Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

HIV and antiretroviral therapy-related fat alterations

Subjects

An Author Correction to this article was published on 02 July 2020

This article has been updated

Abstract

Early in the HIV epidemic, lipodystrophy, characterized by subcutaneous fat loss (lipoatrophy), with or without central fat accumulation (lipohypertrophy), was recognized as a frequent condition among people living with HIV (PLWH) receiving combination antiretroviral therapy. The subsequent identification of thymidine analogue nucleoside reverse transcriptase inhibitors as the cause of lipoatrophy led to the development of newer antiretroviral agents; however, studies have demonstrated continued abnormalities in fat and/or lipid storage in PLWH treated with newer drugs (including integrase inhibitor-based regimens), with fat gain due to restoration to health in antiretroviral therapy-naive PLWH, which is compounded by the rising rates of obesity. The mechanisms of fat alterations in PLWH are complex, multifactorial and not fully understood, although they are known to result in part from the direct effects of HIV proteins and antiretroviral agents on adipocyte health, genetic factors, increased microbial translocation, changes in the adaptive immune milieu after infection, increased tissue inflammation and accelerated fibrosis. Management includes classical lifestyle alterations with a role for pharmacological therapies and surgery in some patients. Continued fat alterations in PLWH will have an important effect on lifespan, healthspan and quality of life as patients age worldwide, highlighting the need to investigate the critical uncertainties regarding pathophysiology, risk factors and management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of HIV on adipose tissue.
Fig. 2: Pathophysiological mechanisms involved in HIV-related and ART-related adipose tissue alterations and dysfunction.
Fig. 3: Alterations of immunity in adipose tissue from HIV-infected individuals with fat redistribution as compared with lean and obese non-infected individuals.
Fig. 4: Manifestations of ART-associated fat alterations.
Fig. 5: The ‘fourth 90’: proposed revision to the UNAIDS 90-90-90 targets.

Similar content being viewed by others

Change history

  • 02 July 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    CAS  PubMed  Google Scholar 

  2. Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507–524 (2019).

    CAS  PubMed  Google Scholar 

  3. Schosserer, M., Grillari, J., Wolfrum, C. & Scheideler, M. Age-induced changes in white, brite, and brown adipose depots: a mini-review. Gerontology 64, 229–236 (2018).

    CAS  PubMed  Google Scholar 

  4. Carr, A., Law, M. & HIV Lipodystrophy Case Definition Study Group. An objective lipodystrophy severity grading scale derived from the lipodystrophy case definition score. J. Acquir. Immune Defic. Syndr. 33, 571–576 (2003).

    PubMed  Google Scholar 

  5. Saint-Marc, T. et al. A syndrome of peripheral fat wasting (lipodystrophy) in patients receiving long-term nucleoside analogue therapy. AIDS 13, 1659–1667 (1999).

    CAS  PubMed  Google Scholar 

  6. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016).

    Google Scholar 

  7. Martin, A. et al. Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX extension study. AIDS 18, 1029–1036 (2004).

    CAS  PubMed  Google Scholar 

  8. Guaraldi, G. et al. The natural history of HIV-associated lipodystrophy in the changing scenario of HIV infection. HIV Med. 15, 587–594 (2014).

    CAS  PubMed  Google Scholar 

  9. McComsey, G. A. et al. Peripheral and central fat changes in subjects randomized to abacavir-lamivudine or tenofovir-emtricitabine with atazanavir-ritonavir or efavirenz: ACTG Study A5224s. Clin. Infect. Dis. 53, 185–196 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hill, A., Waters, L. & Pozniak, A. Are new antiretroviral treatments increasing the risks of clinical obesity? J. Virus Erad. 5, 41–43 (2019). A viewpoint on the clinical trials associating integrase inhibitor-based regimens and weight gain.

    PubMed  PubMed Central  Google Scholar 

  11. Venter, W. D. F. et al. Dolutegravir plus two different prodrugs of tenofovir to treat HIV. N. Engl. J. Med. 381, 803–815 (2019). An important trial in ART-naive patients, showing more weight gain with dolutegravir-containing regimens, especially in combination with TAF than with the standard-care regimen.

    CAS  PubMed  Google Scholar 

  12. Sax, P. E. et al. Weight gain following initiation of antiretroviral therapy: risk factors in randomized comparative clinical trials. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciz999 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smith, U. Abdominal obesity: a marker of ectopic fat accumulation. J. Clin. Invest. 125, 1790–1792 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Macallan, D. C. et al. Energy expenditure and wasting in human immunodeficiency virus infection. N. Engl. J. Med. 333, 83–88 (1995).

    CAS  PubMed  Google Scholar 

  15. Macallan, D. C. Wasting in HIV infection and AIDS. J. Nutr. 129, 238S–242S (1999).

    CAS  PubMed  Google Scholar 

  16. Rivera, S., Briggs, W., Qian, D. & Sattler, F. R. Levels of HIV RNA are quantitatively related to prior weight loss in HIV-associated wasting. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 17, 411–418 (1998).

    CAS  PubMed  Google Scholar 

  17. Melchior, J. C. et al. Resting energy expenditure is increased in stable, malnourished HIV-infected patients. Am. J. Clin. Nutr. 53, 437–441 (1991).

    CAS  PubMed  Google Scholar 

  18. Grinspoon, S. et al. Body composition and endocrine function in women with acquired immunodeficiency syndrome wasting. J. Clin. Endocrinol. Metab. 82, 1332–1337 (1997).

    CAS  PubMed  Google Scholar 

  19. Kotler, D. & Heymsfield, S. B. HIV infection: a model chronic illness for studying wasting diseases. Am. J. Clin. Nutr. 68, 519–520 (1998).

    CAS  PubMed  Google Scholar 

  20. Kotler, D. P. Human immunodeficiency virus-related wasting: malabsorption syndromes. Semin. Oncol. 25, 70–75 (1998).

    CAS  PubMed  Google Scholar 

  21. Kotler, D. P. et al. Relative influences of sex, race, environment, and HIV infection on body composition in adults. Am. J. Clin. Nutr. 69, 432–439 (1999).

    CAS  PubMed  Google Scholar 

  22. Visnegarwala, F. et al. Sex differences in the associations of HIV disease characteristics and body composition in antiretroviral-naive persons. Am. J. Clin. Nutr. 82, 850–856 (2005).

    CAS  PubMed  Google Scholar 

  23. Caron-Debarle, M., Lagathu, C., Boccara, F., Vigouroux, C. & Capeau, J. HIV-associated lipodystrophy: from fat injury to premature aging. Trends Mol. Med. 16, 218–229 (2010).

    CAS  PubMed  Google Scholar 

  24. Herek, G., Saha, S. & Burack, J. Stigma and psychological distress in people with HIV/AIDS. Basic. Appl. Soc. Psychol. 35, 41–54 (2013).

    Google Scholar 

  25. Bacchetti, P. et al. Fat distribution in men with HIV infection. J. Acquir. Immune Defic. Syndr. 40, 121–131 (2005).

    PubMed  Google Scholar 

  26. Study of Fat Redistribution and Metabolic Change in HIV Infection (FRAM). Fat distribution in women with HIV infection. J. Acquir. Immune Defic. Syndr. 42, 562–571 (2006).

    PubMed  PubMed Central  Google Scholar 

  27. Beraldo, R. A. et al. Proposed ratios and cutoffs for the assessment of lipodystrophy in HIV-seropositive individuals. Eur. J. Clin. Nutr. 69, 274–278 (2015).

    CAS  PubMed  Google Scholar 

  28. Domingo, P., Estrada, V., Lopez-Aldeguer, J., Villaroya, F. & Martinez, E. Fat redistribution syndromes associated with HIV-1 infection and combination antiretroviral therapy. AIDS Rev. 14, 112–123 (2012). A good review on the epidemiology and mechanisms of HIV/ART-related lipodystrophy.

    PubMed  Google Scholar 

  29. Paton, N. I., Earnest, A., Ng, Y. M., Karim, F. & Aboulhab, J. Lipodystrophy in a cohort of human immunodeficiency virus-infected Asian patients: prevalence, associated factors, and psychological impact. Clin. Infect. Dis. 35, 1244–1249 (2002).

    PubMed  Google Scholar 

  30. Alberti, K. G., George, M. M., Zimmet, P. & Shaw, J. The metabolic syndrome – a new worldwide definition. Lancet 366, 1059–1062 (2005).

    Article  PubMed  Google Scholar 

  31. Finkelstein, J. L., Gala, P., Rochford, R., Glesby, M. J. & Mehta, S. HIV/AIDS and lipodystrophy: implications for clinical management in resource-limited settings. J. Int. AIDS Soc. 18, 19033 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. van Oosterhout, J. J. et al. Stavudine toxicity in adult longer-term ART patients in Blantyre, Malawi. PLoS One 7, e42029 (2012).

    PubMed  PubMed Central  Google Scholar 

  33. Han, S. H. et al. Prevalence of and risk factors for lipodystrophy among HIV-infected patients receiving combined antiretroviral treatment in the Asia-Pacific region: results from the TREAT Asia HIV Observational Database (TAHOD). Endocr. J. 58, 475–484 (2011).

    PubMed  PubMed Central  Google Scholar 

  34. Podzamczer, D. et al. How much fat loss is needed for lipoatrophy to become clinically evident? AIDS Res. Hum. Retroviruses 25, 563–567 (2009).

    PubMed  Google Scholar 

  35. Coin, A. et al. Limb fat-free mass and fat mass reference values by dual-energy X-ray absorptiometry (DEXA) in a 20-80 year-old Italian population. Clin. Nutr. 31, 506–511 (2012).

    PubMed  Google Scholar 

  36. Mallon, P. W., Miller, J., Cooper, D. A. & Carr, A. Prospective evaluation of the effects of antiretroviral therapy on body composition in HIV-1-infected men starting therapy. AIDS 17, 971–979 (2003).

    CAS  PubMed  Google Scholar 

  37. Dube, M. P. et al. Long-term body fat outcomes in antiretroviral-naive participants randomized to nelfinavir or efavirenz or both plus dual nucleosides. Dual X-ray absorptiometry results from A5005s, a substudy of Adult Clinical Trials Group 384. J. Acquir. Immune Defic. Syndr. 45, 508–514 (2007). A study on the natural history of ART-related lipodystrophy.

    CAS  PubMed  Google Scholar 

  38. Martin, A. & Mallon, P. W. Therapeutic approaches to combating lipoatrophy: do they work? J. Antimicrob. Chemother. 55, 612–615 (2005).

    CAS  PubMed  Google Scholar 

  39. Rockstroh, J. K. et al. Long-term treatment with raltegravir or efavirenz combined with tenofovir/emtricitabine for treatment-naive human immunodeficiency virus-1-infected patients: 156-week results from STARTMRK. Clin. Infect. Dis. 53, 807–816 (2011).

    CAS  PubMed  Google Scholar 

  40. World Health Organization. Rapid advice: antiretroviral therapy for HIV infection in adults and adolescents. WHO https://www.who.int/hiv/pub/arv/rapid_advice_art.pdf (41).

  41. Lagathu, C. et al. Metabolic complications affecting adipose tissue, lipid and glucose metabolism associated with HIV antiretroviral treatment. Expert. Opin. Drug Saf. 18, 829–840 (2019).

    CAS  PubMed  Google Scholar 

  42. Grunfeld, C. et al. Regional adipose tissue measured by MRI over 5 years in HIV-infected and control participants indicates persistence of HIV-associated lipoatrophy. AIDS 24, 1717–1726 (2010).

    PubMed  Google Scholar 

  43. Schouten, J. et al. Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clin. Infect. Dis. 59, 1787–1797 (2014).

    CAS  PubMed  Google Scholar 

  44. Gelpi, M. et al. Prior exposure to thymidine analogues and didanosine is associated with long-lasting alterations in adipose tissue distribution and cardiovascular risk factors. AIDS 33, 675–683 (2018). An important study highlighting the long-term role of thymidine NRTIs on fat distribution and metabolic disorders.

    Google Scholar 

  45. Gelpi, M. et al. Long-lasting alterations in fat distribution in PLWH exposed to thymidine analogues. CROI https://www.croiconference.org/abstract/long-lasting-alterations-fat-distribution-plwh-exposed-thymidine-analogues/ (2019).

  46. Bastard, J. P. et al. Diabetes and dyslipidaemia are associated with oxidative stress independently of inflammation in long-term antiretroviral-treated HIV-infected patients. Diabetes Metab. 45, 573–581 (2019).

    CAS  PubMed  Google Scholar 

  47. Arrive, E. et al. Metabolic risk factors in young adults infected with HIV since childhood compared with the general population. PLoS One 13, e0206745 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. de Waal, R., Cohen, K. & Maartens, G. Systematic review of antiretroviral-associated lipodystrophy: lipoatrophy, but not central fat gain, is an antiretroviral adverse drug reaction. PLoS One 8, e63623 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Wohl, D. A. & Brown, T. T. Management of morphologic changes associated with antiretroviral use in HIV-infected patients. J. Acquir. Immune Defic. Syndr. 49 (Suppl. 2), 93–100 (2008).

    Google Scholar 

  50. Mutimura, E., Stewart, A., Rheeder, P. & Crowther, N. J. Metabolic function and the prevalence of lipodystrophy in a population of HIV-infected African subjects receiving highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 46, 451–455 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Moyle, G. et al. Epidemiology, assessment, and management of excess abdominal fat in persons with HIV infection. AIDS Rev. 12, 3–14 (2010).

    PubMed  Google Scholar 

  52. Guaraldi, G. et al. Prevalence of and risk factors for pubic lipoma development in HIV-infected persons. J. Acquir. Immune Defic. Syndr. 45, 72–76 (2007).

    PubMed  Google Scholar 

  53. Haubrich, R. H. et al. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. AIDS 23, 1109–1118 (2009).

    CAS  PubMed  Google Scholar 

  54. Vrouenraets, S. M. et al. Randomized comparison of metabolic and renal effects of saquinavir/r or atazanavir/r plus tenofovir/emtricitabine in treatment-naive HIV-1-infected patients. HIV Med. 12, 620–631 (2011).

    CAS  PubMed  Google Scholar 

  55. Moyle, G. J., Hardy, H., Farajallah, A., DeGrosky, M. & McGrath, D. Comparison of body composition changes between atazanavir/ritonavir and lopinavir/ritonavir each in combination with tenofovir/emtricitabine in antiretroviral-naive patients with HIV-1 infection. Clin. Drug Investig. 34, 287–296 (2014).

    CAS  PubMed  Google Scholar 

  56. McComsey, G. A. et al. Body composition changes after initiation of raltegravir or protease inhibitors: ACTG A5260s. Clin. Infect. Dis. 62, 853–862 (2016). A carefully performed ACTG trial analysing fat evolution in patients initiating ART with different regimens.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhagwat, P. et al. Raltegravir is associated with greater abdominal fat increases after antiretroviral therapy initiation compared to protease inhibitors. Antivir. Ther. 21 (Suppl. 1), A9 (2016).

    Google Scholar 

  58. Grant, P. M. et al. Long-term body composition changes in antiretroviral-treated HIV-infected individuals. AIDS 30, 2805–2813 (2016).

    CAS  PubMed  Google Scholar 

  59. Debroy, P. et al. Progressive increases in fat mass occur in adults living with HIV on antiretroviral therapy, but patterns differ by sex and anatomic depot. J. Antimicrob. Chemother. 74, 1028–1034 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Shah, R. V. et al. Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA Study. JACC Cardiovasc. Imaging 7, 1221–1235 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Scherzer, R. et al. Decreased limb muscle and increased central adiposity are associated with 5-year all-cause mortality in HIV infection. AIDS 25, 1405–1414 (2011).

    PubMed  Google Scholar 

  62. Koethe, J. R. et al. Rising obesity prevalence and weight gain among adults starting antiretroviral therapy in the United States and Canada. AIDS Res. Hum. Retroviruses 32, 50–58 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Coetzee, L. et al. HIV, antiretroviral therapy and non-communicable diseases in sub-Saharan Africa: empirical evidence from 44 countries over the period 2000 to 2016. J. Int. AIDS Soc. 22, e25364 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Lake, J. E. The fat of the matter: obesity and visceral adiposity in treated HIV infection. Curr. HIV/AIDS Rep. 14, 211–219 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Bakal, D. R. et al. Obesity following ART initiation is common and influenced by both traditional and HIV-/ART-specific risk factors. J. Antimicrob. Chemother. 73, 2177–2185 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Menard, A. et al. Dolutegravir and weight gain: an unexpected bothering side effect? AIDS 31, 1499–1500 (2017).

    PubMed  Google Scholar 

  67. Bourgi, K. et al. Greater weight gain among treatment-naive persons starting integrase inhibitors. CROI https://www.croiconference.org/abstract/greater-weight-gain-among-treatment-naive-persons-starting-integrase-inhibitors/ (2019).

  68. Bourgi, K. et al. Greater weight gain in treatment naive persons starting dolutegravir-based antiretroviral therapy. Clin. Infect. Dis. 70, 1267–1274 (2020).

    CAS  PubMed  Google Scholar 

  69. Bourgi, K. et al. Weight gain among treatment-naïve persons with HIV starting integrase inhibitors compared to non-nucleoside reverse transcriptase inhibitors or protease inhibitors in a large observational cohort in the United States and Canada. J. Int. AIDS Soc. 23, e25484 (2020).

    PubMed  PubMed Central  Google Scholar 

  70. Rizzardo, S. et al. Dolutegravir monotherapy and body weight gain in antiretroviral naive patients. AIDS 33, 1673–1674 (2019).

    PubMed  Google Scholar 

  71. Couturier, J. et al. Adipocytes impair efficacy of antiretroviral therapy. Antivir. Res. 154, 140–148 (2018).

    CAS  PubMed  Google Scholar 

  72. Gorwood, J. et al. The integrase inhibitors dolutegravir and raltegravir exert pro-adipogenic and profibrotic effects and induce insulin resistance in human/simian adipose tissue and human adipocytes. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa2595804258 (2020).

  73. Burns, J. E. et al. No overall change in the rate of weight gain after switching to an integrase-inhibitor in virologically suppressed adults with HIV. AIDS 34, 109–114 (2020).

    CAS  PubMed  Google Scholar 

  74. Lake, J. E. et al. Risk factors for weight gain following switch to integrase inhibitor-based antiretroviral therapy. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa177 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Katlama, C. et al. Dual therapy combining raltegravir with etravirine maintains a high level of viral suppression over 96 weeks in long-term experienced HIV-infected individuals over 45 years on a PI-based regimen: results from the Phase II ANRS 163 ETRAL study. J. Antimicrob. Chemother. 74, 2742–2751 (2019).

    CAS  PubMed  Google Scholar 

  76. Assoumou, L. et al. Impact of the reproductive/hormonal status on weight, fat and insulin resistance in HIV-infected women switching from a PI regimen to dual raltegravir-etravirine therapy: results from the ANRS163-ETRAL trial at 48 and 96 weeks. HIV Med. 20 (Suppl. 9), 132 (2019).

    Google Scholar 

  77. Currier, J. S. & Havlir, D. V. CROI 2019: complications and coinfections in HIV infection. Top. Antivir. Med. 27, 34–40 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Guaraldi, G. et al. Epicardial adipose tissue is an independent marker of cardiovascular risk in HIV-infected patients. AIDS 25, 1199–1205 (2011).

    PubMed  Google Scholar 

  79. Buggey, J. & Longenecker, C. T. Heart fat in HIV: marker or mediator of risk? Curr. Opin. HIV AIDS 12, 572–578 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Lo, J. et al. Increased epicardial adipose tissue volume in HIV-infected men and relationships to body composition and metabolic parameters. AIDS 24, 2127–2130 (2010).

    CAS  PubMed  Google Scholar 

  81. Torriani, M., Hadigan, C., Jensen, M. E. & Grinspoon, S. Psoas muscle attenuation measurement with computed tomography indicates intramuscular fat accumulation in patients with the HIV-lipodystrophy syndrome. J. Appl. Physiol. 95, 1005–1010 (2003).

    PubMed  Google Scholar 

  82. Natsag, J. et al. HIV infection is associated with increased fatty infiltration of the thigh muscle with aging independent of fat distribution. PLoS One 12, e0169184 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Fourman, L. T. et al. Differential relationships of hepatic and epicardial fat to body composition in HIV. Physiol. Rep. 5, e13386 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Lemoine, M. et al. Diagnostic accuracy of noninvasive markers of steatosis, NASH, and liver fibrosis in HIV-monoinfected individuals at risk of nonalcoholic fatty liver disease (NAFLD): results from the ECHAM study. J. Acquir. Immune Defic. Syndr. 80, e86–e94 (2019).

    PubMed  Google Scholar 

  85. Couturier, J. et al. Infectious SIV resides in adipose tissue and induces metabolic defects in chronically infected rhesus macaques. Retrovirology 13, 30 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Couturier, J. et al. Human adipose tissue as a reservoir for memory CD4+ T cells and HIV. AIDS 29, 667–674 (2015). One of the first studies showing that adipose tissue is an HIV reservoir.

    CAS  PubMed  Google Scholar 

  87. Damouche, A. et al. Adipose tissue is a neglected viral reservoir and an inflammatory site during chronic HIV and SIV infection. PLoS Pathog. 11, e1005153 (2015). One of the first studies showing that adipose tissue is a reservoir for human HIV and simian SIV.

    PubMed  PubMed Central  Google Scholar 

  88. Gupta, M. K. et al. HIV-1 Nef-induced cardiotoxicity through dysregulation of autophagy. Sci. Rep. 7, 8572 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Tugizov, S. M. et al. HIV-associated disruption of mucosal epithelium facilitates paracellular penetration by human papillomavirus. Virology 446, 378–388 (2013).

    CAS  PubMed  Google Scholar 

  90. Agarwal, N. et al. HIV-1 Vpr induces adipose dysfunction in vivo through reciprocal effects on PPAR/GR co-regulation. Sci. Transl Med. 5, 213ra164 (2013).

    PubMed  PubMed Central  Google Scholar 

  91. Delpierre, C. et al. Impact of HIV infection on total body composition in treatment-naive men evaluated by dual-energy X-ray absorptiometry comparison of 90 untreated HIV-infected men to 241 controls. J. Clin. Densitom. 10, 376–380 (2007).

    CAS  PubMed  Google Scholar 

  92. Sharpstone, D. R., Ross, H. M. & Gazzard, B. G. The metabolic response to opportunistic infections in AIDS. AIDS 10, 1529–1533 (1996).

    CAS  PubMed  Google Scholar 

  93. Giralt, M. et al. HIV-1 infection alters gene expression in adipose tissue, which contributes to HIV- 1/HAART-associated lipodystrophy. Antivir. Ther. 11, 729–740 (2006).

    CAS  PubMed  Google Scholar 

  94. Vidal, F. et al. Adipogenic/lipid, inflammatory, and mitochondrial parameters in subcutaneous adipose tissue of untreated HIV-1-infected long-term nonprogressors: significant alterations despite low viral burden. J. Acquir. Immune Defic. Syndr. 61, 131–137 (2012).

    CAS  PubMed  Google Scholar 

  95. Das, S. et al. In treatment-naive and antiretroviral-treated subjects with HIV, reduced plasma adiponectin is associated with a reduced fractional clearance rate of VLDL, IDL and LDL apolipoprotein B-100. Diabetologia 49, 538–542 (2006).

    CAS  PubMed  Google Scholar 

  96. Garrabou, G. et al. Mitochondrial damage in adipose tissue of untreated HIV-infected patients. AIDS 25, 165–170 (2011).

    CAS  PubMed  Google Scholar 

  97. De Pauw, A., Tejerina, S., Raes, M., Keijer, J. & Arnould, T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. Am. J. Pathol. 175, 927–939 (2009).

    PubMed  PubMed Central  Google Scholar 

  98. Gorwood, J. et al. Impact of HIV/simian immunodeficiency virus infection and viral proteins on adipose tissue fibrosis and adipogenesis. AIDS 33, 953–964 (2019). A study indicating the deleterious impact of HIV and SIV on fat fibrosis.

    CAS  PubMed  Google Scholar 

  99. Utay, N. S. et al. Telmisartan therapy does not improve lymph node or adipose tissue fibrosis more than continued antiretroviral therapy alone. J. Infect. Dis. 217, 1770–1781 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Koethe, J. R. Adipose tissue in HIV infection. Compr. Physiol. 7, 1339–1357 (2017). An excellent general review on the role of HIV in adipose tissue.

    PubMed  PubMed Central  Google Scholar 

  101. Pallikkuth, S. & Mohan, M. Adipose tissue: sanctuary for HIV/SIV persistence and replication. Trends Microbiol. 23, 748–750 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Balasubramanyam, A. et al. Effects of transgenic expression of HIV-1 Vpr on lipid and energy metabolism in mice. Am. J. Physiol. Endocrinol. Metab. 292, E40–E48 (2007).

    CAS  PubMed  Google Scholar 

  103. Shrivastav, S. et al. Human immunodeficiency virus (HIV)-1 viral protein R suppresses transcriptional activity of peroxisome proliferator-activated receptor-γ and inhibits adipocyte differentiation: implications for HIV-associated lipodystrophy. Mol. Endocrinol. 22, 234–247 (2008).

    CAS  PubMed  Google Scholar 

  104. Otake, K. et al. HIV-1 Nef protein in the nucleus influences adipogenesis as well as viral transcription through the peroxisome proliferator-activated receptors. AIDS 18, 189–198 (2004).

    CAS  PubMed  Google Scholar 

  105. Cotter, E. J., Chew, N., Powderly, W. G. & Doran, P. P. HIV type 1 alters mesenchymal stem cell differentiation potential and cell phenotype ex vivo. AIDS Res. Hum. Retroviruses 27, 187–199 (2011).

    CAS  PubMed  Google Scholar 

  106. Diaz-Delfin, J., Domingo, P., Wabitsch, M., Giralt, M. & Villarroya, F. HIV-1 Tat protein impairs adipogenesis and induces the expression and secretion of proinflammatory cytokines in human SGBS adipocytes. Antivir. Ther. 17, 529–540 (2012).

    CAS  PubMed  Google Scholar 

  107. Perez-Matute, P., Perez-Martinez, L., Blanco, J. R. & Oteo, J. A. Role of mitochondria in HIV infection and associated metabolic disorders: focus on nonalcoholic fatty liver disease and lipodystrophy syndrome. Oxid. Med. Cell Longev. 2013, 493413 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Fabbrini, E. et al. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology 145, 366–374.e1-3 (2013).

    CAS  PubMed  Google Scholar 

  109. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    CAS  PubMed  Google Scholar 

  111. Pandolfi, J. B. et al. ATP-induced inflammation drives tissue-resident Th17 cells in metabolically unhealthy obesity. J. Immunol. 196, 3287–3296 (2016).

    CAS  PubMed  Google Scholar 

  112. Shikuma, C. M. et al. The role of HIV and monocytes/macrophages in adipose tissue biology. J. Acquir. Immune Defic. Syndr. 65, 151–159 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hotamisligil, G. S. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271, 665–668 (1996).

    CAS  PubMed  Google Scholar 

  114. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gao, D. et al. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am. J. Physiol. Endocrinol. Metab. 307, E289–E304 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lumeng, C. N., Deyoung, S. M. & Saltiel, A. R. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am. J. Physiol. Endocrinol. Metab. 292, E166–E174 (2007).

    CAS  PubMed  Google Scholar 

  118. Jan, V. et al. Altered fat differentiation and adipocytokine expression are inter-related and linked to morphological changes and insulin resistance in HIV-1-infected lipodystrophic patients. Antivir. Ther. 9, 555–564 (2004).

    CAS  PubMed  Google Scholar 

  119. Damouche, A. et al. High proportion of PD-1-expressing CD4+ T cells in adipose tissue constitutes an immunomodulatory microenvironment that may support HIV persistence. Eur. J. Immunol. 47, 2113–2123 (2017).

    CAS  PubMed  Google Scholar 

  120. Koethe, J. R. et al. Adipose tissue is enriched for activated and late-differentiated CD8+ T cells and shows distinct CD8+ receptor usage, compared with blood in HIV-infected persons. J. Acquir. Immune Defic. Syndr. 77, e14–e21 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Brown, T. T. et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch. Intern. Med. 165, 1179–1184 (2005).

    PubMed  Google Scholar 

  122. Capeau, J. et al. Ten-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment. AIDS 26, 303–314 (2012).

    CAS  PubMed  Google Scholar 

  123. De Wit, S. et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study. Diabetes Care 31, 1224–1229 (2008).

    PubMed  Google Scholar 

  124. Guaraldi, G. et al. CD8 T-cell activation is associated with lipodystrophy and visceral fat accumulation in antiretroviral therapy-treated virologically suppressed HIV-infected patients. J. Acquir. Immune Defic. Syndr. 64, 360–366 (2013).

    CAS  PubMed  Google Scholar 

  125. McDonnell, W. J. et al. High CD8 T-cell receptor clonality and altered CDR3 properties are associated with elevated isolevuglandins in adipose tissue during diet-induced obesity. Diabetes 67, 2361–2376 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Focosi, D., Bestagno, M., Burrone, O. & Petrini, M. CD57+ T lymphocytes and functional immune deficiency. J. Leukoc. Biol. 87, 107–116 (2010).

    CAS  PubMed  Google Scholar 

  127. Palmer, B. E., Blyveis, N., Fontenot, A. P. & Wilson, C. C. Functional and phenotypic characterization of CD57+CD4+ T cells and their association with HIV-1-induced T cell dysfunction. J. Immunol. 175, 8415–8423 (2005).

    CAS  PubMed  Google Scholar 

  128. Wanjalla, C. N. et al. Adipose tissue in persons with HIV is enriched for CD4+ T effector memory and t effector memory RA+ cells, which show higher CD69 expression and CD57, CX3CR1, GPR56 co-expression with increasing glucose intolerance. Front. Immunol. 10, 408 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Gordon, C. L. et al. Induction and maintenance of CX3CR1-intermediate peripheral memory CD8+ T cells by persistent viruses and vaccines. Cell Rep. 23, 768–782 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Nishimura, M. et al. Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J. Immunol. 168, 6173–6180 (2002).

    CAS  PubMed  Google Scholar 

  131. Pachnio, A. et al. Cytomegalovirus infection leads to development of high frequencies of cytotoxic virus-specific CD4+ T cells targeted to vascular endothelium. PLoS Pathog. 12, e1005832 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Peng, Y. M. et al. Specific expression of GPR56 by human cytotoxic lymphocytes. J. Leukoc. Biol. 90, 735–740 (2011).

    CAS  PubMed  Google Scholar 

  133. Bastard, J. P. et al. Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet 359, 1026–1031 (2002).

    CAS  PubMed  Google Scholar 

  134. Johnson, J. A. et al. Increased systemic and adipose tissue cytokines in patients with HIV-associated lipodystrophy. Am. J. Physiol. Endocrinol. Metab. 286, E261–E271 (2004).

    CAS  PubMed  Google Scholar 

  135. Kannisto, K. et al. Expression of adipogenic transcription factors, peroxisome proliferator-activated receptor gamma co-activator 1, IL-6 and CD45 in subcutaneous adipose tissue in lipodystrophy associated with highly active antiretroviral therapy. AIDS 17, 1753–1762 (2003).

    CAS  PubMed  Google Scholar 

  136. Lihn, A. S. et al. Increased expression of TNF-α, IL-6, and IL-8 in HALS: implications for reduced adiponectin expression and plasma levels. Am. J. Physiol. Endocrinol. Metab. 285, E1072–E1080 (2003).

    CAS  PubMed  Google Scholar 

  137. Podzamczer, D. et al. Less lipoatrophy and better lipid profile with abacavir as compared to stavudine: 96-week results of a randomized study. J. Acquir. Immune Defic. Syndr. 44, 139–147 (2007).

    CAS  PubMed  Google Scholar 

  138. Nolan, D. et al. Mitochondrial DNA depletion and morphologic changes in adipocytes associated with nucleoside reverse transcriptase inhibitor therapy. AIDS 17, 1329–1338 (2003).

    CAS  PubMed  Google Scholar 

  139. Hammond, E., Nolan, D., James, I., Metcalf, C. & Mallal, S. Reduction of mitochondrial DNA content and respiratory chain activity occurs in adipocytes within 6-12 months of commencing nucleoside reverse transcriptase inhibitor therapy. AIDS 18, 815–817 (2004).

    CAS  PubMed  Google Scholar 

  140. De Luca, A. et al. Mitochondrial DNA haplogroups and incidence of lipodystrophy in HIV-infected patients on long-term antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 59, 113–120 (2012).

    PubMed  Google Scholar 

  141. Hulgan, T. et al. European mitochondrial DNA haplogroups and metabolic changes during antiretroviral therapy in AIDS clinical trials group study A5142. AIDS 25, 37–47 (2011).

    CAS  PubMed  Google Scholar 

  142. Nolan, D., Hammond, E., James, I., McKinnon, E. & Mallal, S. Contribution of nucleoside-analogue reverse transcriptase inhibitor therapy to lipoatrophy from the population to the cellular level. Antivir. Ther. 8, 617–626 (2003).

    CAS  PubMed  Google Scholar 

  143. Mallal, S. A., John, M., Moore, C. B., James, I. R. & McKinnon, E. J. Contribution of nucleoside analogue reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection. AIDS 14, 1309–1316 (2000).

    CAS  PubMed  Google Scholar 

  144. Chen, C. H. & Cheng, Y. C. Delayed cytotoxicity and selective loss of mitochondrial DNA in cells treated with the anti-human immunodeficiency virus compound 2’,3’-dideoxycytidine. J. Biol. Chem. 264, 11934–11937 (1989).

    CAS  PubMed  Google Scholar 

  145. Chen, C. H., Vazquez-Padua, M. & Cheng, Y. C. Effect of anti-human immunodeficiency virus nucleoside analogs on mitochondrial DNA and its implication for delayed toxicity. Mol. Pharmacol. 39, 625–628 (1991).

    CAS  PubMed  Google Scholar 

  146. Cherry, C. L. et al. Exposure to dideoxynucleosides is reflected in lowered mitochondrial DNA in subcutaneous fat. J. Acquir. Immune Defic. Syndr. 30, 271–277 (2002).

    CAS  PubMed  Google Scholar 

  147. Walker, U. A. et al. Evidence of nucleoside analogue reverse transcriptase inhibitor-associated genetic and structural defects of mitochondria in adipose tissue of HIV-infected patients. J. Acquir. Immune Defic. Syndr. 29, 117–121 (2002).

    CAS  PubMed  Google Scholar 

  148. Pace, C. S. et al. Mitochondrial proliferation, DNA depletion and adipocyte differentiation in subcutaneous adipose tissue of HIV-positive HAART recipients. Antivir. Ther. 8, 323–331 (2003).

    CAS  PubMed  Google Scholar 

  149. Walker, U. A., Setzer, B. & Venhoff, N. Increased long-term mitochondrial toxicity in combinations of nucleoside analogue reverse-transcriptase inhibitors. AIDS 16, 2165–2173 (2002).

    CAS  PubMed  Google Scholar 

  150. Hendrickson, S. L. et al. Mitochondrial DNA haplogroups influence lipoatrophy after highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 51, 111–116 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Gallego-Escuredo, J. M. et al. Differentially altered molecular signature of visceral adipose tissue in HIV-1-associated lipodystrophy. J. Acquir. Immune Defic. Syndr. 64, 142–148 (2013).

    CAS  PubMed  Google Scholar 

  152. Hadigan, C. et al. Depot-specific regulation of glucose uptake and insulin sensitivity in HIV-lipodystrophy. Am. J. Physiol. Endocrinol. Metab. 290, E289–E298 (2006).

    CAS  PubMed  Google Scholar 

  153. Leroyer, S. et al. Glyceroneogenesis is inhibited through HIV protease inhibitor-induced inflammation in human subcutaneous but not visceral adipose tissue. J. Lipid Res. 52, 207–220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Torriani, M. et al. Dysfunctional subcutaneous fat with reduced Dicer and Brown adipose tissue gene expression in HIV-infected patients. J. Clin. Endocrinol. Metab. 101, 1225–1234 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Mori, M. A. et al. Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. J. Clin. Invest. 124, 3339–3351 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Srinivasa, S. et al. Brief Report: adipogenic expression of brown fat genes in HIV and HIV-related parameters. J. Acquir. Immune Defic. Syndr. 82, 491–495 (2019).

    PubMed  PubMed Central  Google Scholar 

  157. Walker, U. A. et al. Zidovudine induces visceral mitochondrial toxicity and intra-abdominal fat gain in a rodent model of lipodystrophy. Antivir. Ther. 19, 783–792 (2014).

    CAS  PubMed  Google Scholar 

  158. Mallon, P. W. et al. Buffalo hump seen in HIV-associated lipodystrophy is associated with hyperinsulinemia but not dyslipidemia. J. Acquir. Immune Defic. Syndr. 38, 156–162 (2005).

    PubMed  Google Scholar 

  159. Mori, M. A. et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 16, 336–347 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Thomou, T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450–455 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Bereziat, V. et al. LMNA mutations induce a non-inflammatory fibrosis and a brown fat-like dystrophy of enlarged cervical adipose tissue. Am. J. Pathol. 179, 2443–2453 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Guallar, J. P. et al. Differential gene expression indicates that ‘buffalo hump’ is a distinct adipose tissue disturbance in HIV-1-associated lipodystrophy. AIDS 22, 575–584 (2008).

    CAS  PubMed  Google Scholar 

  163. Giralt, M., Domingo, P. & Villarroya, F. Adipose tissue biology and HIV-infection. Best Pract. Res. Clin. Endocrinol. Metab. 25, 487–499 (2011). A good review on the effect of ART on adipocytes and adipose tissue, resulting in lipodystrophy.

    CAS  PubMed  Google Scholar 

  164. Caron, M. et al. Some HIV protease inhibitors alter lamin A/C maturation and stability, SREBP-1 nuclear localization and adipocyte differentiation. AIDS 17, 2437–2444 (2003).

    CAS  PubMed  Google Scholar 

  165. Afonso, P. et al. LMNA mutations resulting in lipodystrophy and HIV protease inhibitors trigger vascular smooth muscle cell senescence and calcification: role of ZMPSTE24 downregulation. Atherosclerosis 245, 200–211 (2016).

    CAS  PubMed  Google Scholar 

  166. Caron, M. et al. Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ. 14, 1759–1767 (2007).

    CAS  PubMed  Google Scholar 

  167. Capel, E., Auclair, M., Caron-Debarle, M. & Capeau, J. Effects of ritonavir-boosted darunavir, atazanavir and lopinavir on adipose functions and insulin sensitivity in murine and human adipocytes. Antivir. Ther. 17, 549–556 (2012).

    CAS  PubMed  Google Scholar 

  168. Jones, S. P., Waitt, C., Sutton, R., Back, D. J. & Pirmohamed, M. Effect of atazanavir and ritonavir on the differentiation and adipokine secretion of human subcutaneous and omental preadipocytes. AIDS 22, 1293–1298 (2008).

    CAS  PubMed  Google Scholar 

  169. El Hadri, K. et al. In vitro suppression of the lipogenic pathway by the nonnucleoside reverse transcriptase inhibitor efavirenz in 3T3 and human preadipocytes or adipocytes. J. Biol. Chem. 279, 15130–15141 (2004).

    CAS  PubMed  Google Scholar 

  170. Minami, R. et al. Comparison of the influence of four classes of HIV antiretrovirals on adipogenic differentiation: the minimal effect of raltegravir and atazanavir. J. Infect. Chemother. 17, 183–188 (2011).

    CAS  PubMed  Google Scholar 

  171. Moure, R. et al. Impact of elvitegravir on human adipocytes: alterations in differentiation, gene expression and release of adipokines and cytokines. Antivir. Res. 132, 59–65 (2016).

    CAS  PubMed  Google Scholar 

  172. Perez-Matute, P., Perez-Martinez, L., Blanco, J. R. & Oteo, J. A. Neutral actions of raltegravir on adipogenesis, glucose metabolism and lipolysis in 3T3-L1 adipocytes. Curr. HIV Res. 9, 174–179 (2011).

    CAS  PubMed  Google Scholar 

  173. Bastard, J. P. et al. Subcutaneous adipose tissue modifications induced by a switch to dual raltegravir-maraviroc therapy in controlled HIV-infected patients: a sub-study of the ANRS-ROCnRAL157 clinical trial. HIV Med. 20 (Suppl. 9), 128–129 (2019).

    Google Scholar 

  174. Dupin, N. et al. HIV and antiretroviral drug distribution in plasma and fat tissue of HIV-infected patients with lipodystrophy. AIDS 16, 2419–2424 (2002).

    CAS  PubMed  Google Scholar 

  175. Madelain, V. et al. Impact of obesity on antiretroviral pharmacokinetics and immuno-virological response in HIV-infected patients: a case-control study. J. Antimicrob. Chemother. 72, 1137–1146 (2017).

    CAS  PubMed  Google Scholar 

  176. Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

    PubMed  Google Scholar 

  178. Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).

    PubMed  PubMed Central  Google Scholar 

  179. Hansen, T. H., Gobel, R. J., Hansen, T. & Pedersen, O. The gut microbiome in cardio-metabolic health. Genome Med. 7, 33 (2015).

    PubMed  PubMed Central  Google Scholar 

  180. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS  PubMed  Google Scholar 

  181. Dillon, S. M., Frank, D. N. & Wilson, C. C. The gut microbiome and HIV-1 pathogenesis: a two-way street. AIDS 30, 2737–2751 (2016).

    CAS  PubMed  Google Scholar 

  182. Vesterbacka, J. et al. Richer gut microbiota with distinct metabolic profile in HIV infected elite controllers. Sci. Rep. 7, 6269 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. Sandler, N. G. & Douek, D. C. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat. Rev. Microbiol. 10, 655–666 (2012).

    CAS  PubMed  Google Scholar 

  184. Kewenig, S. et al. Rapid mucosal CD4+ T-cell depletion and enteropathy in simian immunodeficiency virus-infected rhesus macaques. Gastroenterology 116, 1115–1123 (1999).

    CAS  PubMed  Google Scholar 

  185. Brenchley, J. M. et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 200, 749–759 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Ellis, C. L. et al. Molecular characterization of stool microbiota in HIV-infected subjects by panbacterial and order-level 16S ribosomal DNA (rDNA) quantification and correlations with immune activation. J. Acquir. Immune Defic. Syndr. 57, 363–370 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Gori, A. et al. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis. J. Clin. Microbiol. 46, 757–758 (2008).

    PubMed  Google Scholar 

  188. Mehandru, S. et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 200, 761–770 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Merlini, E. et al. Evidence for polymicrobic flora translocating in peripheral blood of HIV-infected patients with poor immune response to antiretroviral therapy. PLoS One 6, e18580 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Dillon, S. M. et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol. 7, 983–994 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Gootenberg, D. B., Paer, J. M., Luevano, J. M. & Kwon, D. S. HIV-associated changes in the enteric microbial community: potential role in loss of homeostasis and development of systemic inflammation. Curr. Opin. Infect. Dis. 30, 31–43 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Lozupone, C. A. et al. HIV-induced alteration in gut microbiota: driving factors, consequences, and effects of antiretroviral therapy. Gut Microbes 5, 562–570 (2014).

    PubMed  Google Scholar 

  193. Monaco, C. L. et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe 19, 311–322 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Mutlu, E. A. et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 10, e1003829 (2014).

    PubMed  PubMed Central  Google Scholar 

  195. Noguera-Julian, M. et al. Gut microbiota linked to sexual preference and HIV infection. EBioMedicine 5, 135–146 (2016).

    PubMed  PubMed Central  Google Scholar 

  196. Nowak, P. et al. Gut microbiota diversity predicts immune status in HIV-1 infection. AIDS 29, 2409–2418 (2015).

    CAS  PubMed  Google Scholar 

  197. Sze, M. A. & Schloss, P. D. Looking for a signal in the noise: revisiting obesity and the microbiome. MBio 7, e01018–16 (2016).

    PubMed  PubMed Central  Google Scholar 

  198. Vazquez-Castellanos, J. F. et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol. 8, 760–772 (2015).

    CAS  PubMed  Google Scholar 

  199. Vujkovic-Cvijin, I. et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci. Transl Med. 5, 193ra191 (2013).

    Google Scholar 

  200. Yu, G., Fadrosh, D., Ma, B., Ravel, J. & Goedert, J. J. Anal microbiota profiles in HIV-positive and HIV-negative MSM. AIDS 28, 753–760 (2014).

    CAS  PubMed  Google Scholar 

  201. Handley, S. A. et al. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell 151, 253–266 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Dubourg, G., Surenaud, M., Levy, Y., Hue, S. & Raoult, D. Microbiome of HIV-infected people. Microb. Pathog. 106, 85–93 (2017).

    CAS  PubMed  Google Scholar 

  203. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    CAS  PubMed  Google Scholar 

  204. El Kamari, V. et al. Lower pretreatment gut integrity is independently associated with fat gain on antiretroviral therapy. Clin. Infect. Dis. 68, 1394–1401 (2019).

    CAS  PubMed  Google Scholar 

  205. Al-Sadi, R., Guo, S., Ye, D., Rawat, M. & Ma, T. Y. TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IKK-alpha axis activation of the canonical NF-κB pathway. Am. J. Pathol. 186, 1151–1165 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Chang, C. C. et al. Lipopolysaccharide promoted proliferation and adipogenesis of preadipocytes through JAK/STAT and AMPK-regulated cPLA2 expression. Int. J. Med. Sci. 16, 167–179 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Ortiz, A. M. & Brenchley, J. M. Microbial translocation: translating simian immunodeficiency virus to HIV. Curr. Opin. HIV AIDS 13, 15–21 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Brown, R. J. et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. J. Clin. Endocrinol. Metab. 101, 4500–4511 (2016). An international practice guideline for the management of lipodystrophies.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Tien, P. C. et al. The study of fat redistribution and metabolic change in HIV infection (FRAM): methods, design, and sample characteristics. Am. J. Epidemiol. 163, 860–869 (2006).

    PubMed  Google Scholar 

  210. Brown, T. T. et al. Fat distribution and longitudinal anthropometric changes in HIV-infected men with and without clinical evidence of lipodystrophy and HIV-uninfected controls: a substudy of the Multicenter AIDS Cohort Study. AIDS Res. Ther. 6, 8 (2009). A longitudinal evaluation of fat distribution in Multicenter AIDS Cohort Study patients with or without HIV.

    PubMed  PubMed Central  Google Scholar 

  211. Joy, T. et al. Relation of body composition to body mass index in HIV-infected patients with metabolic abnormalities. J. Acquir. Immune Defic. Syndr. 47, 174–184 (2008).

    PubMed  PubMed Central  Google Scholar 

  212. Lake, J. E. et al. Practical review of recognition and management of obesity and lipohypertrophy in human immunodeficiency virus infection. Clin. Infect. Dis. 64, 1422–1429 (2017). A study on GHD in PLWH.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Gulizia, R. et al. Proven intra and interobserver reliability in the echographic assessments of body fat changes related to HIV associated Adipose Redistribution Syndrome (HARS). Curr. HIV Res. 6, 276–278 (2008).

    CAS  PubMed  Google Scholar 

  214. Gulizia, R. et al. Comparability of echographic and tomographic assessments of body fat changes related to the HIV associated adipose redistribution syndrome (HARS) in antiretroviral treated patients. Ultrasound Med. Biol. 34, 1043–1048 (2008).

    PubMed  Google Scholar 

  215. Freitas, P. et al. Assessment of body fat composition disturbances by bioimpedance analysis in HIV-infected adults. J. Endocrinol. Invest. 34, e321–e329 (2011).

    CAS  PubMed  Google Scholar 

  216. Law, M., Puls, R., Cheng, A. K., Cooper, D. A. & Carr, A. Evaluation of the HIV lipodystrophy case definition in a placebo-controlled, 144-week study in antiretroviral-naive adults. Antivir. Ther. 11, 179–186 (2006).

    PubMed  Google Scholar 

  217. Guidelines (2013) for Managing Overweight and Obesity in Adults. reface to the Expert Panel Report (comprehensive version which includes systematic evidence review, evidence statements, and recommendations). Obesity 22 (Suppl. 2), S40 (2014).

    Google Scholar 

  218. Falutz, J., Rosenthall, L., Kotler, D., Zona, S. & Guaraldi, G. Surrogate markers of visceral adipose tissue in treated HIV-infected patients: accuracy of waist circumference determination. HIV Med. 15, 98–107 (2014).

    CAS  PubMed  Google Scholar 

  219. Lemieux, S., Prud’homme, D., Bouchard, C., Tremblay, A. & Despres, J. P. A single threshold value of waist girth identifies normal-weight and overweight subjects with excess visceral adipose tissue. Am. J. Clin. Nutr. 64, 685–693 (1996).

    CAS  PubMed  Google Scholar 

  220. Despres, J. P. & Lamarche, B. Effects of diet and physical activity on adiposity and body fat distribution: implications for the prevention of cardiovascular disease. Nutr. Res. Rev. 6, 137–159 (1993).

    CAS  PubMed  Google Scholar 

  221. Leite, T. F. et al. Reduction of HIV-1 reservoir size and diversity after 1 year of cART among Brazilian individuals starting treatment during early stages of acute infection. Front. Microbiol. 10, 145 (2019).

    PubMed  PubMed Central  Google Scholar 

  222. Whitney, J. B. et al. Prevention of SIVmac251 reservoir seeding in rhesus monkeys by early antiretroviral therapy. Nat. Commun. 9, 5429 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Tsiodras, S., Perelas, A., Wanke, C. & Mantzoros, C. S. The HIV-1/HAART associated metabolic syndrome - novel adipokines, molecular associations and therapeutic implications. J. Infect. 61, 101–113 (2010).

    CAS  PubMed  Google Scholar 

  224. Malaza, A., Mossong, J., Barnighausen, T. & Newell, M. L. Hypertension and obesity in adults living in a high HIV prevalence rural area in South Africa. PLoS One 7, e47761 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. McComsey, G. A. et al. Improvement in lipoatrophy associated with highly active antiretroviral therapy in human immunodeficiency virus-infected patients switched from stavudine to abacavir or zidovudine: the results of the TARHEEL study. Clin. Infect. Dis. 38, 263–270 (2004).

    CAS  PubMed  Google Scholar 

  226. Sawawiboon, N. et al. Lipodystrophy and reversal of facial lipoatrophy in perinatally HIV-infected children and adolescents after discontinuation of stavudine. Int. J. STD AIDS 23, 497–501 (2012).

    CAS  PubMed  Google Scholar 

  227. Jagdeo, J., Ho, D., Lo, A. & Carruthers, A. A systematic review of filler agents for aesthetic treatment of HIV facial lipoatrophy (FLA). J. Am. Acad. Dermatol. 73, 1040–1054.e14 (2015).

    CAS  PubMed  Google Scholar 

  228. Duracinsky, M. et al. Safety of poly-L-lactic acid (New-Fill®) in the treatment of facial lipoatrophy: a large observational study among HIV-positive patients. BMC Infect. Dis. 14, 474 (2014).

    PubMed  PubMed Central  Google Scholar 

  229. Bessesen, D. H. Update on obesity. J. Clin. Endocrinol. Metab. 93, 2027–2034 (2008).

    CAS  PubMed  Google Scholar 

  230. Khera, R. et al. Association of pharmacological treatments for obesity with weight loss and adverse events: a systematic review and meta-analysis. JAMA 315, 2424–2434 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    PubMed  Google Scholar 

  232. Jia, X., Alam, M., Ye, Y., Bajaj, M. & Birnbaum, Y. GLP-1 receptor agonists and cardiovascular disease: a meta-analysis of recent cardiac outcome trials. Cardiovasc. Drugs Ther. 32, 65–72 (2018).

    CAS  PubMed  Google Scholar 

  233. Kohli, R., Shevitz, A., Gorbach, S. & Wanke, C. A randomized placebo-controlled trial of metformin for the treatment of HIV lipodystrophy. HIV Med. 8, 420–426 (2007).

    CAS  PubMed  Google Scholar 

  234. Mulligan, K. et al. The effects of recombinant human leptin on visceral fat, dyslipidemia, and insulin resistance in patients with human immunodeficiency virus-associated lipoatrophy and hypoleptinemia. J. Clin. Endocrinol. Metab. 94, 1137–1144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Gagliano-Juca, T. & Basaria, S. Testosterone replacement therapy and cardiovascular risk. Nat. Rev. Cardiol. 16, 555–574 (2019).

    PubMed  Google Scholar 

  236. Bhasin, S. et al. Effects of testosterone supplementation on whole body and regional fat mass and distribution in human immunodeficiency virus-infected men with abdominal obesity. J. Clin. Endocrinol. Metab. 92, 1049–1057 (2007).

    CAS  PubMed  Google Scholar 

  237. Bredella, M. A. et al. Effects of GH on body composition and cardiovascular risk markers in young men with abdominal obesity. J. Clin. Endocrinol. Metab. 98, 3864–3872 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Bredella, M. A. et al. GH administration decreases subcutaneous abdominal adipocyte size in men with abdominal obesity. Growth Horm. IGF Res. 35, 17–20 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Bredella, M. A. et al. Effects of GH in women with abdominal adiposity: a 6-month randomized, double-blind, placebo-controlled trial. Eur. J. Endocrinol. 166, 601–611 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Claessen, K. M. et al. Metabolic profile in growth hormone-deficient (GHD) adults after long-term recombinant human growth hormone (rhGH) therapy. J. Clin. Endocrinol. Metab. 98, 352–361 (2013).

    CAS  PubMed  Google Scholar 

  241. Rochira, V. & Guaraldi, G. Growth hormone deficiency and human immunodeficiency virus. Best. Pract. Res. Clin. Endocrinol. Metab. 31, 91–111 (2017). A study on growth hormone deficiency in PLWH.

    CAS  PubMed  Google Scholar 

  242. Koutkia, P., Meininger, G., Canavan, B., Breu, J. & Grinspoon, S. Metabolic regulation of growth hormone by free fatty acids, somatostatin, and ghrelin in HIV-lipodystrophy. Am. J. Physiol. Endocrinol. Metab. 286, E296–E303 (2004).

    CAS  PubMed  Google Scholar 

  243. Rietschel, P. et al. Assessment of growth hormone dynamics in human immunodeficiency virus-related lipodystrophy. J. Clin. Endocrinol. Metab. 86, 504–510 (2001).

    CAS  PubMed  Google Scholar 

  244. Kotler, D. P. et al. Effects of growth hormone on abnormal visceral adipose tissue accumulation and dyslipidemia in HIV-infected patients. J. Acquir. Immune Defic. Syndr. 35, 239–252 (2004).

    CAS  PubMed  Google Scholar 

  245. Grunfeld, C. et al. Recombinant human growth hormone to treat HIV-associated adipose redistribution syndrome: 12 week induction and 24-week maintenance therapy. J. Acquir. Immune Defic. Syndr. 45, 286–297 (2007).

    CAS  PubMed  Google Scholar 

  246. Stanley, T. L. & Grinspoon, S. K. GH/GHRH axis in HIV lipodystrophy. Pituitary 12, 143–152 (2009).

    CAS  PubMed  Google Scholar 

  247. Koutkia, P. et al. Growth hormone-releasing hormone in HIV-infected men with lipodystrophy: a randomized controlled trial. JAMA 292, 210–218 (2004).

    CAS  PubMed  Google Scholar 

  248. Falutz, J. et al. A placebo-controlled, dose-ranging study of a growth hormone releasing factor in HIV-infected patients with abdominal fat accumulation. AIDS 19, 1279–1287 (2005).

    CAS  PubMed  Google Scholar 

  249. Dhillon, S. Tesamorelin: a review of its use in the management of HIV-associated lipodystrophy. Drugs 71, 1071–1091 (2011).

    CAS  PubMed  Google Scholar 

  250. Falutz, J. et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N. Engl. J. Med. 357, 2359–2370 (2007). A large controlled trial on the effect of tesamorelin on metabolic parameters in PLWH with truncal obesity.

    CAS  PubMed  Google Scholar 

  251. Falutz, J. et al. Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J. Clin. Endocrinol. Metab. 95, 4291–4304 (2010).

    CAS  PubMed  Google Scholar 

  252. Falutz, J. et al. Effects of tesamorelin, a growth hormone-releasing factor, in HIV-infected patients with abdominal fat accumulation: a randomized placebo-controlled trial with a safety extension. J. Acquir. Immune Defic. Syndr. 53, 311–322 (2010).

    CAS  PubMed  Google Scholar 

  253. Stanley, T. L. et al. Reduction in visceral adiposity is associated with an improved metabolic profile in HIV-infected patients receiving tesamorelin. Clin. Infect. Dis. 54, 1642–1651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Stanley, T. L. et al. Effects of tesamorelin on inflammatory markers in HIV patients with excess abdominal fat: relationship with visceral adipose reduction. AIDS 25, 1281–1288 (2011).

    CAS  PubMed  Google Scholar 

  255. Stanley, T. L. et al. Effect of tesamorelin on visceral fat and liver fat in HIV-infected patients with abdominal fat accumulation: a randomized clinical trial. JAMA 312, 380–389 (2014).

    PubMed  PubMed Central  Google Scholar 

  256. Fourman, L. T. et al. Visceral fat reduction with tesamorelin is associated with improved liver enzymes in HIV. AIDS 31, 2253–2259 (2017).

    CAS  PubMed  Google Scholar 

  257. Stanley, T. L. et al. Effects of tesamorelin on non-alcoholic fatty liver disease in HIV: a randomised, double-blind, multicentre trial. Lancet HIV 6, e821–e830 (2019).

    PubMed  PubMed Central  Google Scholar 

  258. Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61, 1547–1554 (2015).

    CAS  PubMed  Google Scholar 

  259. Clayton, P. E., Banerjee, I., Murray, P. G. & Renehan, A. G. Growth hormone, the insulin-like growth factor axis, insulin and cancer risk. Nat. Rev. Endocrinol. 7, 11–24 (2011).

    CAS  PubMed  Google Scholar 

  260. Popovic, V. et al. Serum insulin-like growth factor I (IGF-I), IGF-binding proteins 2 and 3, and the risk for development of malignancies in adults with growth hormone (GH) deficiency treated with GH: data from KIMS (Pfizer International Metabolic Database). J. Clin. Endocrinol. Metab. 95, 4449–4454 (2010).

    CAS  PubMed  Google Scholar 

  261. Nguyen, N. T. & Varela, J. E. Bariatric surgery for obesity and metabolic disorders: state of the art. Nat. Rev. Gastroenterol. Hepatol. 14, 160–169 (2017).

    PubMed  Google Scholar 

  262. Akbari, K. et al. The effect of bariatric surgery on patients with HIV infection: a literature review. Obes. Surg. 28, 2550–2559 (2018).

    PubMed  Google Scholar 

  263. Amouyal, C. et al. Sleeve gastrectomy in morbidly obese HIV patients: focus on anti-retroviral treatment absorption after surgery. Obes. Surg. 28, 2886–2893 (2018).

    PubMed  Google Scholar 

  264. Lima, M. M. et al. Visceral fat resection in humans: effect on insulin sensitivity, beta-cell function, adipokines, and inflammatory markers. Obesity 21, E182–E189 (2013).

    CAS  PubMed  Google Scholar 

  265. Herrera, M. F. et al. Potential additional effect of omentectomy on metabolic syndrome, acute-phase reactants, and inflammatory mediators in grade III obese patients undergoing laparoscopic Roux-en-Y gastric bypass: a randomized trial. Diabetes Care 33, 1413–1418 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Brown, T. T. Approach to the human immunodeficiency virus-infected patient with lipodystrophy. J. Clin. Endocrinol. Metab. 93, 2937–2945 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Chen, S., Gui, X. E., Cao, Q. & Routy, J. P. Clinical outcome after lipectomy in the management of patients with human immunodeficiency virus-associated dorsocervical fat accumulation: An observational cohort study. Medicine 98, e16112 (2019).

    PubMed  PubMed Central  Google Scholar 

  268. Warren, A. G. & Borud, L. J. Excisional lipectomy for HIV-associated cervicodorsal lipodystrophy. Aesthet. Surg. J. 28, 147–152 (2008).

    CAS  PubMed  Google Scholar 

  269. UNAIDS. UNAIDS calls for greater urgency as global gains slow and countries show mixed results towards 2020 HIV targets. UNAIDS https://www.unaids.org/en/resources/presscentre/pressreleaseandstatementarchive/2019/july/20190716_PR_UNAIDS_global_report_2019 (2019).

  270. Lazarus, J. V. et al. Beyond viral suppression of HIV - the new quality of life frontier. BMC Med. 14, 94 (2016).

    PubMed  PubMed Central  Google Scholar 

  271. Erdbeer, G. et al. Everything fine so far? Physical and mental health in HIV-infected patients with virological success and long-term exposure to antiretroviral therapy. J. Int. AIDS Soc. 17, 19673 (2014).

    PubMed  PubMed Central  Google Scholar 

  272. Crane, H. M. et al. Lipoatrophy among HIV-infected patients is associated with higher levels of depression than lipohypertrophy. HIV Med. 9, 780–786 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Barlow-Mosha, L., Eckard, A. R., McComsey, G. A. & Musoke, P. M. Metabolic complications and treatment of perinatally HIV-infected children and adolescents. J. Int. AIDS Soc. 16, 18600 (2013).

    PubMed  PubMed Central  Google Scholar 

  274. Miners, A. et al. Health-related quality-of-life of people with HIV in the era of combination antiretroviral treatment: a cross-sectional comparison with the general population. Lancet HIV 1, e32–e40 (2014).

    PubMed  Google Scholar 

  275. Abel, G. & Thompson, L. “I don’t want to look like an AIDS victim”: a New Zealand case study of facial lipoatrophy. Health Soc. Care Community 26, 41–47 (2018).

    PubMed  Google Scholar 

  276. Guaraldi, G. et al. Nonalcoholic fatty liver disease in HIV-infected patients referred to a metabolic clinic: prevalence, characteristics, and predictors. Clin. Infect. Dis. 47, 250–257 (2008).

    PubMed  Google Scholar 

  277. Ware, J. E., Jr. & Sherbourne, C. D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 30, 473–483 (1992).

    PubMed  Google Scholar 

  278. Wu, A. W., Revicki, D. A., Jacobson, D. & Malitz, F. E. Evidence for reliability, validity and usefulness of the medical outcomes study HIV health survey (MOS-HIV). Qual. Life Res. 6, 481–493 (1997).

    CAS  PubMed  Google Scholar 

  279. Blashill, A. J., Wilson, J. M., Baker, J. S., Mayer, K. H. & Safren, S. A. Assessing appearance-related disturbances in HIV-infected men who have sex with men (MSM): psychometrics of the body change and distress questionnaire-short form (ABCD-SF). AIDS Behav. 18, 1075–1084 (2014).

    PubMed  PubMed Central  Google Scholar 

  280. Holmes, W. C. & Shea, J. A. A new HIV/AIDS-targeted quality of life (HAT-QoL) instrument: development, reliability, and validity. Med. Care 36, 138–154 (1998).

    CAS  PubMed  Google Scholar 

  281. Kraus, C. N., Chapman, L. W., Korta, D. Z. & Zachary, C. B. Quality of life outcomes associated with treatment of human immunodeficiency virus (HIV) facial lipoatrophy. Int. J. Dermatol. 55, 1311–1320 (2016).

    CAS  PubMed  Google Scholar 

  282. Leclercq, P. et al. High prevalence and impact on the quality of life of facial lipoatrophy and other abnormalities in fat tissue distribution in HIV-infected patients treated with antiretroviral therapy. AIDS Res. Hum. Retroviruses 29, 761–768 (2013).

    CAS  PubMed  Google Scholar 

  283. Passos, S. M. & Souza, L. D. An evaluation of quality of life and its determinants among people living with HIV/AIDS from Southern Brazil. Cad. Saude Publica 31, 800–814 (2015).

    PubMed  Google Scholar 

  284. Verolet, C. M. et al. Lipodystrophy among HIV-infected patients: a cross-sectional study on impact on quality of life and mental health disorders. AIDS Res. Ther. 12, 21 (2015).

    PubMed  PubMed Central  Google Scholar 

  285. Adams, C., Stears, A., Savage, D. & Deaton, C. “We’re stuck with what we’ve got”: the impact of lipodystrophy on body image. J. Clin. Nurs. 27, 1958–1968 (2018).

    PubMed  Google Scholar 

  286. Wabe, N. T., Dekama, N. H. & Gemeda, D. H. Lipodystrophy is common among Ethiopian patients on highly active antiretroviral therapy but is not associated with quality of life or medication adherence. Ther. Innov. Regul. Sci. 47, 706–714 (2013).

    PubMed  Google Scholar 

  287. Casado, J. L. et al. Social isolation in HIV-infected patients according to subjective patient assessment and DEXA-confirmed severity of lipodystrophy. AIDS Care 25, 1599–1603 (2013).

    PubMed  Google Scholar 

  288. Plankey, M. et al. The association of self-perception of body fat changes and quality of life in the women’s interagency HIV study. AIDS Care 25, 1544–1550 (2013).

    PubMed  Google Scholar 

  289. Lalanne, C. et al. Psychometric assessment of health-related quality of life and symptom experience in HIV patients treated with antiretroviral therapy. Qual. Life Res. 24, 1407–1418 (2015).

    PubMed  Google Scholar 

  290. Hawkins, K. L. et al. Abdominal obesity, sarcopenia, and osteoporosis are associated with frailty in men living with and without HIV. AIDS 32, 1257–1266 (2018).

    PubMed  Google Scholar 

  291. Rubin, L. H. et al. Midlife adiposity predicts cognitive decline in the prospective Multicenter AIDS Cohort Study. Neurology 93, e261–e271 (2019).

    PubMed  PubMed Central  Google Scholar 

  292. Sattler, F. R. et al. Abdominal obesity contributes to neurocognitive impairment in HIV-infected patients with increased inflammation and immune activation. J. Acquir. Immune Defic. Syndr. 68, 281–288 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Popkin, B. M. & Slining, M. M. New dynamics in global obesity facing low- and middle-income countries. Obes. Rev. 14, 11–20 (2013).

    PubMed  PubMed Central  Google Scholar 

  294. Innes, S., Levin, L. & Cotton, M. Lipodystrophy syndrome in HIV-infected children on HAART. South Afr. J. HIV Med. 10, 76–80 (2009).

    PubMed  Google Scholar 

  295. Rydstrom, L. L., Wiklander, M., Naver, L., Ygge, B. M. & Eriksson, L. E. HIV-related stigma and health-related quality of life among children living with HIV in Sweden. AIDS Care 28, 665–671 (2016).

    PubMed  Google Scholar 

  296. Penazzato, M. et al. Optimizing research to speed up availability of pediatric antiretroviral drugs and formulations. Clin. Infect. Dis. 64, 1597–1603 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.C. and J.R.K.); Epidemiology (P.D., J.C. and J.E.L.); Mechanisms/pathophysiology (J.R.K. and C.L.); Diagnosis, screening and prevention (J.E.L.); Management (J.F.); Quality of life (A.C.); Outlook (T.T.B.); Overview of the primer (J.R.K. and J.C.). J.R.K. and C.L. contributed equally to the development of this Primer.

Corresponding author

Correspondence to Jacqueline Capeau.

Ethics declarations

Competing interests

J.R.K. has received research support from Gilead Sciences and served as a consultant to Gilead Sciences and Theratechnologies. J.E.L. receives research support from Gilead Sciences and has served as a consultant to Gilead Sciences and Merck Sharp & Dohme. P.D. has received educational grants from and served as a consultant to Gilead Sciences, Johnson & Johnson, Merck Sharp & Dohme, and ViiV Healthcare. A.C. received unrestricted educational grants (to the institution) from BMS, Gilead, Merck Sharp & Dohme and ViiV Healthcare. J.F. has served on speakers’ bureaus from Gilead Sciences, Merck Sharp & Dohme and ViiV Healthcare, and has served as a consultant to Theratechnologies up to 2015. T.T.B. has served as a consultant to Gilead Sciences, Merck, Theratechnologies and ViiV Healthcare. J.C. has received research support (to the institution) from Janssen, Merck Sharp & Dohme and ViiV Healthcare, and educational grants from BMS, Gilead Sciences, Janssen, Merck Sharp & Dohme and ViiV Healthcare. C.L. declares no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks J. Dave, G. Guaraldi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

90-90-90: treatment for all: https://www.unaids.org/en/resources/909090

ClinicalTrials.gov: https://clinicaltrials.gov/

Theratechnologies: https://www.theratech.com

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koethe, J.R., Lagathu, C., Lake, J.E. et al. HIV and antiretroviral therapy-related fat alterations. Nat Rev Dis Primers 6, 48 (2020). https://doi.org/10.1038/s41572-020-0181-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41572-020-0181-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing