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat. Rev. Immunol. 24, 830–845 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Auth, J. et al. CD19-targeting CAR T-cell therapy in patients with diffuse systemic sclerosis: a case series. Lancet Rheumatol. 7, e83–e93 (2025).

    Article  CAS  PubMed  Google Scholar 

  245. Haghikia, A. et al. Anti-CD19 CAR T cells for refractory myasthenia gravis. Lancet Neurol. 22, 1104–1105 (2023).

    Article  CAS  PubMed  Google Scholar 

  246. Muller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  247. Wobma, H. et al. CAR T cell therapy for children with rheumatic disease: the time is now. Nat. Rev. Rheumatol. 21, 494–506 (2025).

    Article  PubMed  Google Scholar 

  248. Mikhael, J., Fowler, J. & Shah, N. Chimeric antigen receptor T-cell therapies: barriers and solutions to access. JCO Oncol. Pract. 18, 800–807 (2022).

    Article  PubMed  Google Scholar 

  249. Pearson, A. D. J. et al. New models for the development of and access to CAR T-cell therapies for children and adolescents with cancer: an ACCELERATE multistakeholder analysis. Lancet Oncol. 26, e214–e224 (2025).

    Article  CAS  PubMed  Google Scholar 

  250. Hall, A. G. et al. Access to chimeric antigen receptor T cell clinical trials in underrepresented populations: a multicenter cohort study of pediatric and young adult acute lymphobastic leukemia patients. Transpl. Cell Ther. 29, 356.e1–356.e7 (2023).

    CAS  Google Scholar 

  251. Gardner, R. A. et al. ACT to sustain: adoptive cell therapy to sustain access to non-commercialized genetically modified cell therapies. Transpl. Cell Ther. 30, 776–787 (2024).

    Google Scholar 

  252. Rossig, C. et al. Chimeric antigen receptor (CAR) T-cell products for pediatric cancers: why alternative development paths are needed. J. Clin. Oncol. 42, 253–257 (2024).

    Article  CAS  PubMed  Google Scholar 

  253. Mackall, C. L. et al. Enhancing pediatric access to cell and gene therapies. Nat. Med. 30, 1836–1846 (2024).

    Article  CAS  PubMed  Google Scholar 

  254. Park, J. H. et al. CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results. Nat. Med. 29, 1710–1717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Frigault, M. J. et al. A phase II trial of anakinra for the prevention of CAR-T cell mediated neurotoxicity [abstract]. Blood 138, 2814 (2021).

    Article  Google Scholar 

  256. Strati, P. et al. A phase 1 study of prophylactic anakinra to mitigate ICANS in patients with large B-cell lymphoma. Blood Adv. 7, 6785–6789 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Diorio, C. et al. Anakinra utilization in refractory pediatric CAR T-cell associated toxicities. Blood Adv. 6, 3398–3403 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Shah, N. N., Johnson, B. D., Fenske, T. S., Raj, R. V. & Hari, P. Intrathecal chemotherapy for management of steroid-refractory CAR T-cell-associated neurotoxicity syndrome. Blood Adv. 4, 2119–2122 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Rejeski, K. et al. Immune effector cell-associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood 142, 865–877 (2023).

    Article  CAS  PubMed  Google Scholar 

  260. Rejeski, K., Jain, M. D., Shah, N. N., Perales, M. A. & Subklewe, M. Immune effector cell-associated haematotoxicity after CAR T-cell therapy: from mechanism to management. Lancet Haematol. 11, e459–e470 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Jain, T., Olson, T. S. & Locke, F. L. How I treat cytopenias after CAR T-cell therapy. Blood 141, 2460–2469 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Rejeski, K. et al. Safety and feasibility of stem cell boost as a salvage therapy for severe hematotoxicity after CD19 CAR T-cell therapy. Blood Adv. 6, 4719–4725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Lipsitt, A. et al. Allogeneic CD34+ selected hematopoietic stem cell boost following CAR T-cell therapy in a patient with prolonged cytopenia and active infection. Pediatr. Blood Cancer 70, e30166 (2023).

    Article  CAS  PubMed  Google Scholar 

  264. Mahdi, J. et al. Tumor inflammation-associated neurotoxicity. Nat. Med. 29, 803–810 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Borowitz, M. J. et al. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children’s Oncology Group Study AALL0232. Blood 126, 964–971 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Minson, K. A. et al. t(17;19) in children with acute lymphocytic leukemia: a report of 3 cases and a review of the literature. Case Rep. Hematol. 2013, 563291 (2013).

    PubMed  PubMed Central  Google Scholar 

  267. Hogan, L. E. et al. Children’s Oncology Group AALL1331: phase III trial of blinatumomab in children, adolescents, and young adults with low-risk B-cell all in first relapse. J. Clin. Oncol. 41, 4118–4129 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Hastings, C. et al. Late isolated central nervous system relapse in childhood B-cell acute lymphoblastic leukemia treated with intensified systemic therapy and delayed reduced dose cranial radiation: a report from the Children’s Oncology Group Study AALL02P2. Pediatr. Blood Cancer 68, e29256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Moskop, A. et al. Real-world use of tisagenlecleucel in infant acute lymphoblastic leukemia. Blood Adv. 6, 4251–4255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Lust, H. et al. Real world outcomes for AYA patients with relapsed/refractory B-cell ALL receiving CD19-directed CAR T-cell therapy. Transplant. Cell. Ther. 30, S39–S40 (2024).

    Article  Google Scholar 

  271. Pan, J. et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J. Clin. Oncol. 39, 3340–3351 (2021).

    Article  CAS  PubMed  Google Scholar 

  272. Sallman, D. A. et al. Ameli-01: a phase I trial of UCART123v1. 2, an anti-CD123 allogeneic CAR-T cell product, in adult patients with relapsed or refractory (R/R) CD123+ acute myeloid leukemia (AML). Blood 140, 2371–2373 (2022).

    Article  Google Scholar 

  273. Ehninger, G. et al. Phase 1 dose escalation study of the rapidly switchable universal CAR-T therapy unicar-T-CD123 in relapsed/refractory AML [abstract]. Blood 140, 2367–2368 (2022).

    Article  Google Scholar 

  274. Wermke, M. et al. Updated results from a phase I dose escalation study of the rapidly-switchable universal CAR-T therapy uniCAR-T-CD123 in relapsed/refractory AML [abstract]. Blood 142, 3465 (2023).

    Article  Google Scholar 

  275. Tambaro, F. P. et al. Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia 35, 3282–3286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Wang, Q. S. et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol. Ther. 23, 184–191 (2015).

    Article  CAS  PubMed  Google Scholar 

  277. Sallman, D. A. et al. Phase 1/1b safety study of PRGN-3006 ultracar-T in patients with relapsed or refractory CD33-positive acute myeloid leukemia and higher risk myelodysplastic syndromes. Blood 140, 10313–10315 (2022).

    Article  Google Scholar 

  278. Appelbaum, J. et al. Drug-regulated CD33-targeted CAR T cells control AML using clinically optimized rapamycin dosing. J. Clin. Invest. 134, e162593 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Zhang, H. et al. Characteristics of anti-CLL1 based CAR-T therapy for children with relapsed or refractory acute myeloid leukemia: the multi-center efficacy and safety interim analysis. Leukemia 36, 2596–2604 (2022).

    Article  CAS  PubMed  Google Scholar 

  280. Zhang, H. et al. Anti-CLL1 chimeric antigen receptor T-cell therapy in children with relapsed/refractory acute myeloid leukemia. Clin. Cancer Res. 27, 3549–3555 (2021).

    Article  CAS  PubMed  Google Scholar 

  281. Pei, K. et al. Anti-CLL1-based CAR T-cells with 4-1-BB or CD28/CD27 stimulatory domains in treating childhood refractory/relapsed acute myeloid leukemia. Cancer Med. 12, 9655–9661 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Jin, X. et al. First-in-human phase I study of CLL-1 CAR-T cells in adults with relapsed/refractory acute myeloid leukemia. J. Hematol. Oncol. 15, 88 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Zhang, X. et al. A phase I clinical trial of CLL-1 CAR-T cells for the treatment of relapsed/refractory acute myeloid leukemia in adults [abstract]. Blood 142, 2106 (2023).

    Article  Google Scholar 

  284. Ma, Y. J. et al. Successful application of PD-1 knockdown CLL-1 CAR-T therapy in two AML patients with post-transplant relapse and failure of anti-CD38 CAR-T cell treatment. Am. J. Cancer Res. 12, 615–621 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Liu, F. et al. First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on phase 1 clinical trial [abstract]. Blood 132, 901 (2018).

    Article  Google Scholar 

  286. Baumeister, S. H. et al. Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol. Res. 7, 100–112 (2019).

    Article  CAS  PubMed  Google Scholar 

  287. Sallman, D. A. et al. CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial. Lancet Haematol. 10, e191–e202 (2023).

    Article  CAS  PubMed  Google Scholar 

  288. Pinto N. et al. First-in-human comparison of second-versus third-generation L1CAM-specific CAR T cells in patients with primary refractory or relapsed neuroblastoma. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3859120/v1 (2024).

  289. Vitanza, N. A. et al. Intraventricular B7-H3 CAR T cells for diffuse intrinsic pontine glioma: preliminary first-in-human bioactivity and safety. Cancer Discov. 13, 114–131 (2023).

    Article  CAS  PubMed  Google Scholar 

  290. Heczey, A. et al. Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: updated phase 1 trial interim results. Nat. Med. 29, 1379–1388 (2023).

    Article  CAS  PubMed  Google Scholar 

  291. Straathof, K. et al. Antitumor activity without on-target off-tumor toxicity of GD2-chimeric antigen receptor T cells in patients with neuroblastoma. Sci. Transl. Med. 12, eabd6169 (2020).

    Article  CAS  PubMed  Google Scholar 

  292. Yu, L. et al. GD2-specific chimeric antigen receptor-modified T cells for the treatment of refractory and/or recurrent neuroblastoma in pediatric patients. J. Cancer Res. Clin. Oncol. 148, 2643–2652 (2022).

    Article  CAS  PubMed  Google Scholar 

  293. Liu, Z. et al. Safety and antitumor activity of GD2-specific 4SCAR-T cells in patients with glioblastoma. Mol. Cancer 22, 3 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Ahmed, N. et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 3, 1094–1101 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Donovan, L. K. et al. Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nat. Med. 26, 720–731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Brown, C. E. et al. Locoregional delivery of IL-13Rα2-targeting CAR-T cells in recurrent high-grade glioma: a phase 1 trial. Nat. Med. 30, 1001–1012 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Goff, S. L. et al. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J. Immunother. 42, 126–135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Wang, C. M. et al. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin. Cancer Res. 23, 1156–1166 (2017).

    Article  CAS  PubMed  Google Scholar 

  301. Ahmed, S. et al. Updated results and correlative analysis: autologous CD30. CAR-T-cell therapy in patients with relapsed or refractory classical hodgkin lymphoma (CHARIOT trial) [abstract]. Blood 140, 7496–7497 (2022).

    Article  Google Scholar 

  302. Fu, Q. et al. RUNX-3-expressing CAR T cells targeting glypican-3 in patients with heavily pretreated advanced hepatocellular carcinoma: a phase I trial. EClinicalMedicine 63, 102175 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Shi, D. et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase I trials. Clin. Cancer Res. 26, 3979–3989 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of N.N.S is supported in part by the Intramural Research Program, Center of Cancer Research, National Cancer Institute and National Institutes of Health (NIH) Clinical Center (grant ZIA BC 011823). S.L.M. is a Scholar in Clinical Research of The Leukaemia & Lymphoma Society.

Author information

Authors and Affiliations

Authors

Contributions

L.S., K.McN., A.J.L., F.G.C., A.B., F.C., K.J.C., L.G., M.L., S.L.M., M.A.P., S.R., C.S., C.M.C., D.B., R.A.G., S.G. and N.N.S. researched data for the article. L.S., K.McN., A.J.L., F.G.C., A.B., F.C., K.J.C., L.G., M.L., S.L.M., M.A.P., S.R., S.R.R., S.K.S., A.S., C.S., C.M.C., D.B., R.A.G., S.G. and N.N.S. wrote the manuscript. All authors contributed substantially to discussions of the content and reviewed and/or edited the manuscript before submission. This Review was conceptualized and led by L.S. and N.N.S.

Corresponding authors

Correspondence to Liora Schultz or Nirali N. Shah.

Ethics declarations

Competing interests

L.G. has received travel funding and honoraria from Amgen. S.L.M. has received research support for clinical trials sponsored by Luminary Therapeutics. M.A.P. has served on advisory boards for Autolus, bluebird bio, Cargo Therapeutics, Garuda/Stratus Therapeutics, GentiBio, Mesoblast, Novartis and Pfizer; and had received research support from Adaptive Biotech and Miltenyi Biotec. M.Q. has received honoraria from Medexus. S.R.R. declares consultancy roles for Amgen and Pfizer. C.R. has received honoraria from Amgen and Novartis. C.M.C. reports honoraria from Bayer, Nektar Therapeutics and Novartis; and has equity interest in Elephas. D.B. declares research funding from Wugen. R.A.G. has patents related to CAR T cell technologies licensed with royalties paid from Juno Therapeutics. N.N.S. declares research funding from Cargo Therapeutics, Lentigen and Vor Bio; has attended advisory board meetings (no honoraria) for ImmunoACT, Sobi and Vor Bio; and receives royalties from Cargo Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks E. Jacoby, M. Maus and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Disclaimer

The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schultz, L., McNerney, K., Lamble, A.J. et al. The quintessential role for CAR T cell therapy in children, adolescents and young adults with cancer. Nat Rev Clin Oncol (2026). https://doi.org/10.1038/s41571-025-01115-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41571-025-01115-w

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer