Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Acute kidney injury

Abstract

Acute kidney injury (AKI) is defined by a sudden loss of excretory kidney function. AKI is part of a range of conditions summarized as acute kidney diseases and disorders (AKD), in which slow deterioration of kidney function or persistent kidney dysfunction is associated with an irreversible loss of kidney cells and nephrons, which can lead to chronic kidney disease (CKD). New biomarkers to identify injury before function loss await clinical implementation. AKI and AKD are a global concern. In low-income and middle-income countries, infections and hypovolaemic shock are the predominant causes of AKI. In high-income countries, AKI mostly occurs in elderly patients who are in hospital, and is related to sepsis, drugs or invasive procedures. Infection and trauma-related AKI and AKD are frequent in all regions. The large spectrum of AKI implies diverse pathophysiological mechanisms. AKI management in critical care settings is challenging, including appropriate volume control, nephrotoxic drug management, and the timing and type of kidney support. Fluid and electrolyte management are essential. As AKI can be lethal, kidney replacement therapy is frequently required. AKI has a poor prognosis in critically ill patients. Long-term consequences of AKI and AKD include CKD and cardiovascular morbidity. Thus, prevention and early detection of AKI are essential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationship between AKI, AKD, CKD and NKD.
Fig. 2: Consequences of AKI on kidney lifespan.
Fig. 3: Systemic consequences of AKI.
Fig. 4: Main principles of the pathophysiology of AKI.
Fig. 5: Severity of AKI and long-term kidney outcome.
Fig. 6: Fluid management in acute kidney injury.
Fig. 7: Management of AKI.

Similar content being viewed by others

References

  1. KDIGO AKI Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 1–138 (2012).

    Google Scholar 

  2. Bhatraju, P. K. et al. Association between early recovery of kidney function after acute kidney injury and long-term clinical outcomes. JAMA Netw. Open 3, e202682 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chu, R. et al. Assessment of KDIGO definitions in patients with histopathologic evidence of acute renal disease. Clin. J. Am. Soc. Nephrol. 9, 1175–1182 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kane-Gill, S. L., Meersch, M. & Bell, M. Biomarker-guided management of acute kidney injury. Curr. Opin. Crit. Care 26, 556–562 (2020).

    Article  PubMed  Google Scholar 

  5. Ostermann, M. et al. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: a consensus statement. JAMA Netw. Open 3, e2019209 (2020).

    Article  PubMed  Google Scholar 

  6. Bhagwanani, A., Carpenter, R. & Yusuf, A. Improving the management of acute kidney injury in a district general hospital: introduction of the DONUT bundle. BMJ Qual. Improv. Rep. 2, u202650.w1235 (2014).

  7. Biswas, A. et al. Identification of patients expected to benefit from electronic alerts for acute kidney injury. Clin. J. Am. Soc. Nephrol. 13, 842–849 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Joslin, J. et al. Recognition and management of acute kidney injury in hospitalised patients can be partially improved with the use of a care bundle. Clin. Med. 15, 431–436 (2015).

    Article  Google Scholar 

  9. Lachance, P. et al. Association between e-alert implementation for detection of acute kidney injury and outcomes: a systematic review. Nephrol. Dial. Transplant. 32, 265–272 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Wołyniec, W. et al. Glomerular filtration rate is unchanged by ultramarathon. J. Strength Cond. Res. 32, 3207–3215 (2018).

    Article  PubMed  Google Scholar 

  11. MacDonald, A. J., Nadim, M. K., Durand, F. & Karvellas, C. J. Acute kidney injury in cirrhosis: implications for liver transplantation. Curr. Opin. Crit. Care 25, 171–178 (2019).

    Article  PubMed  Google Scholar 

  12. Fenoglio, R., Sciascia, S., Baldovino, S. & Roccatello, D. Acute kidney injury associated with glomerular diseases. Curr. Opin. Crit. Care 25, 573–579 (2019).

    Article  PubMed  Google Scholar 

  13. Mannon, R. B. Delayed graft function: the AKI of kidney transplantation. Nephron 140, 94–98 (2018).

    Article  PubMed  Google Scholar 

  14. Selewski, D. T. et al. Neonatal acute kidney injury. Pediatrics 136, e463–e473 (2015).

    Article  PubMed  Google Scholar 

  15. Lewington, A. J., Cerdá, J. & Mehta, R. L. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int. 84, 457–467 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cerdá, J., Bagga, A., Kher, V. & Chakravarthi, R. M. The contrasting characteristics of acute kidney injury in developed and developing countries. Nat. Clin. Pract. Nephrol. 4, 138–153 (2008).

    Article  PubMed  Google Scholar 

  17. Luyckx, V. A., Tonelli, M. & Stanifer, J. W. The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 96, 414–422 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jha, V. & Parameswaran, S. Community-acquired acute kidney injury in tropical countries. Nat. Rev. Nephrol. 9, 278–290 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Olowu, W. A. et al. Outcomes of acute kidney injury in children and adults in sub-Saharan Africa: a systematic review. Lancet Glob. Health 4, e242–e250 (2016).

    Article  PubMed  Google Scholar 

  20. Susantitaphong, P. et al. World incidence of AKI: a meta-analysis. Clin. J. Am. Soc. Nephrol. 8, 1482–1493 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martin-Cleary, C., Molinero-Casares, L. M., Ortiz, A. & Arce-Obieta, J. M. Development and internal validation of a prediction model for hospital-acquired acute kidney injury. Clin. Kidney J. 14, 309–316 (2021).

    Article  PubMed  Google Scholar 

  22. Hoste, E. A. J. et al. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 14, 607–625 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Mehta, R. L. et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385, 2616–2643 (2015).

    Article  PubMed  Google Scholar 

  24. Mehta, R. L. et al. Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: a multinational cross-sectional study. Lancet 387, 2017–2025 (2016).

    Article  PubMed  Google Scholar 

  25. Bairey Merz, C. N. et al. Sex and the kidneys: current understanding and research opportunities. Nat. Rev. Nephrol. 15, 776–783 (2019).

    Article  PubMed  Google Scholar 

  26. Chew, S. T., Mar, W. M. & Ti, L. K. Association of ethnicity and acute kidney injury after cardiac surgery in a South East Asian population. Br. J. Anaesth. 110, 397–401 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Beers, K. et al. Racial and ethnic disparities in pregnancy-related acute kidney injury. Kidney 360 1, 169–178 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grams, M. E. et al. Explaining the racial difference in AKI incidence. J. Am. Soc. Nephrol. 25, 1834–1841 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cerdá, J. et al. Epidemiology of acute kidney injury. Clin. J. Am. Soc. Nephrol. 3, 881–886 (2008).

    Article  PubMed  Google Scholar 

  30. Lameire, N., Van Biesen, W. & Vanholder, R. The changing epidemiology of acute renal failure. Nat. Clin. Pract. Nephrol. 2, 364–377 (2006).

    Article  PubMed  Google Scholar 

  31. Lameire, N. H. et al. Acute kidney injury: an increasing global concern. Lancet 382, 170–179 (2013).

    Article  PubMed  Google Scholar 

  32. Kaul, A., Bhadauria, D., Prasad, N., Gupta, A. & Sharma, R. K. Recurrent acute kidney injury in tropics — epidemiology and outcomes. J. Assoc. Physicians India 66, 18–21 (2018).

    PubMed  Google Scholar 

  33. Uchino, S. et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294, 813–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Denic, A. et al. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol. 28, 313–320 (2017).

    Article  PubMed  Google Scholar 

  35. Denic, A. et al. Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 376, 2349–2357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Levey, A. S. et al. Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) consensus conference. Kidney Int. 97, 1117–1129 (2020).

    Article  PubMed  Google Scholar 

  37. Saran, R. et al. US Renal Data System 2019 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 75, A6–A7 (2020).

    Article  PubMed  Google Scholar 

  38. Romagnani, P. et al. Chronic kidney disease. Nat. Rev. Dis. Prim. 3, 17088 (2017).

    Article  PubMed  Google Scholar 

  39. Prowle, J. R., Kirwan, C. J. & Bellomo, R. Fluid management for the prevention and attenuation of acute kidney injury. Nat. Rev. Nephrol. 10, 37–47 (2014). Overview of fluid status assessment and analysis of cardiovascular and renal targets for the prevention and attenuation of AKI.

    Article  CAS  PubMed  Google Scholar 

  40. Weyker, P. D., Pérez, X. L. & Liu, K. D. Management of acute kidney injury and acid-base balance in the septic patient. Clin. Chest Med. 37, 277–288 (2016).

    Article  PubMed  Google Scholar 

  41. Lee, S. A., Cozzi, M., Bush, E. L. & Rabb, H. Distant organ dysfunction in acute kidney injury: a review. Am. J. Kidney Dis. 72, 846–856 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Meijers, B., Evenepoel, P. & Anders, H. J. Intestinal microbiome and fitness in kidney disease. Nat. Rev. Nephrol. 15, 531–545 (2019).

    Article  PubMed  Google Scholar 

  43. Li, X., Hassoun, H. T., Santora, R. & Rabb, H. Organ crosstalk: the role of the kidney. Curr. Opin. Crit. Care 15, 481–487 (2009).

    Article  PubMed  Google Scholar 

  44. Faubel, S. & Edelstein, C. L. Mechanisms and mediators of lung injury after acute kidney injury. Nat. Rev. Nephrol. 12, 48–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Nakazawa, D. et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in Ischemic AKI. J. Am. Soc. Nephrol. 28, 1753–1768 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Di Lullo, L., Reeves, P. B., Bellasi, A. & Ronco, C. Cardiorenal syndrome in acute kidney injury. Semin. Nephrol. 39, 31–40 (2019).

    Article  PubMed  Google Scholar 

  47. Kovalcikova, A. et al. Oxidative stress in the brain caused by acute kidney injury. Metab. Brain Dis. 33, 961–967 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Sharfuddin, A. A. & Molitoris, B. A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol. 7, 189–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Ehrmann, S. et al. Nephrotoxic drug burden among 1001 critically ill patients: impact on acute kidney injury. Ann. Intensive Care 9, 106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Goldstein, S. L. et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics 132, e756–e767 (2013).

    Article  PubMed  Google Scholar 

  51. Costa e Silva, V. T., Marçal, L. J. & Burdmann, E. A. Risk factors for vancomycin nephrotoxicity: still a matter of debate*. Crit. Care Med. 42, 2635–2636 (2014).

    Article  PubMed  Google Scholar 

  52. Joyce, E. L., Kane-Gill, S. L., Priyanka, P., Fuhrman, D. Y. & Kellum, J. A. Piperacillin/tazobactam and antibiotic-associated acute kidney injury in critically Ill children. J. Am. Soc. Nephrol. 30, 2243–2251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fu, E. L. et al. Association of acute increases in plasma creatinine after renin-angiotensin blockade with subsequent outcomes. Clin. J. Am. Soc. Nephrol. 14, 1336–1345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weisberg, L. S., Allgren, R. L., Genter, F. C. & Kurnik, B. R. Cause of acute tubular necrosis affects its prognosis. The Auriculin Anaritide Acute Renal Failure Study Group. Arch. Intern. Med. 157, 1833–1838 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Santos, W. J. et al. Patients with ischaemic, mixed and nephrotoxic acute tubular necrosis in the intensive care unit—a homogeneous population? Crit. Care 10, R68 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mulay, S. R. & Anders, H. J. Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat. Rev. Nephrol. 13, 226–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Kers, J., Leemans, J. C. & Linkermann, A. An overview of pathways of regulated necrosis in acute kidney injury. Semin. Nephrol. 36, 139–152 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014). Study demonstrating the occurrence of regulated necrosis and synchronized death of upon AKI, with consequent triggering of a detrimental immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arai, S. et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat. Med. 22, 183–193 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Salei, N. et al. The kidney contains ontogenetically distinct dendritic cell and macrophage subtypes throughout development that differ in their inflammatory properties. J. Am. Soc. Nephrol. 31, 257–278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Linkermann, A., Stockwell, B. R., Krautwald, S. & Anders, H. J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat. Rev. Immunol. 14, 759–767 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Mulay, S. R., Linkermann, A. & Anders, H. J. Necroinflammation in kidney disease. J. Am. Soc. Nephrol. 27, 27–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Lazzeri, E. et al. Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nat. Commun. 9, 1344 (2018). Study describing the occurrence of cellular hypertrophy in the absence of tissue reconstitution and limited regeneration after AKI.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rinkevich, Y. et al. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep. 7, 1270–1283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kang, H. M. et al. Sox9-positive progenitor cells play a key role in renal tubule epithelial regeneration in mice. Cell Rep. 14, 861–871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chawla, L. S. et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 13, 241–257 (2017).

    Article  PubMed  Google Scholar 

  67. Kellum, J. A., Sileanu, F. E., Bihorac, A., Hoste, E. A. & Chawla, L. S. Recovery after acute kidney injury. Am. J. Respir. Crit. Care Med. 195, 784–791 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lazzeri, E., Angelotti, M. L., Conte, C., Anders, H. J. & Romagnani, P. Surviving acute organ failure: cell polyploidization and progenitor proliferation. Trends Mol. Med. 25, 366–381 (2019).

    Article  PubMed  Google Scholar 

  69. Patel, S. S., Palant, C. E., Mahajan, V. & Chawla, L. S. Sequelae of AKI. Best. Pract. Res. Clin. Anaesthesiol. 31, 415–425 (2017).

    Article  PubMed  Google Scholar 

  70. Silver, S. A. et al. Causes of death after a hospitalization with AKI. J. Am. Soc. Nephrol. 29, 1001–1010 (2018). Study showing that cancer-related and cardiovascular deaths occurred at substantially higher rates than in the general population after AKI.

    Article  PubMed  Google Scholar 

  71. Newsome, B. B. et al. Long-term risk of mortality and end-stage renal disease among the elderly after small increases in serum creatinine level during hospitalization for acute myocardial infarction. Arch. Intern. Med. 168, 609–616 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Parr, S. K. et al. Acute kidney injury is a risk factor for subsequent proteinuria. Kidney Int. 93, 460–469 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. He, L. et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 92, 1071–1083 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hsu, C. Y. et al. Elevated BP after AKI. J. Am. Soc. Nephrol. 27, 914–923 (2016). Study showing high incidence of hypertension after AKI.

    Article  CAS  PubMed  Google Scholar 

  75. Gammelager, H. et al. Three-year risk of cardiovascular disease among intensive care patients with acute kidney injury: a population-based cohort study. Crit. Care 18, 492 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wu, V. C. et al. Long-term risk of coronary events after AKI. J. Am. Soc. Nephrol. 25, 595–605 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Odutayo, A. et al. AKI and long-term risk for cardiovascular events and mortality. J. Am. Soc. Nephrol. 28, 377–387 (2017).

    Article  PubMed  Google Scholar 

  78. Xue, J. L. et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J. Am. Soc. Nephrol. 17, 1135–1142 (2006).

    Article  PubMed  Google Scholar 

  79. Loef, B. G. et al. Immediate postoperative renal function deterioration in cardiac surgical patients predicts in-hospital mortality and long-term survival. J. Am. Soc. Nephrol. 16, 195–200 (2005).

    Article  PubMed  Google Scholar 

  80. Coca, S. G., Yusuf, B., Shlipak, M. G., Garg, A. X. & Parikh, C. R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 53, 961–973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Peired, A. J. et al. Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Sci. Transl. Med. 12, eaaw6003 (2020).

  82. Zhou, X. et al. Acute kidney injury instigates malignant renal cell carcinoma via CXCR2 in mice with inactivated Trp53 and Pten in proximal tubular kidney epithelial cells. Cancer Res. 81, 2690–2702 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Verine, J. et al. Human de novo papillary renal-cell carcinomas in a kidney graft: evidence of recipient origin with adenoma-carcinoma sequence. Am. J. Transpl. 13, 984–992 (2013).

    Article  CAS  Google Scholar 

  84. Chertow, G. M., Burdick, E., Honour, M., Bonventre, J. V. & Bates, D. W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 16, 3365–3370 (2005).

    Article  PubMed  Google Scholar 

  85. Lassnigg, A. et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J. Am. Soc. Nephrol. 15, 1597–1605 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Vanmassenhove, J. et al. Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis. Crit. Care 17, R234 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hoste, E. A. et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit. Care 10, R73 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hsu, C. Y. et al. Nonrecovery of kidney function and death after acute on chronic renal failure. Clin. J. Am. Soc. Nephrol. 4, 891–898 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hsu, C. Y. et al. The risk of acute renal failure in patients with chronic kidney disease. Kidney Int. 74, 101–107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lafrance, J. P., Djurdjev, O. & Levin, A. Incidence and outcomes of acute kidney injury in a referred chronic kidney disease cohort. Nephrol. Dial. Transpl. 25, 2203–2209 (2010).

    Article  Google Scholar 

  92. Pannu, N. et al. Modification of outcomes after acute kidney injury by the presence of CKD. Am. J. Kidney Dis. 58, 206–213 (2011).

    Article  PubMed  Google Scholar 

  93. Waikar, S. S. & Bonventre, J. V. Creatinine kinetics and the definition of acute kidney injury. J. Am. Soc. Nephrol. 20, 672–679 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Broce, J. C., Price, L. L., Liangos, O., Uhlig, K. & Jaber, B. L. Hospital-acquired acute kidney injury: an analysis of nadir-to-peak serum creatinine increments stratified by baseline estimated GFR. Clin. J. Am. Soc. Nephrol. 6, 1556–1565 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chen, J. J., Chang, C. H., Huang, Y. T. & Kuo, G. Furosemide stress test as a predictive marker of acute kidney injury progression or renal replacement therapy: a systemic review and meta-analysis. Crit. Care 24, 202 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kellum, J. A. et al. Classifying AKI by urine output versus serum creatinine level. J. Am. Soc. Nephrol. 26, 2231–2238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Priyanka, P. et al. The impact of acute kidney injury by serum creatinine or urine output criteria on major adverse kidney events in cardiac surgery patients. J. Thorac. Cardiovasc. Surg. https://doi.org/10.1016/j.jtcvs.2019.11.137 (2020).

  98. Pottel, H., Mottaghy, F. M., Zaman, Z. & Martens, F. On the relationship between glomerular filtration rate and serum creatinine in children. Pediatr. Nephrol. 25, 927–934 (2010).

    Article  PubMed  Google Scholar 

  99. Schwartz, G. J. & Work, D. F. Measurement and estimation of GFR in children and adolescents. Clin. J. Am. Soc. Nephrol. 4, 1832–1843 (2009).

    Article  PubMed  Google Scholar 

  100. Schwartz, G. J. et al. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 20, 629–637 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Schwartz, G. J., Haycock, G. B., Edelmann, C. M. Jr. & Spitzer, A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58, 259–263 (1976).

    Article  CAS  PubMed  Google Scholar 

  102. Plotz, F. B., Bouma, A. B., van Wijk, J. A., Kneyber, M. C. & Bokenkamp, A. Pediatric acute kidney injury in the ICU: an independent evaluation of pRIFLE criteria. Intensive Care Med. 34, 1713–1717 (2008).

    Article  PubMed  Google Scholar 

  103. Kaddourah, A., Basu, R. K., Bagshaw, S. M., Goldstein, S. L. & Investigators, A. Epidemiology of acute kidney injury in critically Ill children and young adults. N. Engl. J. Med. 376, 11–20 (2017).

    Article  PubMed  Google Scholar 

  104. Endre, Z. H. et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int. 79, 1119–1130 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. McCullough, P. A. et al. Implementation of novel biomarkers in the diagnosis, prognosis, and management of acute kidney injury: executive summary from the tenth consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol. 182, 5–12 (2013).

    Article  PubMed  Google Scholar 

  106. Murray, P. T. et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 85, 513–521 (2014).

    Article  PubMed  Google Scholar 

  107. Bagshaw, S. M., Zappitelli, M. & Chawla, L. S. Novel biomarkers of AKI: the challenges of progress ‘amid the noise and the haste’. Nephrol. Dial. Transpl. 28, 235–238 (2013).

    Article  CAS  Google Scholar 

  108. Lameire, N. H., Vanholder, R. C. & Van Biesen, W. A. How to use biomarkers efficiently in acute kidney injury. Kidney Int. 79, 1047–1050 (2011).

    Article  PubMed  Google Scholar 

  109. Vanmassenhove, J., Vanholder, R., Nagler, E. & Van Biesen, W. Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol. Dial. Transpl. 28, 254–273 (2013).

    Article  CAS  Google Scholar 

  110. Goldstein, S. L. & Chawla, L. S. Renal angina. Clin. J. Am. Soc. Nephrol. 5, 943–949 (2010).

    Article  PubMed  Google Scholar 

  111. Cai, L., Rubin, J., Han, W., Venge, P. & Xu, S. The origin of multiple molecular forms in urine of HNL/NGAL. Clin. J. Am. Soc. Nephrol. 5, 2229–2235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Devarajan, P. Review: neutrophil gelatinase-associated lipocalin: a troponin-like biomarker for human acute kidney injury. Nephrology 15, 419–428 (2010).

    Article  PubMed  Google Scholar 

  113. Mishra, P. K. et al. Long-term quality of life postacute kidney injury in cardiac surgery patients. Ann. Card. Anaesth. 21, 41–45 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Makris, K. et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin. Chem. Lab. Med. 47, 79–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. McIlroy, D. R., Wagener, G. & Lee, H. T. Neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery: the effect of baseline renal function on diagnostic performance. Clin. J. Am. Soc. Nephrol. 5, 211–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Perrotti, A. et al. Neutrophil gelatinase-associated lipocalin as early predictor of acute kidney injury after cardiac surgery in adults with chronic kidney failure. Ann. Thorac. Surg. 99, 864–869 (2015).

    Article  PubMed  Google Scholar 

  117. Doi, K. et al. Plasma neutrophil gelatinase-associated lipocalin in acute kidney injury superimposed on chronic kidney disease after cardiac surgery: a multicenter prospective study. Crit. Care 17, R270 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kashani, K. et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 17, R25 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bihorac, A. & Kellum, J. A. Acute kidney injury in 2014: a step towards understanding mechanisms of renal repair. Nat. Rev. Nephrol. 11, 74–75 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hoste, E. A. et al. Urinary cell cycle arrest biomarkers and chitinase 3-like protein 1 (CHI3L1) to detect acute kidney injury in the critically ill: a post hoc laboratory analysis on the FINNAKI cohort. Crit. Care 24, 144 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Waskowski, J. et al. (TIMP2) x (IGFBP7) as early renal biomarker for the prediction of acute kidney injury in aortic surgery (TIGER). A single center observational study. PLoS ONE 16, e0244658 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Witzgall, R. Are renal proximal tubular epithelial cells constantly prepared for an emergency? Focus on “the proliferation capacity of the renal proximal tubule involves the bulk of differentiated epithelial cells”. Am. J. Physiol. Cell Physiol. 294, C1–C3 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Meersch, M. et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS ONE 9, e93460 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Aregger, F. et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury. Kidney Int. 85, 909–919 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Koyner, J. L. et al. Tissue inhibitor metalloproteinase-2 (TIMP-2)IGF-binding protein-7 (IGFBP7) levels are associated with adverse long-term outcomes in patients with AKI. J. Am. Soc. Nephrol. 26, 1747–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Joannidis, M. et al. Use of cell cycle arrest biomarkers in conjunction with classical markers of acute kidney injury. Crit. Care Med. 47, e820–e826 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Xie, Y. et al. Tissue inhibitor metalloproteinase-2 (TIMP-2) • IGF-binding protein-7 (IGFBP7) levels are associated with adverse outcomes in patients in the intensive care unit with acute kidney injury. Kidney Int. 95, 1486–1493 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Ronco, C., Kellum, J. A. & Haase, M. Subclinical AKI is still AKI. Crit. Care 16, 313 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Haase, M. et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol. 57, 1752–1761 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Endre, Z. H., Pickering, J. W. & Walker, R. J. Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am. J. Physiol. Ren. Physiol. 301, F697–F707 (2011).

    Article  CAS  Google Scholar 

  131. Rabito, C. A., Panico, F., Rubin, R., Tolkoff-Rubin, N. & Teplick, R. Noninvasive, real-time monitoring of renal function during critical care. J. Am. Soc. Nephrol. 4, 1421–1428 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Herrera-Gutierrez, M. E. et al. Replacement of 24-h creatinine clearance by 2-h creatinine clearance in intensive care unit patients: a single-center study. Intensive Care Med. 33, 1900–1906 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Pickering, J. W., Frampton, C. M., Walker, R. J., Shaw, G. M. & Endre, Z. H. Four hour creatinine clearance is better than plasma creatinine for monitoring renal function in critically ill patients. Crit. Care 16, R107 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Schieppati, A., Perico, N. & Remuzzi, G. Eliminating treatable deaths due to acute kidney injury in resource-poor settings. Semin. Dial. 28, 193–197 (2015).

    Article  PubMed  Google Scholar 

  135. Meersch, M. et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 43, 1551–1561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Engelman, D. T. et al. Using urinary biomarkers to reduce acute kidney injury following cardiac surgery. J. Thorac. Cardiovasc. Surg. 160, 1235–1246.e2 (2020).

    Article  PubMed  Google Scholar 

  137. Göcze, I. et al. Biomarker-guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK Study. Ann. Surg. 267, 1013–1020 (2018).

    Article  PubMed  Google Scholar 

  138. Küllmar, M. et al. A multinational observational study exploring adherence with the kidney disease: improving global outcomes recommendations for prevention of acute kidney injury after cardiac surgery. Anesth. Analg. 130, 910–916 (2020).

    Article  PubMed  Google Scholar 

  139. Al-Jaghbeer, M., Dealmeida, D., Bilderback, A., Ambrosino, R. & Kellum, J. A. Clinical decision support for in-hospital AKI. J. Am. Soc. Nephrol. 29, 654–660 (2018).

    Article  PubMed  Google Scholar 

  140. Ostermann, M. et al. Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) conference. Kidney Int. 98, 294–309 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Prowle, J. R., Echeverri, J. E., Ligabo, E. V., Ronco, C. & Bellomo, R. Fluid balance and acute kidney injury. Nat. Rev. Nephrol. 6, 107–115 (2010).

    Article  PubMed  Google Scholar 

  142. Busse, L. W. & Ostermann, M. Vasopressor therapy and blood pressure management in the setting of acute kidney injury. Semin. Nephrol. 39, 462–472 (2019).

    Article  PubMed  Google Scholar 

  143. Xu, J. Y. et al. A high mean arterial pressure target is associated with improved microcirculation in septic shock patients with previous hypertension: a prospective open label study. Crit. Care 19, 130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Asfar, P. et al. High versus low blood-pressure target in patients with septic shock. N. Engl. J. Med. 370, 1583–1593 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Lamontagne, F. et al. Pooled analysis of higher versus lower blood pressure targets for vasopressor therapy septic and vasodilatory shock. Intensive Care Med. 44, 12–21 (2018).

    Article  PubMed  Google Scholar 

  146. Futier, E. et al. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA 318, 1346–1357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dalfino, L., Tullo, L., Donadio, I., Malcangi, V. & Brienza, N. Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med. 34, 707–713 (2008).

    Article  PubMed  Google Scholar 

  148. Pinsky, M. R. Functional hemodynamic monitoring. Crit. Care Clin. 31, 89–111 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Scheeren, T. W. L. et al. Current use of vasopressors in septic shock. Ann. Intensive Care 9, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Rodriguez, R., Cucci, M., Kane, S., Fernandez, E. & Benken, S. Novel vasopressors in the treatment of vasodilatory shock: a systematic review of angiotensin II, selepressin, and terlipressin. J. Intensive Care Med. 35, 327–337 (2020).

    Article  PubMed  Google Scholar 

  151. Semler, M. W. et al. Balanced crystalloids versus saline in critically ill adults. N. Engl. J. Med. 378, 829–839 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Self, W. H. et al. Balanced crystalloids versus saline in noncritically ill adults. N. Engl. J. Med. 378, 819–828 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bellomo, R., Kellum, J. A. & Ronco, C. Acute kidney injury. Lancet 380, 756–766 (2012).

    Article  PubMed  Google Scholar 

  154. Patschan, D., Patschan, S., Buschmann, I. & Ritter, O. Loop diuretics in acute kidney injury prevention, therapy, and risk stratification. Kidney Blood Press Res. 44, 457–464 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Peng, J. et al. Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int. 87, 137–150 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Lok, C. E. et al. KDOQI clinical practice guideline for vascular access: 2019 update. Am. J. Kidney Dis. 75, S1–s164 (2020).

    Article  PubMed  Google Scholar 

  157. O’Grady, N. P. et al. Guidelines for the prevention of intravascular catheter-related infections. Clin. Infect. Dis. 52, e162–e193 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Mehta, R. L. et al. Sepsis as a cause and consequence of acute kidney injury: program to improve care in acute renal disease. Intensive Care Med. 37, 241–248 (2011).

    Article  PubMed  Google Scholar 

  159. Formeck, C. L., Joyce, E. L., Fuhrman, D. Y. & Kellum, J. A. Association of acute kidney injury with subsequent sepsis in critically Ill children. Pediatr. Crit. Care Med. 22, e58–e66 (2020).

    Article  Google Scholar 

  160. Singbartl, K. et al. Differential effects of kidney-lung cross-talk during acute kidney injury and bacterial pneumonia. Kidney Int. 80, 633–644 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Singbartl, K., Miller, L., Ruiz-Velasco, V. & Kellum, J. A. Reversal of acute kidney injury-induced neutrophil dysfunction: a critical role for resistin. Crit. Care Med. 44, e492–e501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Palant, C. E., Patel, S. S. & Chawla, L. S. Acute kidney injury recovery. Contrib. Nephrol. 193, 35–44 (2018).

    Article  PubMed  Google Scholar 

  163. Hoste, E. et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med. 46, 943–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Karsanji, D. J. et al. Disparity between nephrologists’ opinions and contemporary practices for community follow-up after AKI hospitalization. Clin. J. Am. Soc. Nephrol. 12, 1753–1761 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kashani, K. et al. Quality improvement goals for acute kidney injury. Clin. J. Am. Soc. Nephrol. 14, 941–953 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. McCulloch, M. et al. Challenges of access to kidney care for children in low-resource settings. Nat. Rev. Nephrol. 17, 33–45 (2021).

    Article  PubMed  Google Scholar 

  167. Callegari, J. et al. Peritoneal dialysis as a mode of treatment for acute kidney injury in sub-Saharan Africa. Blood Purif. 36, 226–230 (2013).

    Article  PubMed  Google Scholar 

  168. Cullis, B. et al. ISPD guidelines for peritoneal dialysis in acute kidney injury: 2020 update (adults). Perit. Dial. 41, 15–31 (2021).

    Article  Google Scholar 

  169. Ponce, D., Berbel, M. N., Abrão, J. M., Goes, C. R. & Balbi, A. L. A randomized clinical trial of high volume peritoneal dialysis versus extended daily hemodialysis for acute kidney injury patients. Int. Urol. Nephrol. 45, 869–878 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Karkar, A. & Ronco, C. Prescription of CRRT: a pathway to optimize therapy. Ann. Intensive Care 10, 32 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Balgobin, S. et al. Continuous veno-venous high cut-off hemodialysis compared to continuous veno-venous hemodiafiltration in intensive care unit acute kidney injury patients. Blood Purif. 46, 248–256 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. De Rosa, S., Villa, G. & Ronco, C. The golden hour of polymyxin B hemoperfusion in endotoxic shock: the basis for sequential extracorporeal therapy in sepsis. Artif. Organs 44, 184–186 (2020).

    Article  PubMed  Google Scholar 

  173. Zarbock, A. et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically Ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA 315, 2190–2199 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Gaudry, S. et al. Timing of renal support and outcome of septic shock and acute respiratory distress syndrome. a post hoc analysis of the AKIKI randomized clinical trial. Am. J. Respir. Crit. Care Med. 198, 58–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Barbar, S. D. et al. Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N. Engl. J. Med. 379, 1431–1442 (2018). Study showing that among critically ill patients with AKI an accelerated renal replacement strategy is not associated with a lower risk of death than a standard strategy.

    Article  CAS  PubMed  Google Scholar 

  176. Ronco, C. et al. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet 383, 1807–1813 (2014). Study reporting a new miniaturised machine that can provide various dialytic treatments and support for multiple organ dysfunction in neonates and small infants.

    Article  PubMed  Google Scholar 

  177. Garzotto, F. et al. Continuous kidney replacement therapy in critically ill neonates and infants: a retrospective analysis of clinical results with a dedicated device. Pediatr. Nephrol. 35, 1699–1705 (2020).

    Article  PubMed  Google Scholar 

  178. Villeneuve, P. M., Clark, E. G., Sikora, L., Sood, M. M. & Bagshaw, S. M. Health-related quality-of-life among survivors of acute kidney injury in the intensive care unit: a systematic review. Intensive Care Med. 42, 137–146 (2016). Study reporting that physical limitations and disabilities were more commonly exhibited by AKI patients.

    Article  PubMed  Google Scholar 

  179. Stengel, B. et al. Risk profile, quality of life and care of patients with moderate and advanced CKD: The French CKD-REIN Cohort Study. Nephrol. Dial. Transpl. 34, 277–286 (2019).

    Article  Google Scholar 

  180. Richardson, K. L., Watson, R. S. & Hingorani, S. Quality of life following hospitalization-associated acute kidney injury in children. J. Nephrol. 31, 249–256 (2018).

    Article  PubMed  Google Scholar 

  181. Korkeila, M., Ruokonen, E. & Takala, J. Costs of care, long-term prognosis and quality of life in patients requiring renal replacement therapy during intensive care. Intensive Care Med. 26, 1824–1831 (2000).

    Article  CAS  PubMed  Google Scholar 

  182. Morsch, C., Thomé, F. S., Balbinotto, A., Guimarães, J. F. & Barros, E. G. Health-related quality of life and dialysis dependence in critically ill patient survivors of acute kidney injury. Ren. Fail. 33, 949–956 (2011).

    Article  PubMed  Google Scholar 

  183. Morgera, S., Kraft, A. K., Siebert, G., Luft, F. C. & Neumayer, H. H. Long-term outcomes in acute renal failure patients treated with continuous renal replacement therapies. Am. J. Kidney Dis. 40, 275–279 (2002).

    Article  PubMed  Google Scholar 

  184. Wang, A. Y. et al. Health-related quality of life in survivors of acute kidney injury: the prolonged outcomes study of the randomized evaluation of normal versus augmented level replacement therapy study outcomes. Nephrology 20, 492–498 (2015).

    Article  PubMed  Google Scholar 

  185. Akbar, S. & Moss, A. H. The ethics of offering dialysis for AKI to the older patient: time to re-evaluate? Clin. J. Am. Soc. Nephrol. 9, 1652–1656 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Oeyen, S. et al. Long-term quality of life in critically ill patients with acute kidney injury treated with renal replacement therapy: a matched cohort study. Crit. Care 19, 289 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Charlton, J. R. et al. Magnetic resonance imaging accurately tracks kidney pathology and heterogeneity in the transition from acute kidney injury to chronic kidney disease. Kidney Int. 99, 173–185 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Huang, J., Li, J., Lyu, Y., Miao, Q. & Pu, K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18, 1133–1143 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Schneider, A. G. & Molitoris, B. A. Real-time glomerular filtration rate: improving sensitivity, accuracy and prognostic value in acute kidney injury. Curr. Opin. Crit. Care 26, 549–555 (2020).

    Article  PubMed  Google Scholar 

  190. Pickkers, P. et al. Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial. Crit. Care 16, R14 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Pickkers, P. et al. Effect of human recombinant alkaline phosphatase on 7-day creatinine clearance in patients with sepsis-associated acute kidney injury: a randomized clinical trial. JAMA 320, 1998–2009 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hoste, E. A. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 41, 1411–1423 (2015).

    Article  PubMed  Google Scholar 

  193. Srisawat, N. et al. The epidemiology and characteristics of acute kidney injury in the Southeast Asia intensive care unit: a prospective multicentre study. Nephrol. Dial. Transpl. 35, 1729–1738 (2020).

    Article  Google Scholar 

  194. Jetton, J. G. et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child. Adolesc. Health 1, 184–194 (2017). Study reporting a high incidence of AKI in neonatal setting and its role as a common and independent risk factor for mortality and longer hospital stay.

    Article  PubMed  PubMed Central  Google Scholar 

  195. National Clinical Guideline Centre. in Acute Kidney Injury: Prevention, Detection and Management Up to the Point of Renal Replacement Therapy 1–26 (National Clinical Guideline Centre, 2013).

  196. Rondeau, E., Faguer, S. & Robert, T. Advocacy for a European network of renal intensive care units. Nephrol. Dial. Transpl. 34, 1262–1264 (2019).

    Article  Google Scholar 

  197. Massy, Z. A. et al. Nephrology and public policy committee propositions to stimulate research collaboration in adults and children in Europe. Nephrol. Dial. Transpl. 34, 1469–1480 (2019).

    Article  Google Scholar 

  198. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).

    Google Scholar 

  199. Scheel, P. J., Liu, M. & Rabb, H. Uremic lung: new insights into a forgotten condition. Kidney Int. 74, 849–851 (2008).

    Article  PubMed  Google Scholar 

  200. Chan, L. et al. AKI in hospitalized patients with COVID-19. J. Am. Soc. Nephrol. 32, 151−160 (2020). Study reporting the high incidence of AKI in patients with Covid-19.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Hirsch, J. S. et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 98, 209–218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Chan, L. & Coca, S. G. Acute kidney injury in the time of COVID-19. Kidney 360 1, 588–590 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Price-Haywood, E. G., Burton, J., Fort, D. & Seoane, L. Hospitalization and mortality among black patients and white patients with Covid-19. N. Engl. J. Med. 382, 2534–2543 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Su, H. et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 98, 219–227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Nicolai, L. et al. Immunothrombotic dysregulation in covid-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation 142, 1176–1189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Santoriello, D. et al. Postmortem kidney pathology findings in patients with COVID-19. J. Am. Soc. Nephrol. 31, 2158–2167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Braun, F. et al. SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet 396, 597–598 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Roufosse, C. et al. Electron microscopic investigations in COVID-19: not all crowns are coronas. Kidney Int. 98, 505–506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Nadim, M. K. et al. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat. Rev. Nephrol. 16, 747–764 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Gupta, S. et al. AKI treated with renal replacement therapy in critically ill patients with COVID-19. J. Am. Soc. Nephrol. 32, 161−176 (2020).

Download references

Acknowledgements

The European Research Council under the Consolidator Grant RENOIR supported P.R. (ERC-2014-CoG, grant number 648274). The Deutsche Forschungsgemeinschaft supported H.-J.A. (AN372/14-4, AN372/16-2, AN372/20-2, AN372/27-1 and AN372/30-1) and A.Z. (KFO342/1, ZA428/18-1 and ZA428/21-1). J.A.K. is supported by a grant (UH3DK114861) from the National Institute of Diabetes and Kidney Disease (NIDDK).

Author information

Authors and Affiliations

Authors

Contributions

Sections of the Primer were written by the authors as follows: Introduction (H.-J.A., J.A.K.); Epidemiology (H.-J.A., J.A.K., G.A.); Mechanisms/pathophysiology (P.R., H.-J.A.); Diagnosis, screening and prevention (H.-J.A., A.Z.); Management (H.-J.A., J.A.K., C.R.); Quality of life (H.J.A.); Outlook (H.-J.A., P.R.); Overview of the Primer (H.-J.A.).

Corresponding author

Correspondence to Hans-Joachim Anders.

Ethics declarations

Competing interests

H.-J.A. received consultancy fees from Bayer, Boehringer, AstraZeneca, Janssen, Novartis, GlaxoSmithKline, Previpharma, Inositec and Secarna, unrelated to this publication. J.A.K. received consulting fees and/or grant support from Baxter, NxStage and Astute Medical/BioMerieux. J.A.K. became a full-time employee of Spectral Medical after submission of this manuscript. C.R. has been consulting or part of advisory boards for Asahi Kasei Pharma, Astute, Baxter, Biomerieux, B. Braun, Cytosorbents, Estor, Fresenius Medical Care, General Electric, Jafron, Medtronic and Toray. A.Z. has received consulting and/or lecture fees from Astute Medical/BioMerieux, Fresenius, Baxter, AM Pharma, La Jolla Pharmaceuticals and Astellas. A.Z. has received grant support from Astute Medical/BioMerieux, unrelated to this publication. G.A. and P.R. declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks M. Ostermann, R. Evans, E. Daher, who co-reviewed with G. C. Meneses, K. Doi, J. Prowle, S. Menez, D. Ponce, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Hepatorenal syndrome

Impaired kidney perfusion and function in patients with advanced liver failure as a consequence of marked abnormalities in arterial and venous circulation, as well as overactivity of endogenous vasoactive systems.

Kidney failure

Complete (and life-threatening) loss of kidney function; kidney failure replaces the term end-stage kidney disease in new nomenclature put forward by the KDIGO.

Glomerular filtration rate

The volume of filtrate passing the glomerular filtration barrier per unit of time; a marker of excretory kidney function.

Third-space effusions

Accumulation of fluid in body cavities.

Pulmonary congestion

An accumulation of fluid in the lungs, resulting in impaired gas exchange and arterial hypoxaemia.

Fixed acid

An acid that accumulates in the body as a result of digestion, disease or metabolism and cannot be excreted by the lungs (non-volatile or fixed).

Anion gap

The difference between the sum of routinely measured cations (Na+ and K+) and the sum of routinely measured anions (Cl and HCO3) in serum.

Azotaemia

Abnormally high levels of nitrogen-containing compounds in the blood, occurring when the kidneys are no longer able to excrete nitrogen waste products via the urine.

Venous congestion

A distention of veins filled with blood as a result of mechanical obstruction or right ventricular failure.

Acute tubular necrosis

A form of AKI that involves loss of entire tubule segments due to necrotic death of tubular epithelial cells.

Fluid resuscitation

Large-volume intravenous fluid replacement to treat AKI and circulatory shock due to severe intravascular volume depletion.

G1 phase

The G1 phase is the first of four cell cycle phases that takes place in eukaryotic cell division and describes the period from the end of cell division to the beginning of DNA replication.

Peritoneal dialysis

A treatment for kidney failure that uses the inside lining of the abdomen as a filtration membrane via intermittent filling and emptying of the peritoneal cavity with a dialysate solution to extract salt, uraemic toxins and other solutes from the blood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellum, J.A., Romagnani, P., Ashuntantang, G. et al. Acute kidney injury. Nat Rev Dis Primers 7, 52 (2021). https://doi.org/10.1038/s41572-021-00284-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41572-021-00284-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing