Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Cholangiocarcinoma

Abstract

Cholangiocarcinoma (CCA) is a highly lethal adenocarcinoma of the hepatobiliary system, which can be classified as intrahepatic, perihilar and distal. Each anatomic subtype has distinct genetic aberrations, clinical presentations and therapeutic approaches. In endemic regions, liver fluke infection is associated with CCA, owing to the oncogenic effect of the associated chronic biliary tract inflammation. In other regions, CCA can be associated with chronic biliary tract inflammation owing to choledocholithiasis, cholelithiasis, or primary sclerosing cholangitis, but most CCAs have no identifiable cause. Administration of the anthelmintic drug praziquantel decreases the risk of CCA from liver flukes, but reinfection is common and future vaccination strategies may be more effective. Some patients with CCA are eligible for potentially curative surgical options, such as resection or liver transplantation. Genetic studies have provided new insights into the pathogenesis of CCA, and two aberrations that drive the pathogenesis of non-fluke-associated intrahepatic CCA, fibroblast growth factor receptor 2 fusions and isocitrate dehydrogenase gain-of-function mutations, can be therapeutically targeted. CCA is a highly desmoplastic cancer and targeting the tumour immune microenvironment might be a promising therapeutic approach. CCA remains a highly lethal disease and further scientific and clinical insights are needed to improve patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomic subtypes of CCA.
Fig. 2: Pathophysiology of liver-fluke infection and CCA.
Fig. 3: CCA cells gradually adopt invasive phenotypes to metastasize.
Fig. 4: Histological features of the desmoplastic microenvironment in human iCCA.
Fig. 5: Screening for liver fluke infection and associated hepatobiliary disease including CCA.

Similar content being viewed by others

References

  1. Fan, B. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin. Invest. 122, 2911–2915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakagawa, H. et al. Biliary epithelial injury-induced regenerative response by IL-33 promotes cholangiocarcinogenesis from peribiliary glands. Proc. Natl Acad. Sci. USA 114, E3806–E3815 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Razumilava, N. & Gores, G. J. Cholangiocarcinoma. Lancet 383, 2168–2179 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhu, Y. & Kwong, L. N. Insights into the origin of intrahepatic cholangiocarcinoma from mouse models. Hepatology 72, 305–314 (2020).

    Article  PubMed  Google Scholar 

  5. Blechacz, B., Komuta, M., Roskams, T. & Gores, G. J. Clinical diagnosis and staging of cholangiocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 8, 512–522 (2011). The first paper that describes the three anatomic subtypes of cholangiocarcinoma.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cardinale, V. Classifications and misclassification in cholangiocarcinoma. Liver Int. 39, 260–262 (2019).

    Article  PubMed  Google Scholar 

  7. Khan, S. A., Tavolari, S. & Brandi, G. Cholangiocarcinoma: epidemiology and risk factors. Liver Int. 39, 19–31 (2019).

    Article  PubMed  Google Scholar 

  8. Hainsworth, J. D. et al. Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon Research Institute. J. Clin. Oncol. 31, 217–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Varadhachary, G. R. & Raber, M. N. Cancer of unknown primary site. N. Engl. J. Med. 371, 757–765 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Rizvi, S., Khan, S. A., Hallemeier, C. L., Kelley, R. K. & Gores, G. J. Cholangiocarcinoma – evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 15, 95–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Kendall, T. et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 39, 7–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sirica, A. E. et al. Intrahepatic cholangiocarcinoma: continuing challenges and translational advances. Hepatology 69, 1803–1815 (2019).

    Article  PubMed  Google Scholar 

  14. Fabris, L. et al. The tumour microenvironment and immune milieu of cholangiocarcinoma. Liver Int. 39, 63–78 (2019).

    Article  PubMed  Google Scholar 

  15. Sripa, B., Tangkawattana, S. & Brindley, P. J. Update on pathogenesis of opisthorchiasis and cholangiocarcinoma. Adv. Parasitol. 102, 97–113 (2018).

    Article  PubMed  Google Scholar 

  16. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr. Eval. Carcinog. Risks Hum. 100, 1–441 (2012).

    PubMed Central  Google Scholar 

  17. Sripa, B. et al. Opisthorchiasis and opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta Trop. 120, S158–168 (2011).

    Article  PubMed  Google Scholar 

  18. Qian, M. B., Utzinger, J., Keiser, J. & Zhou, X. N. Clonorchiasis. Lancet 387, 800–810 (2016).

    Article  PubMed  Google Scholar 

  19. Sripa, B. et al. Liver fluke induces cholangiocarcinoma. PLoS Med. 4, e201 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schwartz, D. A. Helminths in the induction of cancer: Opisthorchis viverrini, Clonorchis sinensis and cholangiocarcinoma. Trop. Geogr. Med. 32, 95–100 (1980).

    CAS  PubMed  Google Scholar 

  21. Sithithaworn, P., Yongvanit, P., Duenngai, K., Kiatsopit, N. & Pairojkul, C. Roles of liver fluke infection as risk factor for cholangiocarcinoma. J. Hepatobiliary Pancreat. Sci. 21, 301–308 (2014).

    Article  PubMed  Google Scholar 

  22. Ogorodova, L. M. et al. Opisthorchiasis: an overlooked danger. PLoS Negl. Trop. Dis. 9, e0003563 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Choi, B. I., Han, J. K., Hong, S. T. & Lee, K. H. Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clin. Microbiol. Rev. 17, 540–552 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Keiser, J. & Utzinger, J. Food-borne trematodiases. Clin. Microbiol. Rev. 22, 466–483 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Petney, T. N., Andrews, R. H., Saijuntha, W., Wenz-Mucke, A. & Sithithaworn, P. The zoonotic, fish-borne liver flukes Clonorchis sinensis, Opisthorchis felineus and Opisthorchis viverrini. Int. J. Parasitol. 43, 1031–1046 (2013).

    Article  PubMed  Google Scholar 

  26. Pakharukova, M. Y. & Mordvinov, V. A. The liver fluke Opisthorchis felineus: biology, epidemiology and carcinogenic potential. Trans. R. Soc. Trop. Med. Hyg. 110, 28–36 (2016).

    Article  PubMed  Google Scholar 

  27. Na, B. K., Pak, J. H. & Hong, S. J. Clonorchis sinensis and clonorchiasis. Acta Trop. 203, 105309 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Lai, Y. S., Zhou, X. N., Pan, Z. H., Utzinger, J. & Vounatsou, P. Risk mapping of clonorchiasis in the People’s Republic of China: a systematic review and Bayesian geostatistical analysis. PLoS Negl. Trop. Dis. 11, e0005239 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qian, M. B., Chen, Y. D., Liang, S., Yang, G. J. & Zhou, X. N. The global epidemiology of clonorchiasis and its relation with cholangiocarcinoma. Infect. Dis. Poverty 1, 4 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Doanh, P. N. & Nawa, Y. Clonorchis sinensis and Opisthorchis spp. in Vietnam: current status and prospects. Trans. R. Soc. Trop. Med. Hyg. 110, 13–20 (2016).

    Article  PubMed  Google Scholar 

  31. Cho, S. H. et al. Prevalence of clonorchiasis in southern endemic areas of Korea in 2006. Korean J. Parasitol. 46, 133–137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sohn, W. M. et al. High endemicity with Clonorchis sinensis metacercariae in fish from yongjeon-cheon (Stream) in Cheongsong-gun, Gyeongsangbuk-do, Korea. Korean J. Parasitol. 59, 97–101 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fedorova, O. S. et al. Opisthorchis felineus infection, risks, and morbidity in rural Western Siberia, Russian Federation. PLoS Negl. Trop. Dis. 14, e0008421 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sripa, B., Kaewkes, S., Intapan, P. M., Maleewong, W. & Brindley, P. J. Food-borne trematodiases in Southeast Asia epidemiology, pathology, clinical manifestation and control. Adv. Parasitol. 72, 305–350 (2010).

    Article  PubMed  Google Scholar 

  35. Sithithaworn, P. et al. The current status of opisthorchiasis and clonorchiasis in the Mekong Basin. Parasitol. Int. 61, 10–16 (2012).

    Article  PubMed  Google Scholar 

  36. Sohn, W. M. et al. Low-grade endemicity of opisthorchiasis, Yangon, Myanmar. Emerg. Infect. Dis. 25, 1435–1437 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Namsanor, J. et al. Infection dynamics of opisthorchis viverrini metacercariae in cyprinid fishes from two endemic areas in Thailand and Lao PDR. Am. J. Trop. Med. Hyg. 102, 110–116 (2020).

    Article  PubMed  Google Scholar 

  38. Taylor-Robinson, S. D. et al. Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968-1998. Gut 48, 816–820 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel, T. Worldwide trends in mortality from biliary tract malignancies. BMC Cancer 2, 10 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bertuccio, P. et al. Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J. Hepatol. 71, 104–114 (2019).

    Article  PubMed  Google Scholar 

  41. Saha, S. K., Zhu, A. X., Fuchs, C. S. & Brooks, G. A. Forty-year trends in cholangiocarcinoma incidence in the U.S.: intrahepatic disease on the rise. Oncologist 21, 594–599 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lepage, C. et al. Trends in the incidence and management of biliary tract cancer: a French population-based study. J. Hepatol. 54, 306–310 (2011).

    Article  PubMed  Google Scholar 

  43. Khan, S. A. et al. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J. Hepatol. 37, 806–813 (2002).

    Article  PubMed  Google Scholar 

  44. Jepsen, P., Vilstrup, H., Tarone, R. E., Friis, S. & Sorensen, H. T. Incidence rates of intra- and extrahepatic cholangiocarcinomas in Denmark from 1978 through 2002. J. Natl Cancer Inst. 99, 895–897 (2007).

    Article  PubMed  Google Scholar 

  45. Banales, J. M. et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 17, 557–588 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yao, K. J., Jabbour, S., Parekh, N., Lin, Y. & Moss, R. A. Increasing mortality in the United States from cholangiocarcinoma: an analysis of the National Center for Health Statistics Database. BMC Gastroenterol. 16, 117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khan, S. A. et al. Rising trends in cholangiocarcinoma: is the ICD classification system misleading us? J. Hepatol. 56, 848–854 (2012).

    Article  PubMed  Google Scholar 

  48. DeOliveira, M. L. et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann. Surg. 245, 755–762 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nakeeb, A. et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann. Surg. 224, 463–473 (1996). discussion 473-465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Selvadurai, S. et al. Cholangiocarcinoma miscoding in hepatobiliary centres. Eur. J. Surg. Oncol. 47, 635–639 (2021).

    Article  PubMed  Google Scholar 

  51. Bosman, F. T., Carneiro, F., Hruban, R. H. & Theise, N. D. WHO Classification of Tumours: Digestive System Tumours (IARC, 2019).

  52. Clements, O., Eliahoo, J., Kim, J. U., Taylor-Robinson, S. D. & Khan, S. A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J. Hepatol. 72, 95–103 (2020). This paper is an updated and comprehensive review and meta-analysis of cholangiocarcinoma risk factors.

    Article  PubMed  Google Scholar 

  53. Petrick, J. L. et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based study in SEER-Medicare. PLoS ONE 12, e0186643 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chan-On, W. et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat. Genet. 45, 1474–1478 (2013). This paper links aetiological exposures to distinct somatic mutations.

    Article  CAS  PubMed  Google Scholar 

  55. Jusakul, A. et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7, 1116–1135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakamura, H. et al. Genomic spectra of biliary tract cancer. Nat. Genet. 47, 1003–1010 (2015). This paper provides a comprehensive molecular characterization of the different subtypes of biliary tract cancers.

    Article  CAS  PubMed  Google Scholar 

  57. Farshidfar, F. et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep. 18, 2780–2794 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiao, Y. et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 45, 1470–1473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, Z. H. et al. Whole-exome mutational and transcriptional landscapes of combined hepatocellular cholangiocarcinoma and intrahepatic cholangiocarcinoma reveal molecular diversity. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2360–2368 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Lowery, M. A. et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention. Clin. Cancer Res. 24, 4154–4161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ong, C. K. et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat. Genet. 44, 690–693 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Zou, S. et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat. Commun. 5, 5696 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Chaisaingmongkol, J. et al. Common molecular subtypes among Asian hepatocellular carcinoma and cholangiocarcinoma. Cancer Cell 32, 57–70.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Montal, R. et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. J. Hepatol. 73, 315–327 (2020). This paper is the most comprehensive, integrated genomic analysis of perihilar/distal cholangiocarcinoma to date.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sia, D. et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat. Commun. 6, 6087 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Wu, Y. M. et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3, 636–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kongpetch, S. et al. Lack of targetable FGFR2 fusions in endemic fluke-associated cholangiocarcinoma. JCO Glob. Oncol. 6, 628–638 (2020).

    Article  PubMed  Google Scholar 

  68. Suttiprapa, S. et al. Opisthorchis viverrini proteome and host–parasite interactions. Adv. Parasitol. 102, 45–72 (2018).

    Article  PubMed  Google Scholar 

  69. Siripongsakun, S. et al. Premalignant lesions of cholangiocarcinoma: characteristics on ultrasonography and MRI. Abdom. Radiol. 44, 2133–2146 (2019).

    Article  Google Scholar 

  70. Wu, M. Y., Yiang, G. T., Cheng, P. W., Chu, P. Y. & Li, C. J. Molecular targets in hepatocarcinogenesis and implications for therapy. J. Clin. Med. 7, 213 (2018).

    Article  PubMed Central  Google Scholar 

  71. Sripa, B. et al. Advanced periductal fibrosis from infection with the carcinogenic human liver fluke Opisthorchis viverrini correlates with elevated levels of interleukin-6. Hepatology 50, 1273–1281 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Forrer, A. et al. Spatial distribution of, and risk factors for, Opisthorchis viverrini infection in southern Lao PDR. PLoS Negl. Trop. Dis. 6, e1481 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lun, Z. R. et al. Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect. Dis. 5, 31–41 (2005).

    Article  PubMed  Google Scholar 

  74. Thamavit, W., Bhamarapravati, N., Sahaphong, S., Vajrasthira, S. & Angsubhakorn, S. Effects of dimethylnitrosamine on induction of cholangiocarcinoma in Opisthorchis viverrini-infected Syrian golden hamsters. Cancer Res. 38, 4634–4639 (1978).

    CAS  PubMed  Google Scholar 

  75. Pakharukova, M. Y., Zaparina, O. G., Kovner, A. V. & Mordvinov, V. A. Inhibition of Opisthorchis felineus glutathione-dependent prostaglandin synthase by resveratrol correlates with attenuation of cholangiocyte neoplasia in a hamster model of opisthorchiasis. Int. J. Parasitol. 49, 963–973 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Smout, M. J. et al. Carcinogenic parasite secretes growth factor that accelerates wound healing and potentially promotes neoplasia. PLoS Pathog. 11, e1005209 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chaiyadet, S. et al. Carcinogenic liver fluke secretes extracellular vesicles that promote cholangiocytes to adopt a tumorigenic phenotype. J. Infect. Dis. 212, 1636–1645 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arunsan, P. et al. Programmed knockout mutation of liver fluke granulin attenuates virulence of infection-induced hepatobiliary morbidity. eLife 8, e41463 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Brivio, S., Cadamuro, M., Fabris, L. & Strazzabosco, M. Molecular mechanisms driving cholangiocarcinoma invasiveness: an overview. Gene Expr. 18, 31–50 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Labib, P. L., Goodchild, G. & Pereira, S. P. Molecular pathogenesis of cholangiocarcinoma. BMC Cancer 19, 185 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Roy, S., Glaser, S. & Chakraborty, S. Inflammation and progression of cholangiocarcinoma: role of angiogenic and lymphangiogenic mechanisms. Front. Med 6, 293 (2019).

    Article  Google Scholar 

  82. Servais, F. A. et al. Modulation of the IL-6-signaling pathway in liver cells by miRNAs targeting gp130, JAK1, and/or STAT3. Mol. Ther. Nucleic Acids 16, 419–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alvaro, D. et al. Estrogens and insulin-like growth factor 1 modulate neoplastic cell growth in human cholangiocarcinoma. Am. J. Pathol. 169, 877–888 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zavadil, J. & Bottinger, E. P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24, 5764–5774 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Claperon, A. et al. EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial-mesenchymal transition. J. Hepatol. 61, 325–332 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Miyamoto, M. et al. Prognostic significance of overexpression of c-Met oncoprotein in cholangiocarcinoma. Br. J. Cancer 105, 131–138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pant, K., Richard, S., Peixoto, E. & Gradilone, S. A. Role of glucose metabolism reprogramming in the pathogenesis of cholangiocarcinoma. Front. Med. 7, 113 (2020).

    Article  Google Scholar 

  88. Phoomak, C. et al. Overexpression of O-GlcNAc-transferase associates with aggressiveness of mass-forming cholangiocarcinoma. Asian Pac. J. Cancer Prev. 13, 101–105 (2012).

    PubMed  Google Scholar 

  89. Phoomak, C. et al. Mechanistic insights of O-GlcNAcylation that promote progression of cholangiocarcinoma cells via nuclear translocation of NF-κB. Sci. Rep. 6, 27853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Phoomak, C. et al. O-GlcNAc-induced nuclear translocation of hnRNP-K is associated with progression and metastasis of cholangiocarcinoma. Mol. Oncol. 13, 338–357 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Saengboonmee, C., Seubwai, W., Wongkham, C. & Wongkham, S. Diabetes mellitus: possible risk and promoting factors of cholangiocarcinoma: association of diabetes mellitus and cholangiocarcinoma. Cancer Epidemiol. 39, 274–278 (2015).

    Article  PubMed  Google Scholar 

  92. Phoomak, C. et al. High glucose levels boost the aggressiveness of highly metastatic cholangiocarcinoma cells via O-GlcNAcylation. Sci. Rep. 7, 43842 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Saengboonmee, C., Seubwai, W., Pairojkul, C. & Wongkham, S. High glucose enhances progression of cholangiocarcinoma cells via STAT3 activation. Sci. Rep. 6, 18995 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Indramanee, S. et al. Terminal fucose mediates progression of human cholangiocarcinoma through EGF/EGFR activation and the Akt/Erk signaling pathway. Sci. Rep. 9, 17266 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Phoomak, C. et al. O-GlcNAcylation mediates metastasis of cholangiocarcinoma through FOXO3 and MAN1A1. Oncogene 37, 5648–5665 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Park, D. D. et al. Metastasis of cholangiocarcinoma is promoted by extended high-mannose glycans. Proc. Natl Acad. Sci. USA 117, 7633–7644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Talabnin, K., Talabnin, C., Ishihara, M. & Azadi, P. Increased expression of the high-mannose M6N2 and NeuAc3H3N3M3N2F tri-antennary N-glycans in cholangiocarcinoma. Oncol. Lett. 15, 1030–1036 (2018).

    PubMed  Google Scholar 

  98. Nakanuma, Y. et al. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J. Hepatol. 2, 419–427 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Banales, J. M. et al. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 13, 261–280 (2016).

    Article  PubMed  Google Scholar 

  100. Vijgen, S., Terris, B. & Rubbia-Brandt, L. Pathology of intrahepatic cholangiocarcinoma. Hepatobiliary Surg. Nutr. 6, 22–34 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sirica, A. E. et al. Intrahepatic cholangiocarcinoma progression: prognostic factors and basic mechanisms. Clin. Gastroenterol. Hepatol. 7, S68–S78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bragazzi, M. C. et al. New insights into cholangiocarcinoma: multiple stems and related cell lineages of origin. Ann. Gastroenterol. 31, 42–55 (2018).

    PubMed  Google Scholar 

  103. Akita, M. et al. Histological and molecular characterization of intrahepatic bile duct cancers suggests an expanded definition of perihilar cholangiocarcinoma. HPB 21, 226–234 (2019).

    Article  PubMed  Google Scholar 

  104. Bae, J. Y. et al. Intestinal type cholangiocarcinoma of intrahepatic large bile duct associated with hepatolithiasis–a new histologic subtype for further investigation. Hepatogastroenterology 49, 628–630 (2002).

    PubMed  Google Scholar 

  105. Brunt, E. et al. cHCC-CCA: Consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology 68, 113–126 (2018).

    Article  PubMed  Google Scholar 

  106. Balitzer, D. et al. Immunohistochemical and molecular features of cholangiolocellular carcinoma are similar to well-differentiated intrahepatic cholangiocarcinoma. Mod. Pathol. 32, 1486–1494 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Brivio, S., Cadamuro, M., Strazzabosco, M. & Fabris, L. Tumor reactive stroma in cholangiocarcinoma: the fuel behind cancer aggressiveness. World J. Hepatol. 9, 455–468 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bosmuller, H. et al. Microvessel density and angiogenesis in primary hepatic malignancies: differential expression of CD31 and VEGFR-2 in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Pathol. Res. Pract. 214, 1136–1141 (2018).

    Article  PubMed  Google Scholar 

  109. Xu, J. et al. Intrahepatic cholangiocarcinomas in cirrhosis are hypervascular in comparison with those in normal livers. Liver Int. 32, 1156–1164 (2012).

    Article  PubMed  Google Scholar 

  110. Cadamuro, M. et al. The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1435–1443 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Loeuillard, E., Conboy, C. B., Gores, G. J. & Rizvi, S. Immunobiology of cholangiocarcinoma. JHEP Rep. 1, 297–311 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Vaquero, J., Aoudjehane, L. & Fouassier, L. Cancer-associated fibroblasts in cholangiocarcinoma. Curr. Opin. Gastroenterol. 36, 63–69 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Affo, S. et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell. 39, 866–882.e11 (2021). The first paper to describe subtypes of cancer-associated fibroblasts in cholangiocarcinoma.

    Article  CAS  PubMed  Google Scholar 

  114. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Alvaro, D. et al. Cholangiocarcinoma in Italy: a national survey on clinical characteristics, diagnostic modalities and treatment. Results from the “Cholangiocarcinoma” committee of the Italian Association for the Study of Liver disease. Dig. Liver Dis. 43, 60–65 (2011).

    Article  PubMed  Google Scholar 

  116. Patel, A. H., Harnois, D. M., Klee, G. G., LaRusso, N. F. & Gores, G. J. The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am. J. Gastroenterol. 95, 204–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Kim, M. J., Choi, J. Y. & Chung, Y. E. Evaluation of biliary malignancies using multidetector-row computed tomography. J. Comput. Assist. Tomogr. 34, 496–505 (2010).

    Article  PubMed  Google Scholar 

  118. Wildner, D. et al. CEUS in hepatocellular carcinoma and intrahepatic cholangiocellular carcinoma in 320 patients–early or late washout matters: a subanalysis of the DEGUM multicenter trial. Ultraschall Med. 36, 132–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Iavarone, M. et al. Contrast enhanced CT-scan to diagnose intrahepatic cholangiocarcinoma in patients with cirrhosis. J. Hepatol. 58, 1188–1193 (2013).

    Article  PubMed  Google Scholar 

  120. Kim, S. H. et al. Typical and atypical imaging findings of intrahepatic cholangiocarcinoma using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J. Comput. Assist. Tomogr. 36, 704–709 (2012).

    Article  PubMed  Google Scholar 

  121. Choi, S. H. et al. Intrahepatic cholangiocarcinoma in patients with cirrhosis: differentiation from hepatocellular carcinoma by using gadoxetic acid-enhanced MR imaging and dynamic CT. Radiology 282, 771–781 (2017).

    Article  PubMed  Google Scholar 

  122. Vilana, R. et al. Intrahepatic peripheral cholangiocarcinoma in cirrhosis patients may display a vascular pattern similar to hepatocellular carcinoma on contrast-enhanced ultrasound. Hepatology 51, 2020–2029 (2010).

    Article  PubMed  Google Scholar 

  123. Petrowsky, H. et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J. Hepatol. 45, 43–50 (2006).

    Article  PubMed  Google Scholar 

  124. Lamarca, A. et al. (18)F-fluorodeoxyglucose positron emission tomography ((18)FDG-PET) for patients with biliary tract cancer: systematic review and meta-analysis. J. Hepatol. 71, 115–129 (2019).

    Article  PubMed  Google Scholar 

  125. Jhaveri, K. S. & Hosseini-Nik, H. MRI of cholangiocarcinoma. J. Magn. Reson. Imaging 42, 1165–1179 (2015).

    Article  PubMed  Google Scholar 

  126. Saluja, S. S., Sharma, R., Pal, S., Sahni, P. & Chattopadhyay, T. K. Differentiation between benign and malignant hilar obstructions using laboratory and radiological investigations: a prospective study. HPB 9, 373–382 (2007).

    Article  PubMed  Google Scholar 

  127. Trikudanathan, G., Navaneethan, U., Njei, B., Vargo, J. J. & Parsi, M. A. Diagnostic yield of bile duct brushings for cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest. Endosc. 79, 783–789 (2014).

    Article  PubMed  Google Scholar 

  128. Barr Fritcher, E. G. et al. An optimized set of fluorescence in situ hybridization probes for detection of pancreatobiliary tract cancer in cytology brush samples. Gastroenterology 149, 1813–1824.e1 (2015). Fluorescence in situ hybridization has become an essential tool in cholangiocarcinoma diagnosis.

    Article  CAS  PubMed  Google Scholar 

  129. Rizvi, S., Eaton, J., Yang, J. D., Chandrasekhara, V. & Gores, G. J. Emerging technologies for the diagnosis of perihilar cholangiocarcinoma. Semin. Liver Dis. 38, 160–169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mohamadnejad, M. et al. Role of EUS for preoperative evaluation of cholangiocarcinoma: a large single-center experience. Gastrointest. Endosc. 73, 71–78 (2011).

    Article  PubMed  Google Scholar 

  131. Heimbach, J. K., Sanchez, W., Rosen, C. B. & Gores, G. J. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB 13, 356–360 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lim, J. H. Liver flukes: the malady neglected. Korean J. Radiol. 12, 269–279 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Khuntikeo, N. et al. The socioeconomic burden of cholangiocarcinoma associated with Opisthorchis viverrini sensu lato infection in northeast Thailand: a preliminary analysis. Adv. Parasitol. 102, 141–163 (2018).

    Article  PubMed  Google Scholar 

  134. Saijuntha, W. et al. Recent advances in the diagnosis and detection of Opisthorchis viverrini sensu lato in human and intermediate hosts for use in control and elimination programs. Adv. Parasitol. 101, 177–214 (2018).

    Article  PubMed  Google Scholar 

  135. Sadaow, L. et al. Development of an immunochromatographic point-of-care test for serodiagnosis of opisthorchiasis and clonorchiasis. Am. J. Trop. Med. Hyg. 101, 1156–1160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sayasone, S. et al. Efficacy and safety of tribendimidine versus praziquantel against Opisthorchis viverrini in Laos: an open-label, randomised, non-inferiority, phase 2 trial. Lancet Infect. Dis. 18, 155–161 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Sripa, B., Tangkawattana, S. & Sangnikul, T. The Lawa model: a sustainable, integrated opisthorchiasis control program using the EcoHealth approach in the Lawa Lake region of Thailand. Parasitol. Int. 66, 346–354 (2017).

    Article  PubMed  Google Scholar 

  138. Phimpraphai, W., Tangkawattana, S., Kasemsuwan, S. & Sripa, B. Social influence in liver fluke transmission: application of social network analysis of food sharing in Thai Isaan culture. Adv. Parasitol. 101, 97–124 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Tang, Z. L., Huang, Y. & Yu, X. B. Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control. Infect. Dis. Poverty 5, 71 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Shin, H. R. et al. Descriptive epidemiology of cholangiocarcinoma and clonorchiasis in Korea. J. Korean Med. Sci. 25, 1011–1016 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tangkawattana, S. & Sripa, B. Integrative EcoHealth/One Health approach for sustainable liver fluke control: the Lawa model. Adv. Parasitol. 102, 115–139 (2018).

    Article  PubMed  Google Scholar 

  142. Mairiang, E. et al. Ultrasonography assessment of hepatobiliary abnormalities in 3359 subjects with Opisthorchis viverrini infection in endemic areas of Thailand. Parasitol. Int. 61, 208–211 (2012).

    Article  PubMed  Google Scholar 

  143. Khuntikeo, N. et al. Cohort profile: cholangiocarcinoma screening and care program (CASCAP). BMC Cancer 15, 459 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Khuntikeo, N. et al. A comparison of the proportion of early stage cholangiocarcinoma found in an ultrasound-screening program compared to walk-in patients. HPB 22, 874–883 (2020).

    Article  PubMed  Google Scholar 

  145. Chamadol, N. et al. Histological confirmation of periductal fibrosis from ultrasound diagnosis in cholangiocarcinoma patients. J. Hepatobiliary Pancreat. Sci. 21, 316–322 (2014).

    Article  PubMed  Google Scholar 

  146. Khuntikeo, N., Loilome, W., Thinkhamrop, B., Chamadol, N. & Yongvanit, P. A comprehensive public health conceptual framework and strategy to effectively combat cholangiocarcinoma in Thailand. PLoS Negl. Trop. Dis. 10, e0004293 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chamadol, N. et al. Teleconsultation ultrasonography: a new weapon to combat cholangiocarcinoma. ESMO Open 2, e000231 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Weismuller, T. J. et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology 152, 1975–1984.e8 (2017).

    Article  PubMed  Google Scholar 

  149. Rizvi, S., Eaton, J. E. & Gores, G. J. Primary sclerosing cholangitis as a premalignant biliary tract disease: surveillance and management. Clin. Gastroenterol. Hepatol. 13, 2152–2165 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Darwish Murad, S. et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 143, 88–98 e83 quiz e14 (2012). This multicentre study established neoadjuvant chemoradiation plus liver transplantation as an effective option for perihilar cholangiocarcinoma.

    Article  PubMed  Google Scholar 

  151. Eaton, J. E. et al. Early cholangiocarcinoma detection with magnetic resonance imaging versus ultrasound in primary sclerosing cholangitis. Hepatology 73, 1868–1881 (2021).

    Article  PubMed  Google Scholar 

  152. Chapman, R. et al. Diagnosis and management of primary sclerosing cholangitis. Hepatology 51, 660–678 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Doussot, A. et al. Outcomes after resection of intrahepatic cholangiocarcinoma: external validation and comparison of prognostic models. J. Am. Coll. Surg. 221, 452–461 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Weber, S. M. et al. Intrahepatic cholangiocarcinoma: expert consensus statement. HPB 17, 669–680 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Weber, S. M. et al. Intrahepatic cholangiocarcinoma: resectability, recurrence pattern, and outcomes. J. Am. Coll. Surg. 193, 384–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Spolverato, G. et al. The impact of surgical margin status on long-term outcome after resection for intrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 22, 4020–4028 (2015).

    Article  PubMed  Google Scholar 

  157. Buettner, S. et al. Survival after resection of multiple tumor foci of intrahepatic cholangiocarcinoma. J. Gastrointest. Surg. 23, 2239–2246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lamarca, A. et al. Liver metastases of intrahepatic cholangiocarcinoma: implications for an updated staging system. Hepatology 73, 2311–2325 (2021).

    Article  PubMed  Google Scholar 

  159. Kim, Y. et al. Surgical management of intrahepatic cholangiocarcinoma: defining an optimal prognostic lymph node stratification schema. Ann. Surg. Oncol. 22, 2772–2778 (2015).

    Article  PubMed  Google Scholar 

  160. Kizy, S. et al. Surgical resection of lymph node positive intrahepatic cholangiocarcinoma may not improve survival. HPB 21, 235–241 (2019).

    Article  PubMed  Google Scholar 

  161. Sapisochin, G., de Sevilla, E. F., Echeverri, J. & Charco, R. Management of “very early” hepatocellular carcinoma on cirrhotic patients. World J. Hepatol. 6, 766–775 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sapisochin, G. et al. Liver transplantation for “very early” intrahepatic cholangiocarcinoma: international retrospective study supporting a prospective assessment. Hepatology 64, 1178–1188 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Lunsford, K. E. et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series. Lancet Gastroenterol. Hepatol. 3, 337–348 (2018).

    Article  PubMed  Google Scholar 

  164. Hyder, O. et al. Intra-arterial therapy for advanced intrahepatic cholangiocarcinoma: a multi-institutional analysis. Ann. Surg. Oncol. 20, 3779–3786 (2013).

    Article  PubMed  Google Scholar 

  165. Cercek, A. et al. Assessment of hepatic arterial infusion of floxuridine in combination with systemic gemcitabine and oxaliplatin in patients with unresectable intrahepatic cholangiocarcinoma: a phase 2 clinical trial. JAMA Oncol. 6, 60–67 (2020).

    Article  PubMed  Google Scholar 

  166. Hong, T. S. et al. Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Clin. Oncol. 34, 460–468 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Bird, N. et al. Role of staging laparoscopy in the stratification of patients with perihilar cholangiocarcinoma. Br. J. Surg. 104, 418–425 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Nuzzo, G. et al. Improvement in perioperative and long-term outcome after surgical treatment of hilar cholangiocarcinoma: results of an Italian multicenter analysis of 440 patients. Arch. Surg. 147, 26–34 (2012).

    Article  PubMed  Google Scholar 

  169. Nagino, M. et al. Evolution of surgical treatment for perihilar cholangiocarcinoma: a single-center 34-year review of 574 consecutive resections. Ann. Surg. 258, 129–140 (2013).

    Article  PubMed  Google Scholar 

  170. Abbas, S. & Sandroussi, C. Systematic review and meta-analysis of the role of vascular resection in the treatment of hilar cholangiocarcinoma. HPB 15, 492–503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  171. de Jong, M. C. et al. The impact of portal vein resection on outcomes for hilar cholangiocarcinoma: a multi-institutional analysis of 305 cases. Cancer 118, 4737–4747 (2012).

    Article  PubMed  Google Scholar 

  172. Ebata, T. et al. Surgical resection for Bismuth type IV perihilar cholangiocarcinoma. Br. J. Surg. 105, 829–838 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. van Vugt, J. L. A. et al. The prognostic value of portal vein and hepatic artery involvement in patients with perihilar cholangiocarcinoma. HPB 20, 83–92 (2018).

    Article  PubMed  Google Scholar 

  174. Dickson, P. V. & Behrman, S. W. Distal cholangiocarcinoma. Surg. Clin. North. Am. 94, 325–342 (2014).

    Article  PubMed  Google Scholar 

  175. Rea, D. J. et al. Liver transplantation with neoadjuvant chemoradiation is more effective than resection for hilar cholangiocarcinoma. Ann. Surg. 242, 451–458 (2005). discussion 458-461.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Sudan, D. et al. Radiochemotherapy and transplantation allow long-term survival for nonresectable hilar cholangiocarcinoma. Am. J. Transpl. 2, 774–779 (2002).

    Article  Google Scholar 

  177. Darwish Murad, S. et al. Predictors of pretransplant dropout and posttransplant recurrence in patients with perihilar cholangiocarcinoma. Hepatology 56, 972–981 (2012).

    Article  PubMed  Google Scholar 

  178. Valle, J. et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 362, 1273–1281 (2010). This study established gemcitabine and cisplatin as the first-line systemic therapy for cholangiocarcinoma.

    Article  CAS  PubMed  Google Scholar 

  179. Lamarca, A. et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol. 22, 690–701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Morizane, C. et al. Combination gemcitabine plus S-1 versus gemcitabine plus cisplatin for advanced/recurrent biliary tract cancer: the FUGA-BT (JCOG1113) randomized phase III clinical trial. Ann. Oncol. 30, 1950–1958 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Phelip, J. M. et al. Modified FOLFIRINOX versus CISGEM as first-line chemotherapy for advanced biliary tract cancer: results of AMEBICA PRODIGE 38 randomized phase II trial [abstract 52P]. Ann. Oncol. 31, S260–S261 (2020).

    Article  Google Scholar 

  182. Shroff, R. T. et al. Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced biliary tract cancers: a phase 2 clinical trial. JAMA Oncol. 5, 824–830 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Lamarca, A. et al. Advanced intrahepatic cholangiocarcinoma: post hoc analysis of the ABC-01, -02, and -03 clinical trials. J. Natl Cancer Inst. 112, 200–210 (2020).

    PubMed  Google Scholar 

  184. Abou-Alfa, G. K. et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 21, 796–807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Abou-Alfa, G. K. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 21, 671–684 (2020). Pemigatinib was the first targeted therapy to receive FDA approval in cholangiocarcinoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Javle, M. et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J. Clin. Oncol. 36, 276–282 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Rizvi, S. & Gores, G. J. Emerging molecular therapeutic targets for cholangiocarcinoma. J. Hepatol. 67, 632–644 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Goeppert, B. et al. BRAF V600E-specific immunohistochemistry reveals low mutation rates in biliary tract cancer and restriction to intrahepatic cholangiocarcinoma. Mod. Pathol. 27, 1028–1034 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Javle, M. et al. Biliary cancer: utility of next-generation sequencing for clinical management. Cancer 122, 3838–3847 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Subbiah, V. et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 21, 1234–1243 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Piha-Paul, S. A. et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: results from the KEYNOTE-158 and KEYNOTE-028 studies. Int. J. Cancer 147, 2190–2198 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Asaoka, Y., Ijichi, H. & Koike, K. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 373, 1979 (2015).

    Article  PubMed  Google Scholar 

  193. Kim, R. D. et al. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer. JAMA Oncol. 6, 888–894 (2020).

    Article  PubMed  Google Scholar 

  194. Klein, O. et al. Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: subgroup analysis of a phase 2 nonrandomized clinical trial. JAMA Oncol. 6, 1405–1409 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Finn, R. S. et al. KEYNOTE-966: A randomized, double-blind, placebo-controlled, phase 3 study of pembrolizumab in combination with gemcitabine and cisplatin for the treatment of advanced biliary tract carcinoma [abstract CT283]. Cancer Res. 80 (Suppl. 16), CT283 (2020).

    Article  Google Scholar 

  196. Nathan, H. et al. Trends in survival after surgery for cholangiocarcinoma: a 30-year population-based SEER database analysis. J. Gastrointest. Surg. 11, 1488–1496; discussion 1496–1487 (2007).

    Article  PubMed  Google Scholar 

  197. Wang, Y. et al. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J. Clin. Oncol. 31, 1188–1195 (2013).

    Article  PubMed  Google Scholar 

  198. Edeline, J. et al. Gemcitabine and oxaliplatin chemotherapy or surveillance in resected biliary tract cancer (PRODIGE 12-ACCORD 18-UNICANCER GI): a randomized phase III study. J. Clin. Oncol. 37, 658–667 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Ebata, T. et al. Randomized clinical trial of adjuvant gemcitabine chemotherapy versus observation in resected bile duct cancer. Br. J. Surg. 105, 192–202 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Primrose, J. N. et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 20, 663–673 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Shroff, R. T. et al. Adjuvant therapy for resected biliary tract cancer: ASCO clinical practice guideline. J. Clin. Oncol. 37, 1015–1027 (2019).

    Article  PubMed  Google Scholar 

  202. Fitzmaurice, C., Seiler, C. M., Buchler, M. W. & Diener, M. K. Survival, mortality and quality of life after pylorus-preserving or classical Whipple operation. A systematic review with meta-analysis. Chirurg 81, 454–471 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Dasgupta, D. et al. Quality of life after liver resection for hepatobiliary malignancies. Br. J. Surg. 95, 845–854 (2008).

    Article  CAS  PubMed  Google Scholar 

  204. Loeuillard, E., Fischbach, S. R., Gores, G. J. & Rizvi, S. Animal models of cholangiocarcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 982–992 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Lavu, S. et al. Effect of statins on the risk of extrahepatic cholangiocarcinoma. Hepatology 72, 1298–1309 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Fabris, L., Cadamuro, M., Cagnin, S., Strazzabosco, M. & Gores, G. J. Liver matrix in benign and malignant biliary tract disease. Semin. Liver Dis. 40, 282–297 (2020).

    Article  PubMed  Google Scholar 

  207. Abou-Alfa, G. K., Pandya, S. S. & Zhu, A. X. Ivosidenib for advanced IDH1-mutant cholangiocarcinoma – Authors’ reply. Lancet Oncol. 21, e371 (2020).

    Article  PubMed  Google Scholar 

  208. Lamarca, A. et al. Molecular profiling in daily clinical practice: practicalities in advanced cholangiocarcinoma and other biliary tract cancers. J. Clin. Med. 9, 2854 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  209. Smout, M. J. et al. Infection with the carcinogenic human liver fluke, Opisthorchis viverrini. Mol. BioSyst. 7, 1367–1375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sirica, A. E., Strazzabosco, M. & Cadamuro, M. Intrahepatic cholangiocarcinoma: morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv. Cancer Res. 149, 321–387 (2021).

    Article  PubMed  Google Scholar 

  211. Chuchuen, O. et al. Rapid label-free analysis of Opisthorchis viverrini eggs in fecal specimens using confocal Raman spectroscopy. PLoS ONE 14, e0226762 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Suwannatrai, A., Saichua, P. & Haswell, M. Epidemiology of Opisthorchis viverrini infection. Adv. Parasitol. 101, 41–67 (2018).

    Article  PubMed  Google Scholar 

  213. Diemert, D. J., Bottazzi, M. E., Plieskatt, J., Hotez, P. J. & Bethony, J. M. Lessons along the critical path: developing vaccines against human helminths. Trends Parasitol. 34, 747–758 (2018).

    Article  PubMed  Google Scholar 

  214. McManus, D. P. Recent progress in the development of liver fluke and blood fluke vaccines. Vaccines (Basel) 8, 553 (2020).

    Article  CAS  Google Scholar 

  215. Sun, H. et al. Bacillus subtilis spore with surface display of paramyosin from Clonorchis sinensis potentializes a promising oral vaccine candidate. Parasit. Vectors 11, 156 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Wang, X. et al. Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate. Vaccine 32, 1338–1345 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Mekonnen, G. G., Pearson, M., Loukas, A. & Sotillo, J. Extracellular vesicles from parasitic helminths and their potential utility as vaccines. Expert Rev. Vaccines 17, 197–205 (2018).

    Article  PubMed  Google Scholar 

  218. Phumrattanaprapin, W. et al. Orally administered Bacillus spores expressing an extracellular vesicle-derived tetraspanin protect hamsters against challenge infection with carcinogenic human liver fluke. J. Infect. Dis. 223, 1445–1455 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.J.G. is supported by the SPORE grant CA210964. P.J.B. and A.L. receive grant support (R01CA164719) from the National Institute of Health. S.A.K. is grateful for support from the UK National Institute for Health Research (NIHR) Biomedical Facilities at Imperial College London. B.T.T. receives support from The National Medical Research Council (grant MOH-000248). S.I.I. receives support from the National Cancer Institute (1K08CA236874) and the Mayo Foundation. A.L. receives support from National Health and Medical Research Council Senior Principal Research Fellowship 1117504. S.W. receives support from National Science and Technology Development Agency (NSTDA), Thailand, and the e-ASIA JRP.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (G.J.G.); Epidemiology (P.J.B. and S.A.K.); Mechanisms/pathophysiology (B.T.T., A.L., S.W. and A.E.S.); Diagnosis, screening and prevention (S.I.I., P.J.B. and G.J.G.); Management (S.I.I.); Quality of life (M.B.); Outlook (G.J.G.); Overview of Primer (G.J.G.).

Corresponding author

Correspondence to Gregory J. Gores.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks B. Koerkamp; D.-Y. Oh, who co-reviewed with J. Yoon; R. T. Shroff, who co-reviewed with M. Savani; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brindley, P.J., Bachini, M., Ilyas, S.I. et al. Cholangiocarcinoma. Nat Rev Dis Primers 7, 65 (2021). https://doi.org/10.1038/s41572-021-00300-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41572-021-00300-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing